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Abstract

Autoantibody profiling with a systems medicine approach can help identify critical dysregu-

lated signaling pathways (SPs) in cancers. In this way, immunoglobulins G (IgG) purified

from the serum samples of 92 healthy controls, 10 pre-treated (PR) non-Hodgkin lymphoma

(NHL) patients, and 20 NHL patients who underwent chemotherapy (PS) were screened

with a phage-displayed random peptide library. Protein-protein interaction networks of the

PR and PS groups were analyzed and visualized by Gephi. The results indicated AXIN2,

SENP2, TOP2A, FZD6, NLK, HDAC2, HDAC1, and EHMT2, in addition to CAMK2A,

PLCG1, PLCG2, GRM5, GRIN2B, GRIN2D, CACNA2D3, and SPTAN1 as hubs in 11 and 7

modules of PR and PS networks, respectively. PR- and PS-specific hubs were evaluated in

the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome databases. The

PR-specific hubs were involved in Wnt SP, signaling by Notch1 in cancer, telomere mainte-

nance, and transcriptional misregulation. In contrast, glutamate receptor SP, Fc receptor-

related pathways, growth factors-related SPs, and Wnt SP were statistically significant

enriched pathways, based on the pathway analysis of PS hubs. The results revealed that

the most PR-specific proteins were associated with events involved in tumor development,

while chemotherapy in the PS group was associated with side effects of drugs and/or cancer

recurrence. As the findings demonstrated, PR- and PS-specific proteins in this study can be

promising therapeutic targets in future studies.
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Introduction

Non-Hodgkin lymphoma (NHL) constitutes a highly heterogeneous group of lymphoproli-

ferative malignancies, arising from both B and T lymphocytes, as well as natural killer cells [1,

2]. According to statistics, 70 800 new cases of NHL were identified in the USA in 2014, 96 788

new cases were diagnosed in Europe in 2015, and different occurrences have been reported in

various countries. Overall, NHL remains among the top 10 most frequent cancers in the world

[3].

In many NHL subtypes, timely diagnosis can result in effective and often curative treatment

[4]. Today, rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone

(R-CHOP) are the treatment of choice for different subtypes of NHL. However, many patients

with relapsed or primary refractory NHL cannot be treated by standard therapy, and generally

show poor prognosis [3, 5].

Considering NHL relapse and chemoresistance as major complications of treatment, there

is an urgent need for developing novel drugs which target tumor antigens in the involved path-

ways. Nevertheless, only a few effective targets, such as B-lymphocyte antigen, CD20, have

been introduced so far. CD20 has shown major therapeutic effects given its involvement in the

pathogenicity of a wide range of diseases including NHL [6].

The generation of autoantibodies (AAbs) targeting tumor antigens has provided opportuni-

ties for using the immune system as a source for finding therapeutic targets. AAbs are pro-

duced in either early stages of cancer or during treatment due to different alterations, such as

mutations, translocation, and posttranslation modification (PTM), resulting in the recognition

of self-antigens as non-self antigens [7, 8]. Following the production of various B lymphocytes

against autoantigens, some differentiate into memory cells and some into plasma cells secret-

ing AAbs [9]. Overall, AAbs are stable and frequent proteins with a long half-life, unlike their

corresponding autoantigens [9]. Therefore, assessment of AAb repertoires in cancer patients

may help identify biomarkers and explain the role of important pathways in disease develop-

ment. Moreover, it can help evaluate immune responses to determine the efficacy of current

and novel therapeutic agents and assess their predictive role in disease recurrences or favorable

clinical outcomes [9, 10].

Several studies have evaluated the AAb repertoire of NHL patients and reported anti-

nuclear antibodies as dominant AAbs generated by B cells against self-antigens [11, 12]. How-

ever, in the present study, we aimed to investigate the AAb profiles of NHL patients before

chemotherapy (PR) and after chemotherapy (PS), using a phage-displayed peptide library to

find proteins which may be involved in tumor development, chemotherapy resistance, and

cancer relapse, and are common among different NHL subtypes.

We selected a large population of healthy subjects to do a subtract panning. Two panels of

PR- and PS-specific peptides were achieved by panning on the purified IgG from the sera of

NHL patients. Proteins predicted by experimentally detected peptides were evaluated using

protein-protein interaction databases. Furthermore, we followed-up the PS group after two

years to determine if the data matched events which were predicted according to the identified

pathways. Conclusively, the results demonstrated that the proteins found in this study were

involved in the pathogenesis of NHL and side effects of chemotherapy.

Materials and methods

Sample collection

Patients, aged 18–77 years, who were diagnosed with stage II–IV disease or stage I disease with

bulk, were selected during 2012–2014 from Shariati, Imam, and Baqiyatallah hospitals, Tehran,

The non-Hodgkin lymphoma autoantibody signature

PLOS ONE | https://doi.org/10.1371/journal.pone.0183969 September 11, 2017 2 / 25

Ankyrin repeat domain-containing protein 6;

BCL11A & B, B-cell lymphoma/leukemia 11A & B;

BMP, Bone morphogenetic proteins; CACNA1S,

Voltage-dependent L-type calcium channel subunit

alpha-1S; CACNA2D3, Voltage-dependent calcium

channel subunit alpha-2/delta-3; CAMK2A,

Calcium/calmodulin-dependent protein kinase type

II subunit alpha; CEP72, Centrosomal protein of 72

kDa; CHD5, Chromodomain-helicase-DNA-binding

protein 5; CHD8, Chromodomain-helicase-DNA-

binding protein 8; CKAP5, Cytoskeleton-associated

protein 5; EGFR, Epidermal growth factor receptor;

EHMT2, Histone-lysine N-methyltransferase

EHMT2; ELISA, Enzyme-linked immunosorbent

assay; ERBB, Receptor tyrosine-protein kinase

erbB; ERC2, ERC protein 2; FGFRs, Fibroblast

growth factor receptors; FZD6, Frizzled-6; GMPS,

GMP synthase [glutamine-hydrolyzing; GRIN2B,

Glutamate receptor ionotropic, NMDA2B; GRIN2D,

Glutamate receptor ionotropic, NMDA 2D; GRM5,

Metabotropic glutamate receptor 5; GRAP2, GRB2-

related adapter protein 2; HDAC1 & 2, Histone

deacetylase 1 & 2; HECW1, E3 ubiquitin-protein

ligase HECW1; HIF-1α, Hypoxia-inducible factor 1-

alpha; IgG, Immunoglobulin G; IL-6, Interleukin 6;

