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ABSTRACT
Upregulation of programmed death ligand 1 (PD-L1) is a mechanism of immune escape utilized by a
variety of tumors. PD-L1 expression in tumor cells or in the surrounding infiltrate correlates with clinical
responsiveness to novel therapies targeting the PD-1/PD-L1 immune checkpoint. In the context of HIV-1
infection, Kaposi’s sarcoma (KS) is largely responsive to restoration of immunity following combination
antiretroviral therapy (cART), but there is a subset that is not. We hypothesized that this subset of cART-
refractory KS may utilize the PD-L1 pathway of immune escape. We found that PD-L1 expressing KS had a
denser CD8C T cell (p D 0.03) and PD-L1 positive macrophage peritumoral infiltrate (p D 0.04) to suggest
the involvement of PD-L1 in shaping an immune-tolerogenic microenvironment in cART-refractory KS. The
presence of PD-L1 expression in association with immune-infiltrating cells provides rationale for the
clinical development PD-1/PD-L1-targeted checkpoint inhibitors in cART-refractory KS.
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Programmed death ligand 1 (PD-L1, also called B7H1) is an
immunosuppressive co-stimulatory molecule that interacts
with the T-cell co-receptor, programmed death-1 (PD-1),
inhibiting T-cell proliferation and promoting T-cell apoptosis
in peripheral tissues.1,2 Physiologically, this interaction limits
T-cell-mediated inflammatory responses to infection and
restricts autoimmunity.3,4 PD-L1 is upregulated in many differ-
ent tumor types, where it inhibits local antitumor T-cell
responses, thus maintaining the immunosuppressive tumor
microenvironment.5,6 Furthermore, PD-1 is expressed on the
majority of tumor-infiltrating lymphocytes.7 In recent years,
agents targeting the PD-L1/PD-1 pathway have been of major
interest as a novel immunotherapeutic approach to cancer ther-
apy.8 The remarkable success of these therapies in early trials in
otherwise untreatable cancers, most notably melanoma, renal-
cell carcinoma and non-small-cell lung carcinoma,9-11 led to
them being named “Breakthrough of the Year” by Science jour-
nal in 2013.12

Kaposi’s sarcoma (KS) is a mesenchymal tumor caused by
an infection by human herpesvirus 8 (HHV8), usually in the
context of immunosuppression. The outbreak of the HIV-1 epi-
demic led to an exponential rise in the number of KS cases, a
trend that was partially reversed by the introduction of combi-
nation antiretroviral therapy (cART).13 Although the majority
of KS cases presenting in cART-naive HIV-1-positive patients
can be successfully treated by cART-mediated restoration of
immunity, a small number present with new lesions despite
plasma HIV-1 RNA load suppression and respectable CD4C

T-cell counts.14-19 In this study, we sought to determine

whether, in these cases, PD-L1 overexpression by KS tumor
cells or the surrounding microenvironment may influence anti-
tumor immune-escape in these tumors that are otherwise
uniquely responsive to immune restoration.

From our prospectively maintained database of 688 patients
with HIV-associated KS diagnosed in the post cART era
(1996–2016) at the National Centre for HIV Malignancy,
Chelsea and Westminster Hospital, UK, a total of 115 patients
were established on cART for >3 mo at the time of KS diagno-
sis, of whom 56 had undetectable plasma HIV viral load. From
this patient cohort, we prospectively recruited 10 patients who
had progressive or relapsing KS despite being on established,
successful cART following written, informed consent. Ethical
approval was obtained from Riverside Research Ethics
Committee.

The cases selected for this study are distinct from KS in the
context of immune reconstitution inflammatory syndrome,
where there is a paradoxical worsening of pre-existing KS or
unmasking of subclinical KS following cART-mediated
immune restoration.19 All patients were male (age range: 33–
59 y), the median time since HIV-1 diagnosis was 9 y (range:
2–26), all had undetectable plasma HIV-1 viral loads, and all
but two had CD4C counts above 450 cells/mm3 (Table 1).
None of the patients had any other AIDS-defining illness.

