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A Multi-Institutional Comparison 
of Dynamic Contrast-Enhanced 
Magnetic Resonance Imaging 
Parameter Calculations
Joint Head and Neck Radiotherapy-MRI Development Cooperative*

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provides quantitative metrics 
(e.g. Ktrans, ve) via pharmacokinetic models. We tested inter-algorithm variability in these quantitative 
metrics with 11 published DCE-MRI algorithms, all implementing Tofts-Kermode or extended Tofts 
pharmacokinetic models. Digital reference objects (DROs) with known Ktrans and ve values were 
used to assess performance at varying noise levels. Additionally, DCE-MRI data from 15 head and 
neck squamous cell carcinoma patients over 3 time-points during chemoradiotherapy were used 
to ascertain Ktrans and ve kinetic trends across algorithms. Algorithms performed well (less than 3% 
average error) when no noise was present in the DRO. With noise, 87% of Ktrans and 84% of ve algorithm-
DRO combinations were generally in the correct order. Low Krippendorff’s alpha values showed that 
algorithms could not consistently classify patients as above or below the median for a given algorithm 
at each time point or for differences in values between time points. A majority of the algorithms 
produced a significant Spearman correlation in ve of the primary gross tumor volume with time. 
Algorithmic differences in Ktrans and ve values over time indicate limitations in combining/comparing 
data from distinct DCE-MRI model implementations. Careful cross-algorithm quality-assurance must be 
utilized as DCE-MRI results may not be interpretable using differing software.

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide1. Its 5-year sur-
vival rate has failed to improve from about 60% despite advances in imaging, surgery, radiotherapy targeting, and 
chemotherapy2. Thus, researchers are striving to individualize therapy for HNSCC to improve survival rates while 
limiting toxic effects in normal tissue, such as xerostomia, which can impact a patient’s quality of life. Dynamic 
contrast-enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive tool for examination of the micro-
vasculature of tumors and normal tissue. The perfusion and permeability metrics estimated from pharmacoki-
netic modeling of DCE-MRI data may provide an indirect measure of tumor hypoxia, a condition associated 
with poor prognosis in HNSCC3,4. Therefore, it may be possible to build prognostic models to help tailor HNSCC 
treatments to individual patients based on that patient’s DCE-MRI signature.

Investigators have used DCE-MRI to assess therapeutic response of HNSCC and have shown associations 
between DCE-MRI metrics and changes in salivary glands and mandible5–11. To the best of our knowledge, its 
use as a prognostic tool to inform treatment decisions for HNSCC has yet to be investigated in a large multisite 
prospective trial. Before such trials can begin, DCE-MRI inter-algorithm comparisons must be conducted to 
ensure consistency of output parameter maps for collating data during the multi-institution trial. Two quanti-
tative metrics for DCE-MRI are the transfer constant for contrast agent transport from the blood plasma into 
the extravascular extracellular space (Ktrans) and the volume fraction of the extravascular extracellular space (ve). 
The calculation of these quantitative metrics can be impacted by the acquisition parameters. The accuracy and 
precision of these quantitative metrics can be influenced by arterial input function (AIF) quantification, temporal 
resolution in data acquisition, signal-to-noise ratio (SNR), and pharmacokinetic model selection12–22. For exam-
ple, uncertainties in T1 map values and applied flip angle have been reported to cause errors of 88% in Ktrans and 
73% in ve, while reduced temporal resolution by 7-fold have reported decreses in Ktrans up to 48%19. Therefore, 
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acquisition parameters must be thoroughly tested and uniform across patients as they can dramatically impact 
measured DCE-MRI parameters.

The Tofts-Kermode pharmacokinetic model23 is the most commonly used model for DCE-MRI analysis, but 
implementation of each algorithm differs in facets such as data preprocessing, approaches to numerical opti-
mizations in kinetic analysis, and data postprocessing, which may impact the values of the output quantitative 
metrics. Several recent studies demonstrated significant inter-algorithm variability when evaluating DCE-MRI 
of the female pelvis, breast, and rectum24–26. Of these studies, the one by Huang et al.25 demonstrated systematic 
differences in output parameter values between algorithms, which meant that results from different algorithms 
could be used together if correction factors were applied; the other studies, however, did not demonstrate any 
systematic errors. In addition, Cron et al.27 found that the percentage of nonphysical values (e.g. ve values greater 
than 1) in the quantitative metrics increased as noise increased when they tested using three software packages. 
This noise dependence and inter-algorithm variance in quantitative DCE-MRI metrics are large obstacles to the 
clinical implementation of DCE-MRI and must be thoroughly investigated before proceeding with large multisite 
clinical trials using DCE-MRI in HNSCC patients.