MTMR4 & 6, Myotubularin-related protein 4 & 6;

NHL, Non-Hodgkin lymphoma; NKD1 & 2, Protein

naked cuticle homolog 1 & 2; NKT, natural killer T;

NLK, Serine/threonine-protein kinase NLK; NMDA,

N-methyl-D-aspartate; NOS, Not otherwise

specified; PCLO, Protein piccolo; PDFG, Platelet-

derived growth factor; PIK3C2G,

Phosphatidylinositol-4-phosphate 3-kinase

catalytic subunit type 2 gamma; PLCG1 & 2,

Phospholipase C, gamma 1 & 2; PYGO1, Pygopus

homolog 1; RNF43, E3 ubiquitin-protein ligase

RNF43; RNF213, E3 ubiquitin-protein ligase

RNF213; ROS, Reactive oxygen species; SENP2,

Sentrin-specific protease 2; SLC22A16 & 3, Solute

carrier family 22 member 16 & 3; SLCO1A2, Solute

carrier organic anion transporter family member 1;

SPTAN1, Spectrin alpha chain, non-erythrocytic 1;

TNF, Tumor necrosis factor; TNRC6C, Trinucleotide

repeat-containing gene 6C; TOP2A, DNA

topoisomerase 2-alpha; UTY, Histone demethylase

UTY; VEGF, Vascular endothelial growth factor;

ZBTB16, Zinc finger and BTB domain-containing

protein 16.

https://doi.org/10.1371/journal.pone.0183969


Iran (S1 Table). All samples were pathologically confirmed by local pathologists. The stage of

lymphoma was defined by the referring physician, based on the Cotswolds modification of the

Ann Arbor staging system [13]. To determine the common molecular pathogenesis among dif-

ferent NHL subtypes, we involved NHL subtypes according to the World Health Organization

(WHO) classification using the International Lymphoma Epidemiology Consortium (Inter-

Lymph) guidelines [14]. Of note, patients with a history of other malignancies or active auto-

immune disorders were excluded from the study. Finally, peripheral blood samples were

collected from 10 NHL patients right before the onset of treatment (PR), as well as 20 patients

who either were under treatment or had undergone chemotherapy (PS). In the PS group,

R-CHOP and CHOP were the preferred treatments. In addition, granulocyte-colony stimulat-

ing factor (Filgrastim or lenograstim) was used for most patients in this group to alleviate or

prevent neutropenia. Radiotherapy was applied for areas of primary bulky disease.

As control, we enrolled 127 healthy, age- and gender-matched individuals, who were ran-

domly selected (age range, 11–80 years; mean age, 37.8 years). Healthy subjects were evaluated

and excluded if had one or more of following conditions: positive rheumatoid factor, C-reac-

tive protein higher than 6 mg/dL, erythrocyte sedimentation rate greater than 32 mm/h, com-

plete blood count and chest X-ray abnormalities. All healthy participants were refrained from

using anti-inflammatory drugs for three days before blood collection (S2 Table). The volun-

teers were interviewed to assess their demographic information and risk factors for autoim-

mune diseases and cancers (eg, history of diseases in patients and their families).

This study was done in accordance with the Helsinki Declaration and was approved by the

HORCSCT Review Board and Ethics Committee in Shariati Hospital, the Ethical Committee

of the Cancer Institute (Imam Khomeini Hospital), and the Ethics Committee of Baqiyatallah

University of Medical Sciences. All participants provided written informed consent before

enrollment.

Preparation of sera and IgG purification

IgG antibodies from the pooled sera of healthy, PR, and PS subjects were individually purified

using a Melon Gel IgG Purification Kit (Pierce, Rockford, IL, USA) according to the manufac-

turer’s instructions. The purification accuracy was confirmed by reducing sodium dodecyl sul-

fate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis.

Biopanning

A random peptide library (Ph.D.-C7C Phage Display Peptide Library Kit, New England Bio-

labs, Beverly, MA, USA) was used to perform three successive cycles of biopanning on the

purified IgG of NHL patients according to the manufacturer’s instructions [15].

Phage ELISA

To evaluate the specificity of phages to the PR and PS IgG, polyclonal and monoclonal phage

ELISA assays were done according to the manufacturer’s instructions (Ph.D.TM-C7C Kit). See

supporting information (S1 Text) for details.

DNA sequencing

Single-stranded DNAs of 22 phages (11 phages from PR and 11 phages from PS) were

extracted and sequenced according to Ph.D.-C7C Kit instructions. The amino acid sequences

were deduced with Gene Runner program version 5.0 and checked in the Biopanning Data
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Bank (MimoDB) (http://immunet.cn/bdb/) [16]. The selected peptides were blasted for Homo
sapiens proteins, using the BLASTP tool and Refseq protein database [17].

Gene Ontology and pathway enrichment analysis of predicted genes

selected by literature research

Among proteins deduced from the detected peptides, proteins associated with cancers or the

immune system were extracted by searching the literature and UniProt database (Fig 1).

To identify the biological processes associated with PR and PS gene lists, and determine the

correlation of overrepresented terms, Enrichr web tool (http://amp.pharm.mssm.edu/Enrichr/

) and ClueGo plugin v2.3.2 [18] in Cytoscape 3.4.0 [19] were used. All results from ClueGO

were based on the Ontology GO Biological Process with a Kappa Score Threshold = 0.4. To

compute enriched terms and to correct P-value, a two-sided hypergeometric (Enrichment/

Depletion) test and Benjamini—Hochberg correction were applied, respectively. Gene Ontol-

ogy (GO) terms with P< 0.05 were considered as significant [20, 21].

To achieve enriched pathways showing the best connections among genes, pathway enrich-

ment analysis was performed via Enrichr, based on the Kyoto Encyclopedia of Genes and

Genomes (KEGG), WikiPathways, Reactome, BioCarta, Panther, and Ingenuity Pathway

Analysis (IPA, QIAGEN Redwood City, www.qiagen.com/ingenuity) databases. The signifi-

cance level was set at 0.05, and the minimum number of genes for each term was set at two.