Biopsies were taken from areas of visible cutaneous tumor
(cases) and adjacent normal skin (controls), fresh frozen in liq-
uid nitrogen, and then fixed in buffered formalin. Following
review of cases and controls on freshly cut hematoxylin and
eosin (H&E) sections, immunostaining for PD-L1, CD68 (to
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identify tumor-infiltrating macrophages) and CD8C (to identify
tumor-infiltrating cytotoxic T lymphocytes) was performed by
MEDTOX Scientific Inc., Minneapolis, USA. Full protocols are
available in the Supplementary methods. Human tonsil was
used as a positive control for each reaction. Semi-quantitative
grading of PD-L1 expression was performed by a single pathol-
ogist based on a scoring scale from 0 to 3C previously validated
for reproducibility in other PD-L1-expressing tumors. The
presence of PD-L1-expressing, CD68-positive macrophages
was recorded on a semi-quantitative scale (absent/rare/moder-
ate/numerous). Manual microscope counts of CD8C T lympho-
cytes within the entire dermis of biopsies were recorded and
converted to a CD8C count per mm2. The amount of KS pres-
ent in each biopsy was characterized semi-quantitatively
(absent/focal/moderate/abundant) according to H&E staining
as shown in Table 1. One of the control biopsies (L292) con-
tained a focal area of tumor that had not been apparent to the
naked eye.

We observed evidence of PD-L1 expression in KS cells in a
total of 5 out of 10 cases, where the pattern of immunopositiv-
ity was cytoplasmic in all cases and judged level 1C (Fig. 1).
One case (L432) showed focal level 1C tumor-cell PD-L1 stain-
ing and the focal tumor observed in the control biopsy from
patient L292 also showed focal level 1C PD-L1 staining. All
other cases and controls were judged negative. PD-L1-express-
ing macrophages were observed in six cases and the one control
that contained focal tumor (control L292). In four cases and the
L292 control, they were rare in number, in one case (L292) they
were moderate and in one case (M515) they were numerous.

Tumor-infiltrating CD8C lymphocytes in histologically
identifiable tumors ranged from 44 to 292 cells/mm2 (mean D
133.0), and in controls ranged from 5 to 34 cells/mm2 (mean D
18.7). Cases that showed cytoplasmic tumor-cell PD-L1 expres-
sion (n D 5) had significantly higher levels of CD8C T-cell infil-
trate (mean D 181.4, standard error D 41.0) compared with
PD-L1 negative counterparts (n D 5, mean 62.4, standard error
D 15.0, p D 0.03). Similarly, we found a positive association
tumor-cell PD-L1 expression and the presence of a PD-L1-pos-
itive macrophage infiltrate (p D 0.04). We found no association
between PD-L1 expression and peripheral CD4C count, HIV
viral load or years on cART. Because peripheral immune
responses are being explored as a surrogate biomarker of anti-
tumor activity in prospective clinical trials of anti-PD-1/PD-L1
checkpoint inhibitors, we performed phenotypical analysis of
PD-1 expressing peripheral T cells isolated at the moment of
the biopsy to detect differences in PD-1 expression in patients
with PD-L1 positive (n D 5) and negative KS (n D 5). Median
PD-1 expression in peripheral lymphocytes expressed as per-
centage of immunopositive cells was 18.7 in CD4C (range 8.9–
30.6) and 13.7 in CD8C cells (range 7–43.5). We found no asso-
ciation between PD-1 expression in CD4C (p D 0.84) or CD8C

cells (p D 0.54) and KS PD-L1 status (Fig. 1G and H).
PD-L1 is upregulated by many cell types (epithelial, hemato-

poietic, and endothelial) in response to pro-inflammatory cyto-
kines.20 PD-L1 expression in either tumor cells or surrounding
infiltrate has emerged as a predictive correlate of response to
PD-1/PD-L1-targeted checkpoint inhibitors in a growing vari-
ety of solid tumors.9 Hence, there is strong reason to seek to
identify other tumors that may be using the same immune

escape mechanism and therefore benefit from these remarkable
novel therapies. A recent study investigated PD-L1 expression
in a wide range of lymphomas and virus-associated malignan-
cies.21 They reported robust upregulation of PD-L1 in most
lymphoma sub-types, including several Epstein Barr virus-
related malignancies and HHV8-associated primary effusion
lymphoma. They did not detect expression of PD-L1 in nine
KS cases. In contrast to these findings, a second case-series of
sarcomas including five KS samples has shown high prevalence
of PD-L1 expression in 80% of KS patients.22 However, in both
studies, cases were collected retrospectively and were not
selected according to any specific patient or disease characteris-
tics, which is likely to account for the high inter-study hetero-
geneity in PD-L1 expression.