Additionally, ClueGO was used for verifying the pathway enrichment analysis according to

the KEGG, Reactome, and WikiPathways databases. Terms selection was based on the above-

mentioned options.

Disease association analysis of genes was carried out using WEB-based GEne SeT AnaLysis

Toolkit (WebGestalt) (http://www.webgestalt.org) and IPA. The WebGestalt database was uti-

lized according to the parameters of a hypergeometric test for the enrichment analysis at

P< 0.05 after BH correction [22].

Network analysis and visualization

To precisely evaluate pathways and visualize the connection among target genes, two PR and

PS gene lists were imported into STRING version 10.0 (http://string-db.org) [23]. By extract-

ing the combined scores from STRING, as edge weights (threshold, 0.4577), different topologi-

cal properties of networks, such as degree, modularity, and betweenness centrality of nodes (as

representatives of proteins), were visualized and computed via Gephi 0.9.1 (http://gephi.

github.io/) [23–25]. Thereby, we could identify top ranked proteins/hubs in the PR and PS net-

works. The GO and pathway enrichment analysis of the detected modules and pathway analy-

sis of hubs were carried out using Enrichr (based on the KEGG and Reactome databases) to

distinguish the overrepresented terms at P< 0.05 [26]. Additionally, PR- and PS-specific hubs

were investigated through literature mining to pinpoint alterations such as expression pat-

terns, mutations, translocations, and different modifications (e.g., methylation) which have

been reported in different cancers. Moreover, their involvement in various pathways with con-

siderable effects on tumor development, cancer progression, and chemotherapy resistance was

evaluated.

Hubs assessment in DrugBank

To find interactions between hubs and drugs and to identify relations between NHL drugs and

PR- and PS-specific proteins, PR and PS hubs in addition to drugs involved in R-CHOP che-

motherapy, were assessed with the DrugBank database (https://www.drugbank.ca).

The non-Hodgkin lymphoma autoantibody signature
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Fig 1. The schematic diagram of analyses in this study.

https://doi.org/10.1371/journal.pone.0183969.g001
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Binding of the selected hubs to the sera of PR and PS patients

SENP2 (Bioclone) and PLCG1 (ORIGENE) were assessed by ELISA as PR and PS hubs,

respectively (See Supporting Information (S1 Text) for details).

Follow-up of NHL patients who underwent chemotherapy

Patients who experienced chemotherapy were followed-up for two years and classified accord-

ing to the treatment response, relapse, primary refractory, and progression under therapy [5,

27, 28]. See Supporting Information (S1 Text) for details.

Statistical analysis

All statistical analyses were carried out using GraphPad prism. The data are presented as

mean ± SD. Statistical significance was determined by a two-tailed student t test. P-value

<0.05 was considered statistically significant.

Results

Identification of PR- and PS-specific peptides via library enrichment on

NHL IgG

To determine IgG antibodies, which are only present in the sera of NHL patients, we enrolled

a large healthy population to remove AAbs which may be also found in the serum of healthy

subjects and affect the results. Therefore, among 123 healthy subjects, 31 were excluded due to

different abnormalities in their blood assay and chest X-ray (S2 Table). We first incubated

phages (1013 cfu) with immobilized purified IgG from healthy controls which could entrap

many unrelated phages. After incubation with purified PR and PS IgG, two pools of NHL-spe-

cific phages were obtained. During three consecutive rounds of panning, the titer of phages

showed the favorite ratio of inputs to outputs consisting of enriched phages. To monitor the

success of panning process, polyclonal phage ELISA was performed for PR- and PS-related

inputs and outputs. Compared with the control, the greatest signals were observed in the

phages of the third round of panning on the purified IgG of NHL patients. After screening 60

NHL-specific phage clones from the third round of panning (30 clones from the PR group and

30 clones from the PS group), 11 phage clones were selected for further analysis from each

NHL group; they showed significant signals compared with the control on monoclonal phage

ELISA (Fig 2A and 2B).

After DNA sequencing, 8 and 9 clones yielded acceptable sequences from the PR and PS

groups, respectively (S3 Table). According to the MimoDB database, all sequences were target-

related peptides. As shown in S3 Table, the amino acid sequences of clone FN7 of the PR

group and clones FT2 and FT4 in the PS group were identical.

According to the default parameters defined in BLASTP, 1100 proteins with scores above

18.5 were identified, among which 205 PR proteins and 181 PS proteins were finally selected,

based on the primary evaluations via mining the literature and UniProt database to determine

if they were related to events involved in cancer or autoimmunity (Fig 2C). Accordingly, three

lists of candidate proteins were prepared, containing PR- and PS-specific proteins, along with

proteins which were common between two groups (S4 Table).
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Identification of core lists containing hubs involved in tumor initiation and

chemotherapy side effects

Primary analysis based on the literature and GO enrichment via Enrichr and ClueGo.

The GO functional analysis on PR and PS gene sets using Enrichr and ClueGo resulted in the

identification of several GO terms with significant roles in cancer or NHL development,

tumor progression, and/or chemotherapy side effects. The most significantly enriched GO

terms in the PR group were related to biological processes such as negative regulation of Wnt

SP (GO:0030178), regulation of Wnt SP (GO:0030111), hematopoietic or lymphoid organ

development (GO:0048534), centrosome duplication (GO:0051298), telomere maintenance

via recombination (GO: 0000722), TNF superfamily cytokine production (GO:0071706), nega-

tive regulation of myeloid cell differentiation (GO:0045638), ATP-dependent chromatin

remodeling (GO:0043044), TGF-β receptor SP (GO:0007179), and regulation of BMP SP

(GO:0030510) (Fig 3A). The key role of these SPs in NHL development was verified by over-

represented terms, including Wnt SP overactivity, emergence of alleviating pathways, centro-

some duplication, telomere maintenance, chromatin remodeling (related to cancer cells), and

events associated with spleen development.

The significant enriched terms in the PS group were related to biological processes classified

in phosphatidylinositol metabolic process (GO:0046488), glutamate receptor SP

(GO:0007215), regulation of cytokine biosynthetic process (GO:0042035), regulation of NKT

Fig 2. The results of monoclonal phage ELISA and Venn diagram of the predicted proteins. (A) Following the evaluation of 30 phage

clones, 11 clones showed higher signal intensities in binding to the immobilized IgG of PR group (orange) compared with empty wells as the

negative controls (blue). (B) 11 clones showed strong binding to the immobilized IgG of PS group (orange). (C) The Venn diagram of 158

PR, 134 PS, and 47 common proteins, which were deduced from 16 peptides via BLASTP, is presented.

https://doi.org/10.1371/journal.pone.0183969.g002
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cell differentiation (GO:0051136), interferon gamma (IFNγ)-mediated SP (GO:0060333), β-

catenin-TCF complex assembly (GO:1904837), negative regulation of leukocyte apoptotic pro-

cess (GO:2000107), mature B cell differentiation involved in immune response (GO:0002313),

glycerophospholipid metabolic process (GO:0006650), positive regulation of immunoglobulin

mediated immune response (GO:0002891), and VEGF SP (GO:0038084) (Fig 3B). The acti-

vated pathways in the PS group were associated with NHL and R-CHOP regimen, highlighting

immune system-related events and adverse effects of drugs in patients who underwent

chemotherapy.

Pathway enrichment by Enrichr, IPA, and ClueGo. In the PR group, the pathway

enrichment analysis resulted in the identification of pathways, including Wnt SP, transcrip-

tional misregulation in cancer, SPs regulating pluripotency of stem cells, IL-6 SP, and transport

of nucleosides and free purine and pyrimidine bases across the plasma membrane, as repeat-

edly demonstrated with Enrichr (S1 Fig) and ClueGO.

The pathway enrichment analysis of PS gene set revealed high-affinity receptor for the

immunoglobulin E (FcεRI) SP, IFNγ SP, sphingolipid metabolism, Wnt/β-catenin SP in leuke-

mia, signaling by growth factors (eg, ERBB4, PDFG, FGFRs, EGFR, and VEGFR2), CXCR4

SP, ionotropic glutamate receptor pathway, metabotropic glutamate receptor group I and III

pathways, 5HT2 type receptor mediated SP, and histamine H1 receptor mediated SP (S1 Fig).

These pathways associated with the pathobiology of cancers and/or the effects of chemother-

apy on patients are presented in Table 1.

In the present study, there were common pathways between the PR and PS groups, includ-

ing calcium SP with different proteins in the PR (TNRC6C, FZD6, AXIN2, and NLK) and PS

(GRM5, CAMK2A, PLCG2, CACNA1A, CACNA1S, PLCG1, and GRIN2D) groups, Wnt/β-

catenin SP (PR: ANKRD6, AXIN2, CHD8, FZD6, HDAC1, HECW1, NKD1, NKD2, NLK,

RNF213, and RNF43; and PS: PYGO1 and ZBTB16), and inositol phosphate metabolism with

three common proteins (ie, PIK3C2G, MTMR4, and MTMR6). Furthermore, two pathways

Fig 3. Visualization of overrepresented GO terms via Cytoscape platform based on ClueGO/CluePedia network analysis. (A) Each

node represents a PR-specific term. (B) Each node represents a PS-specific term. Node size indicates P-value.

https://doi.org/10.1371/journal.pone.0183969.g003
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Table 1. Classification of PR and PS gene sets in a series of pathways identified through Enrichr.

Annotation terms The importance of pathways in cancer and chemotherapy-related events

KEGG

1 Transcriptional misregulation in cancer Misregulation of a large amount of transcription factors, cofactors, and chromatin regulators,

which direct gene expression programs, can cause various cancers [29, 30].

2 Wnt SP Wnt SP is implicated in a variety of cancers [31–33]. There is an interaction between Notch,

Akt, TGF-β, Wnt, and HIF SPs found in this study [32, 34].

3 SPs regulating pluripotency of stem cells Wnt SP is necessary for the maintenance of cancer stem cells [35]. The key role of Wnt/β-

catenin SP in regulating the differentiation of stem cell populations and the relationship

between its dysregulation and numerous tumor types make this pathway an interesting

target for anticancer therapeutics [36].

4 Calcium SP Several Ca+2-mediated SPs are dysregulated in tumor development and progression [37].

Doxorubicin increases the intracellular Ca+2 level [38–40]. Rituximab-induced translocation

of CD20 to lipid rafts is important in increased intracellular Ca+2 levels, and downstream

apoptotic signaling, [41] and Cardiotoxicity*[38, 39].

5 Glioma Secondary glioma may occur in patients due to therapy for a primary malignancy [42].

6 Fc epsilon rI (FcεRI) SP Infiltrating mast cells induce chemotherapy resistance through activating p38/p53/p21 in

cancer cells [43]. The stem cell factor enhances mast cell degranulation and cytokine

production through cross-linking of FcεRI. Mast cell activation results in the secretion of

histamine, serotonin, tumor necrosis factor, kinins, and proteases stored in secretory

granules [44].

WikiPathways

1 IL-6 SP In the hematopoietic system, the growth-regulatory role of IL-6 is often detected in tumors,

which arise from the B cell compartment [45].

2 Sphingolipid metabolism De novo synthesis and hydrolysis of sphingomyelin are often involved in ceramide

generation in response to cancer therapy. Dysregulated generation of ceramide and

consumption of free ceramide by incorporation into sphingomyelin (or by deacylation of

ceramide to form sphingosine) are associated with defects in therapy-induced apoptosis and

chemoresistance. There are several classes of cytotoxic chemotherapeutics including

vincristine, doxorubicin, and topoisomerase inhibitors (irinotecan and etoposide), which can

lead to ceramide accumulation [46–48].

Reactome

1 Transport of nucleosides and free purine and pyrimidine

bases across the plasma membrane

Although purine nucleosides are used exclusively against hematological malignancies,

pyrimidine analogs typically show efficacy against solid tumors, as well [49]. Purine

nucleoside analogs, such as fludarabine, cladribine, and clofarabine are substrates for

SLC29A1, SLC29A2, SLC28A3, and SLC28A2 [49]. In contrast, pyrimidine analogs, such as

gemcitabine, cytarabine, and azacytidine, are transported by SLC28A1 in addition to

SLC29A1, SLC29A2, and SLC28A3 [49].