As such, the true prevalence of PD-L1 expression in the
cART-refractory KS population, in whom systemic anticancer
treatment is indicated to alter the natural progression of the
disease, is not known. This is a significant limitation to an effi-
cient planning of clinical studies of immune checkpoint inhibi-
tors, where PD-L1 expression has been utilized as a predictive
correlate of response. In addition, the relative rarity of the dis-
ease makes it particularly difficult to qualify PD-L1 as a novel
therapeutic target in the specific setting of cART refractoriness,
where previous studies investigating PD-L1 expression have
been elusive.21,22

Our study, although preliminary in nature and limited by
sample size, is uniquely different because of the strict selection
criteria applied to define our population and the prospective
nature of patient accrual, where cART refractoriness was con-
firmed using uniform and pre-defined follow-up schedules. In
attempting to investigate specifically whether PD-L1 upregula-
tion could explain cART refractoriness, we confirmed a high
prevalence of PD-L1 upregulation, where evidence of weak
cytoplasmic PD-L1 expression was seen in 50% of patients with
cART refractory KS. While different from the intense membra-
nous expression pattern expression seen in epithelial malignan-
cies that are clinically responsive to PD-L1/PD-1 blockade,23

PD-L1 positive KS was associated with higher T-cell infiltrate
and macrophage recruitment, hallmarks of an exhausted anti-
tumor-immune response. Importantly, the lack of association
found between PD-L1 positivity and HIV infection-specific
parameters including peripheral CD4C counts, HIV RNA load
and duration of infection further strengthens the pathophysio-
logic relevance of the local tolerogenic environment as a mech-
anism of KS progression independent from the underlying HIV
infection control. Interestingly, PD-1 expression in peripheral
blood lymphocytes did not correlate with PD-L1 positivity in
KS cells, suggesting a divergence between peripheral and peri-
tumoral immune responses, an important finding in the qualifi-
cation of surrogate biomarkers of the antitumor immune
response. A limitation of our work that should be addressed in
future studies is the lack of a pairwise, prospective comparison
with cART-sensitive KS, where regulation of immune-tolero-
genic signals in the tumor and the surrounding microenviro-
ment might be different and could explain the discrepancy in
PD-L1 expression reported in previous studies.21 Similarly, our
pilot study supports but does not definitely prove an involve-
ment of PD-L1 in shaping the antitumor immune response,
whose pathophysiology is complex and determined by a wide

ONCOIMMUNOLOGY e1304337-3



Figure 1. A) Hemotoxylin and eosin, showing the presence of abundant Kaposi’s sarcoma tumor spindle cells. (B) Programmed death ligand 1 (PD-L1) expression, show-
ing tumor-cell expression of PD-L1 that was judged to be 1C in our scoring system, representing weak cytoplasmic expression above baseline. (C) CD8C staining shows
the infiltration of cytotoxic T lymphocytes. (D) Dual staining with PD-L1 and CD68 shows the presence of numerous tumor-infiltrating PD-L1-expressing macrophages. (E,
F) Representative sections of PD-L1 positive KS (E) and CD68/PD-L1 co-immunoexpression (F) at high magnification (200£). A yellow arrow identifies areas of immuno-
positive KS. (G) The positive relationship between PD-L1 positivity in KS cells and CD8C peritumoral immune infiltrate. (H) The positive relationship between PD-L1 posi-
tivity in KS and in the surrounding PD-L1 expressing macrophage infiltrate. (I) The relationship between PD-L1 expression in KS and PD-1 expression in peripheral CD4C

and CD8C T cells. Bars are representative of median values of PD-1 expression in PD-L1 positive (gray) and PD-L1 negative (black) KS samples.

e1304337-4 S. MLETZKO ET AL.



spectrum of molecular mediators including cytokines and che-
mokines that can upregulate PD-L1 expression as a mechanism
of immune-adaptation.

While we lack comprehensive phenotypic characterization
of tumor-infiltrating lymphocytes, where other immune-modu-
latory pathways or cell populations including regulatory T cells
and NK cells might play a role,24 our results are provocative in
suggesting PD-L1 as a potential immune-tolerogenic mecha-
nism underlying the pathogenesis and progression of cART-
refractory KS, suggesting a potential role as a therapeutic target
in this disease. Our preliminary findings require confirmation
in prospective, multi-center clinical studies.
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