2 Signaling by TGF-β receptor complex Phosphorylation of Smad1 in TGF-β SP has been reported in NHL [50]. TGF-β contributes

to both early suppression of malignancy and tumor progression in later stages [51–53]. TGF-

β and Wnt SPs can synergistically promote tumorigenesis [34].

3 CREB phosphorylation through the activation of CaMKII

and Ras

CaMKII is expressed at high levels in some cancers [54]. Ras/MEK/ERK SP acts as a critical

pathway in cancer development and resistance to chemotherapy [55, 56].

4 Ras activation upon Ca2+ influx through NMDA receptor Oncogenic mutations in a number of upstream or downstream components of Ras SP have

been detected in a variety of cancers [57].

Post NMDA receptor activation events NMDA receptors are overexpressed in several cancers and play important roles in

proliferation of cancer cells [58]. Overactivity of NMDA receptors is correlated to apoptotic

neuronal damage [59]. One of the adverse effects of doxorubicin on normal cells is

neurotoxicity due to the induction of apoptosis in neural cells§ [60, 61].

6 Gamma-carboxylation of protein precursors Venous thromboembolism (VTE) is a frequent and potentially fatal complication associated

with hematological and solid tumor malignancies. In patients with cancer, the occurrence of

VTE is an indicator of poor prognosis. The annual incidence of VTE in patients on

chemotherapy is estimated at 11%, which can rise to 20% or higher, depending on the type

of drug(s) being used [62].

7 VEGFR, FGFRs, and ERBB4 The increased level of growth factors and their receptors (eg, VEGFR, FGFRs, and ERBB4)

is associated with tumor formation and drug resistance [63–66].

8 IFNγ signaling Doxorubicin induces IFN-responsive genes via IFNγ-JAK-STAT1 SP, leading to doxorubicin

cytotoxicity [67]. The cellular response to DNA damage is activation of IFN signaling [67].

(Continued)
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were significantly correlated with drugs such as G-CSF and erythropoietin used in the PS

group.

S2 Fig shows the top canonical pathways in the PR and PS groups identified via IPA. The

top five canonical pathways identified in the PR gene set were transcriptional regulatory net-

work in embryonic stem cells (ESCs), RhoA signaling, adipogenesis pathway, telomerase sig-

naling, and DNA methylation and transcriptional repression signaling (S5 Table). Other

significant pathways in this group were nuclear receptor 4A1 (Nur77) signaling in T lympho-

cytes and Wnt/β-catenin SP. Enriched canonical pathways found in the PS gene set were neu-

ropathic pain signaling in dorsal horn neurons, synaptic long-term potentiation, dopamine-

DARPP32 feedback in cAMP signaling, neuronal nitric oxide synthase (nNOS) signaling in

neurons, and FcεRI signaling (S6 Table). Other remarkable pathways in this group were leuko-

cyte extravasation signaling, glioma signaling, ERBB4 signaling, and chemokine signaling, as

well as Wnt/β-catenin SP which was also observed in the PR group. The top three upstream

regulators in the PR gene set were SOX2 (P-value: 1.49E-05), SOX2-OCT4-NANOG (P-value:

3.95E-05), and NANOG (P-value: 4.16E-04). Additionally, ZEB2 (P-value: 9.51E-04) was

found as one of the top upstream regulators associated with the PS gene set. In both PR and PS

groups, cancers, as well as organizmal injury and abnormalities [P-value PR: 1.88E-02–1.00E-

12 (n = 190, 93%); P-value PS: 2.48E-02–5.65E-10 (n = 165, 91%)], and gastrointestinal disease

[P-value PR: 1.85E-02–2.18E-10 (n = 170, 83%); P-value PS: 1.98E-02–7.44E-08 (n = 146, 81%)]

were the top three IPA-predicted diseases and disorders. Moreover, evaluation of two gene

Table 1. (Continued)

Annotation terms The importance of pathways in cancer and chemotherapy-related events

BioCarta

1 CXCR4 SP The function of CXCL12/CXCR4 is essential for homing and/or engraftment of

hematopoietic stem cells (HSCs) to the bone marrow after transplantation. Treatment of

NHL patients with plerixafor (an antagonist of alpha CXCR4) and G-CSF caused an increase

in the number of HSCs used for autologous transplantation [68].

Panther

1 Metabotropic glutamate receptor group I and III pathways mGlu receptors are as novel targets for the treatment of aggressive or chemotherapy-

resistant tumors [69]. Tumors secreting glutamate are highly resistant to chemotherapy and

standard apoptosis-inducing therapeutics [70].

2 Oxytocin receptor mediated SP Oxytocin receptor is in the cluster of overexpressed genes related to doxorubicin resistance

[71].

3 5HT-2 type receptor mediated SP Dysregulation of central 5HT metabolism or function may be a contributing factor in

chemotherapy-induced nausea and vomiting, and cancer-related fatigue [72–74].

4 Histamine H1 receptor mediated SP Mast cell activation results in histamine release and diverse side effects [75]. High amounts

of histamine as well as histamine receptors have been observed in different cancers [76]. A

dose of doxorubicin (1 mg/kg) can lead to histamine and catecholamines release, producing

the cardiomyopathy in dogs [77].

The effects of PR- and PS-related pathways in different cancers and chemoresistance are presented based on the KEGG, WikiPathways, Reactome,

BioCarta, and Panther databases (white rows, PR; red rows, PS; and yellow rows, calcium SP as a common pathway between the groups). P-value less

than 0.05 was considered statistically significant.

*Myofibrillar deterioration and intracellular calcium dysregulation are important mechanisms commonly associated with doxorubicin-induced cardiac

toxicity. Doxorubicin-induced cardiotoxicity is also accompanied by an increase in the intracellular calcium levels.
§Glucocorticoids exert a significant protection against NMDA-induced neuronal necrosis, at least in part via their ability to enhance glutamine synthetase in

glial cells.

Abbreviations:

BDNF: Brain-derived neurotrophic factor, CaMKII: Ca2+/calmodulin-dependent protein kinase II, ERBB4: Receptor tyrosine-protein kinase erbB-4, FGFRs:

Fibroblast growth factor receptors, mGlu receptors: metabotropic glutamate receptors, NGF: Nerve growth factor, NMDAR: N-methyl-D-aspartate receptor,

SP: Signaling pathway, and VEGFR: Vascular endothelial growth factor.

https://doi.org/10.1371/journal.pone.0183969.t001
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lists in the disease association analysis of WebGestalt database exhibited disorders, such as

chromosome aberrations, leukemia, genetic translocation, and bone neoplasms in the PR

group, as well as dysarthria, schizophrenia, eosinophilia, acquired immune deficiency syn-

drome-related complex, and lentivirus infections in the PS group (P<0.05).

Analysis of modules and hubs extracted from protein-protein interaction networks.

To reveal the key proteins/hubs in each biological function or pathway, protein-protein inter-

actions in the PR and PS groups were extracted from STRING and then visualized via Gephi.

As shown in Fig 4A and 4B, PR-related protein-protein interaction network (PPIN) contained

85 nodes and 103 edges; in contrast, PPIN of PS proteins included 37 nodes and 46 edges. In

each PR- and PS-related PPIN, the nodes sizes were sorted based on the term of betweenness

centrality and were represented in the modules with different colors. For determining the

functionality of the networks, GO and pathway enrichment analysis of each module in the PR

and PS networks were carried out via Enrichr, which demonstrated that the overrepresented

terms were in harmony with the results observed in previous sections. Indeed, the conformity

of enriched terms in a module with other detected terms in the present study verified the value

of module-related results.

Table 2 shows the high degree nodes and their betweenness centrality in the PR and PS

groups. The pathway enrichment analysis of PR- and PS-specific hubs was carried out through

Fig 4. The GO and pathway analysis of modules and hubs obtained from STRING and Gephi. (A) The nodes are PR-specific proteins

arranged according to betweenness centrality and colored in different modules based on the fast unfolding clustering algorithm implemented

in Gephi [25]. (B) The nodes are PS-specific proteins arranged according to betweenness centrality and colored in different modules. (C)

The nodes are PR- and PS-specific hubs. GO terms and significant pathways related to the modules as well as significant pathways

associated with hubs are listed according to Enrichr in each group (based on the KEGG and Reactome databases).

https://doi.org/10.1371/journal.pone.0183969.g004
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Enrichr (based on the KEGG and Reactome databases) (Fig 4C). The analysis exhibited that

PR-specific hubs were associated with statistically significant pathways such as Wnt SP, tran-

scriptional misregulation in cancer, ERCC6 (CSB), and EHMT2 (G9a) positively regulate

rRNA expression, and chromatin modifying enzymes involved in tumor formation and

development.

Calcium SP, long-term potentiation, glioma, ERBB SP, FcεRI mediated MAPK activation,

unblocking of an NMDA receptor, glutamate binding and activation, as well as VEGFR2 medi-

ated cell proliferation were the enriched pathways based on the pathway analysis of PS hubs.

Indeed, these pathways reflected events such as side effects of drugs and cancer recurrence in

patients who received chemotherapy.

Furthermore, the hubs were classified according to their alterations and involvements in

various cancer pathways. Among 18 and 10 hubs in the PR and PS groups, respectively, nearly

Table 2. The PR and PS protein core lists.

Hub Degree Betweenness

centrality

Drugs targeting hub

1 AXIN2 5 1346

2 SENP2 4 1294

3 TOP2A 8 1156.83 Amsacrine, Valrubicin, Teniposide, Etoposide, Doxorubicin, Idarubicin, Mitoxantrone, Epirubicin,

and Podofilox

4 FZD6 3 1092.0

5 ERC2 4 1061

6 NLK 2 1060

7 PCLO 2 912

8 CEP72 2 870

9 CKAP5 2 826

10 ABL2 4 820 Adenosine triphosphate and Dasatinib

11 GMPS 8 779.5

12 HDAC2 10 601 Vorinostat, Panobinostat, and Romidepsin

13 HDAC1 9 391 Vorinostat, Panobinostat, and Romidepsin

14 BCL11A 6 372

15 UTY 8 282.5

16 CHD5 5 281 Epirubicin (Targets CHD1)

17 BCL11B 4 225

18 EHMT2 6 112

1 CAMK2A 9 97.83

2 PLCG1 9 90

3 GRIN2B 7 58.66

4 PLCG2 6 22.66

5 GRM5 4 20

6 GRAP2 4 20

7 SPTAN1 3 20

8 CACNA2D3 2 9.5

9 CACNA1S 2 9.5

10 GRIN2D 5 9.3

PR- and PS-specific hubs (red and blue, respectively) are classified according to their degree, betweenness centrality, and drugs targeting them. The hubs

with high betweenness centrality are shown in bold and high degree hubs are presented in bold and italic.

https://doi.org/10.1371/journal.pone.0183969.t002
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half of them were classified in the high expression group (nPR = 10; nPS = 4), while others were

categorized in the mutation (nPR = 3; nPS = 3) and the translocation (nPR = 2) groups (Table 3).

Through mining approximately 400 articles, we evaluated hubs in pathways and occurrences

that have critical roles in cancers. As shown in Table 4, there were considerable relationships

between the detected hubs and events related to tumor progression such as cell cycle and DNA

repair (TOP2A, HDAC1, HDAC2, BCL11A, BCL11B, POLA1, EHMT2, CEP72, GRM5,

CAMK2A, GRAP2, and CACNA2D3), HIF-1α and VEGF production (PLCG and GRM5),

chemoresistance (PLCG2 and PLCG1), chemotherapy outcomes (GRM5 and SPTAN1), and

even autophagy (EHMT2).

The evaluation of PR and PS hub genes in the disease association analysis of WebGestalt

database revealed disorders, which are certainly connected to the related group. Cancer or

viral infections, lymphoid leukemia NOS, and B-cell lymphoma were significant diseases asso-

ciated with PR-specific hubs. However, acquired immune deficiency syndrome-related

Table 3. Literature based classification of PR- and PS-specific hubs.

Alterations in cancers (high expression, mutation, and translocation)

Cancer High expression (or gene amplification) Mutation (and/or

polymorphism)

Translocation Diverse

Lymphoma TOP2A[78, 79], BCL11A[80], BCL11B[81], and

PLCG2[82]

PLCG1[83] BCL11A[84] BCL11B[85]

Other

cancers

AXIN2[86, 87], NLK[88], TOP2A[89], HDAC1 &

HDAC2[90], BCL11A[80, 84], BCL11B[85, 91],

EHMT2[92], FZD6[93, 94], PLCG2[82], PLCG[95,

96], GRM5[97, 98], and GRAP2[99]

AXIN2[86], CAMKK1[100],

CEP72[101]*, GRIN2D[102,

103], and GRIN2B[70]

BCL11A[84] and

BCL11B[91]

CKAP5[104], CHD5[105–

108], GRIN2B[109], and

CACNA2D3[110, 111]

Hubs were grouped based on their alterations in lymphoma and/or other cancers. The diverse group refers to the alterations other than overexpression,

mutation, and translocation. PR- and PS-specific hubs are presented in bold and italic, respectively.

*Polymorphism in promoter region.

https://doi.org/10.1371/journal.pone.0183969.t003

Table 4. Literature based classification of PR- and PS-specific hubs.

Pathways and programs Hubs

Wnt/β-catenin SP TOP2A[112], EHMT2[113, 114], AXIN2[86, 87], FZD6[115], NLK[88, 116], and SENP2[117]

P53 networks HDAC1[90], SENP2[118], and CHD5[108, 119]

Progression CSC PLCG1[95]

EMT programs HDAC1, HDAC2[120], CHD5[108], PLCG1[95], GRM5[121], SPTAN1[122], and

CACNA2D3[111]

HIF-1α and VEGF

production

PLCG[123] and GRM5[121]

Chemotherapy Resistance PLCG2[124] and PLCG1[95]

Drug effects GRM5[97] and SPTAN1[125]

Cell cycle and DNA repair

(proliferation)

NLK[88], AXIN2[126], TOP2A, HDAC1, HDAC2 [90], CEP72[127], BCL11A[84], BCL11B[85], POLA1, EHMT2

[128], CHD5[108], GRM5[98], CAMK2A [129], GRAP2[130], and CACNA2D3[111]

Apoptosis HDAC2[90], BCL11B[81], SPTAN1[131], and CACNA2D3[111]

Autophagy EHMT2[132]

Diverse CKAP5[133], CEP72[101], UTY, GRIN2D[103], GRIN2B, and CACNA1S

Hubs were grouped based on their contributions to different pathways involved in cancer pathogenicity and chemotherapy-related events. Hubs which are

not involved in significant pathways and programs, are included in the diverse group. PR- and PS-specific hubs are presented in bold and italic, respectively.

Abbreviations:

CSC: Cancer stem cell and EMT: Epithelial-mesenchymal transition.

https://doi.org/10.1371/journal.pone.0183969.t004
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complex, schizophrenia, mental disorders, depression, HIV, and dementia were correlated

with PS specific-hubs (P< 0.05).

Interactions between drugs and PR- and PS-specific proteins. The assessment of PR-

specific hubs in the DrugBank database led to the identification of hubs which were targets for

chemotherapy agents being used in NHL patients. Table 2 shows the approved drugs inhibit-

ing HDAC1, TOP2A, and ABL2. Considering the emergence of these targets involved in

tumor formation in the PR group, in addition to the effectiveness of drugs targeting them,

other hubs in this list may be novel targets which can be used to find effective drugs. In com-

parison with the PR group, targets such as TOP2A and the other abovementioned proteins

were not observed again in the PS group. PS-specific proteins were mostly involved in the out-

comes of chemotherapy agents, including various members of solute carrier family (S4 Table)

which may be associated with other members of this family such as SLC22A16, SLC22A3, and

SLCO1A2 that are doxorubicin, vincristine, and prednisolone transporters, respectively. In the

solute carrier family, SLCO6A1 was found in the PR group, as well.

The aptitude of SENP2 and PLCG1 for discrimination of NHL patients and healthy

controls. Based on features such as degree and betweenness centrality, SENP2 and PLCG1

were selected in the PR and PS groups, respectively. To assess the capacity of these hubs for

discrimination of NHL patients and healthy controls, the sera of 10 patients from the PS

group, 20 patients from the PR group, and 30 age-matched healthy controls were used for vali-

dation. The data revealed specific binding of SENP2 and PLCG1 to the sera of PR and PS

patients, respectively (P< 0.001). In contrast, they exhibited weak to moderate binding to the

sera of age-matched healthy subjects. Their moderate signal intensities might be due to cross-

reactivity between two hubs (SENP2 and PLCG1) and large amounts of proteins in the sera of

healthy controls (Fig 5A).

Unfavorable relapse/refractory NHL in a significant proportion of PS

patients according to the two-year follow-up

Twenty patients of from the PS group were followed-up to evaluate events which occurred in

patients over two years during or after chemotherapy. Fifteen cases showed a response to the

first-line treatment, including an anthracycline-containing regimen with or without rituximab

(75%). Among these patients, 10 (50%) experienced complete remission, while five (25%) with

relapse underwent second-line chemotherapy. Three patients from the latter group showed

progression under therapy and passed away, while the remaining two patients showed com-

plete response to treatment and experienced remission.

Among five patients with primary refractory NHL (25%), two revealed progression under

second-line chemotherapy and passed away, whereas the remaining three patients, given their

response to treatment, were candidates for high-dose therapy and autologous or allogeneic

stem cell transplantation (Fig 5B).

Discussion

Treatment complications in patients with NHL signify an unmet need for developing novel

therapies in both first-line and relapse settings [134]. Accordingly, AAb signatures have been

recently used to reveal the identity of antigens involved in events related to disease severity,

cancer relapse, and treatment response [10]. Notably, AAbs are not only detectable long before

the clinical manifestation of a tumor appears, but also persist for a prolonged period, even if

the corresponding autoantigens are no longer apparent [9, 10].

Various studies have reported a panel of AAbs in patients with different cancers, as well as

NHL [9, 11, 12]. In different studies on patients with NHL, evaluation of their AAb repertoires,
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led to the identification of a set of AAbs, such as anti-histidyl-tRNA synthetase antibody (anti-

Jo-1), cytoplasmic antineutrophil cytoplasmic antibody (c-ANCA), antinuclear antibody

(ANA), rheumatoid factor, anti-topoisomerase I antibody (anti-Scl-70), antiphospholipid anti-

body (APA), and anti-single-stranded DNA antibody (anti-ssDNA) [11, 12, 135, 136].

Although the majority of generated AAbs are against nuclear antigens, AAbs against periph-

eral-nerve antigens have also been detected in NHL patients [11].

In harmony with several studies, we not only found a previously reported panel of AAs tar-

geting proteins, but also identified AAbs against proteins which had not been reported in

NHL patients. The occurrence of somatic hypermutation in germinal center (GC) B cells

which are majorly involved in several NHL subtypes, leads to the emergence of GC B cells with

high affinity for self-antigens. These cells receive more survival signals and differentiate into

plasma cells or memory B cells which can identify autoantigens easier than normal B cells and

persistently generate AAbs after several years [137].

In this study, AAbs were generated against PR- and PS-specific proteins as intra- or extra-

cellular proteins showing different alterations, including overexpression, mutation, transloca-

tion, and PTM. They were then exposed as foreign antigens to immune cells due to the high

rate of proliferation and defects in the cellular death mechanism of cancer cells.

In parallel to various studies which have demonstrated the most important pathways and

events such as Wnt SP, transcriptional misregulation in cancer, Notch SP, and telomere

Fig 5. Legitimacy of AAb repertoires for discrimination of NHL patients and healthy subjects through two highly ranked hubs and

follow-up of NHL patients after first- and second-line chemotherapy regimens. (A) The significant binding of SENP2 and PLCG1 to the

sera of 10 PR (blue) and 20 PS (green) patients in comparison with the sera of age-matched healthy subjects (HC) (red and purple,

respectively) verifies the accuracy of identified hubs in the NHL groups. (B) Flow of 20 PS patients followed-up every three months for the

first two years after treatment and then every six months using physical examination and relevant laboratory tests (SCT: autologous or

allogeneic stem cell transplantation).

https://doi.org/10.1371/journal.pone.0183969.g005
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maintenance in overactivated cancer cells, we found similar pathways in the PR group. More-

over, we identified pathways which were either linked to NHL-related events (eg, spleen devel-

opment and activation of different immune cells) or triggered in response to overactivated

pathways in cancer cells (eg, negative regulation of canonical Wnt SP).

Additionally, a set of interesting hubs was identified, some of which such as AXIN2,

SENP2, TOP2A, FZD6, NLK, CEP72, CKAP5, HDAC2, HDAC1, UTY, and EHMT2 were

involved in the mentioned PR-related pathways. As drugs such as doxorubicin, etoposide, and

mitoxantrone have been designed to target TOP2A in cancer patients, other hubs of this group

may also have the potential as functional therapeutic targets to modify targeted therapy out-

comes [138]. Along these lines, there are several drugs such as vorinostat and depsipeptide

which inhibit HDAC and agents such as olokizumab and raloxifene which have been designed

to bind to IL6ST and block IL-6 SP [139, 140]. These agents are under investigation in a variety

of clinical trial phases for different cancers and can be exploited to evaluate in NHL [139, 140].

In the PS group, the most commonly identified pathways were related to processes trig-

gered after treatment, which induced chemotherapy side effects and tumor development in a

manner different from the PR group. The most important PS-related pathways in this study

were calcium- and glutamate-related SPs. According to the literature, chemotherapeutic agents

can lead to peripheral sensitization by up regulation of NMDA receptors (NMDARs) and pro-

tein kinase C. This can help determine why AAbs were generated against two subunits of

NMDARs and a number of proteins in calcium SP [141]. In addition, chemotherapeutic agents

generate reactive oxygen species (ROS) which inactivate SLC1A2. As a result, glutamate trans-

porters are disturbed, and excessive activation of NMDARs by glutamate leads to an excitatory

event and neurotoxicity [142, 143]. Notably, expression of NR1, NR2B, and NR2D subunits of

NMDARs has been reported in different cancer cells [144].

One type of toxicity with particular importance in cancer patients is chemotherapy-induced

peripheral neuropathy (CIPN) which can lead to permanent symptoms and disability in

approximately 40% of cancer survivors [145]. The most common mechanisms involved in

CIPN are nuclear DNA damage, microtubule changes, ROS production, mitochondrial func-

tion impairment, calcium signaling changes, and disturbances in glutamate signaling which

are all completely associated with pathways identified in our PS patients [146].

The emergence of relapse and death in our patients who underwent chemotherapy revealed

the involvement of pathways in cancer progression and relapse. These pathways can affect

treatment outcomes, and some of them can awaken dormant tumor cells, resulting in cancer

recurrence after chemotherapy. As the results showed, a set of hubs such as CAMK2A,

PLCG1, GRIN2B, PLCG2, GRM5, GRAP2, SPTAN1, CACNA2D3, CACNA1S, and GRIN2D

in the PS group were involved in FcεRI SP, FcγR dependent phagocytosis, DAP12 signaling,

calcium SP, HIF-1 SP, phospholipase D SP, and various growth factor-related SPs (VEGF,

FGFRs, PDGF, and ERBB4) which are associated with R-CHOP regimen and chemoresistance

[68, 147–149].

The present study had several limitations. Although evaluation of 10 nontreated patients

could provide remarkable data, the sample size recruited in this study was limited. Further-

more, it seems reasonable to validate the findings in an independent cohort study, as we only

verified the presence of AAbs against the selected hubs in the recruited patients. Considering

these limitations, we present PR- and PS-specific hubs and their related pathways are mostly

associated with tumor cell growth, flanking of the immune system, and treatment effects.

These hubs may be functional if used as biomarkers and/or therapeutic targets for determining

the best treatment strategy and designing novel drugs for patients who have not initiated treat-

ment or have undergone first-line chemotherapy without any promising results.
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