In this study, we investigated the variability in Ktrans and ve across algorithms that are based on the 
Tofts-Kermode and extended Tofts pharmacokinetic models28,29. For this purpose, we used digital reference 
objects (DROs) from the Radiological Society of North America Quantitative Imaging Biomarkers Alliance30 and 
DCE-MRI data from oropharyngeal squamous cell carcinoma patients who underwent multiple DCE-MRI scans 
during treatment with definitive chemoradiotherapy.

Results
DROs.  One of the Tofts-Kermode algorithms (algorithm 11) could not process the DROs because of the algo-
rithm’s structure. Therefore, the remaining 10 algorithms were used for DRO analysis. For the noiseless DRO, the 
stratified permutation test demonstrated that both Ktrans and ve were statistically significantly ordered correctly 
(p < 0.05) for all of the algorithms. Eighty-two percent of pairwise algorithm comparisons were statistically sig-
nificantly different (p < 0.05) regarding Ktrans, and 69% of the comparisons were statistically significantly different 
(p < 0.05) regarding ve based on the Wilcoxon rank-sum test. Figure 1 shows the algorithm performance for the 
noiseless DRO. Most of the Ktrans and ve measured values in the noiseless DRO were close to the true simulated 
values: 96% of Ktrans and 96% of ve measured values were within 10% of the simulated values. More spread in 
the measured values was observed at higher simulated values of Ktrans or ve. Heat maps of the percentage error 
of Ktrans and ve measured values in comparison to the simulated values are shown in the supplemental material 
(Supplemental Fig. 1).

The stratified permutation test for the 28 DROs with noise demonstrated that in 86% and 84% of the cases 
(algorithm-DRO combinations), Ktrans and ve were statistically ordered correctly (p < 0.05) when one of the algo-
rithms was excluded because of missing Ktrans values and failure of the ve test for all 28 of these DROs. Most of the 
test failures occurred at the lowest SNR (0.18). Eighty-four percent of the Ktrans pairwise comparisons and 81% of 
the ve pairwise comparisons were statistically significantly different (p < 0.05) based on the Wilcoxon rank-sum 
test results.

Heat maps of the percent error in Ktrans and ve relative to the simulated values in the 28 DROs with noise are 
shown in Fig. 2. The maximum percent error in this figure was set to 100% and the minimum percent error was 
set to −100%. Therefore, any Ktrans and ve values greater than the maximum percent error are mapped to red. The 
only trend found was less error at higher Ktrans and ve simulated values although there is more spread in the meas-
ured values at these higher Ktrans and ve simulated values. Algorithms that used spatial averaging were found to 
have statistically significantly less (p < 0.05) Ktrans and ve calculated error than algorithms that did not have spatial 
averaging according to the student’s t-tests.

We observed large variation in the percentage of values removed due to the threshold for Ktrans and ve for each 
algorithm. Some algorithms had almost no values removed, and some had a median of 70% of values removed.

These DRO results are for one method of excluding Ktrans and ve values. We also analyzed the data using 
the central 95% of the data for each Ktrans-ve pair with no threshold restrictions, which produced consistent test 
results.

Patients.  The percentages of Ktrans and ve values removed from patient ROIs because they were outside the 
bounds of the threshold are shown in Fig. 3 for the pretreatment, midtreatment, and posttreatment Ktrans and 
ve. As in the DROs, the percentages varied: some algorithms had low percentages removed, implying that they 
mostly produced realistic values, whereas some algorithms produced almost nothing but unrealistic values for 
certain patients. The average percentage removed for Ktrans was 27%, 26%, and 22% for pretreatment, midtreat-
ment, and posttreatment respectively. The average percentage removed for ve was 46%, 49%, and 48% for pretreat-
ment, midtreatment, and posttreatment respectively.

According to results of the likelihood ratio test, all differences were statistically significantly (p < 0.05) 
dependent upon the algorithm except for the pretreatment-to-posttreatment change in Ktrans when all algo-
rithms were included in the model. Algorithms were subset into Tofts-Kermode and extended Tofts groups. 
In the Tofts-Kermode group, three changes were not statistically significantly dependent on algorithm 
(p < 0.05): pretreatment-to-midtreatment change in Ktrans, midtreatment-to-posttreatment change in Ktrans, and 
midtreatment-to-posttreatment change in ve. In the extended Tofts group, algorithm was not a significant factor 
(p < 0.05) in pretreatment-to-posttreatment change. In all other changes, the algorithm was a significant factor. 
In all linear mixed effects models, the variance explained by the ROI was much smaller than the residual variance, 
suggesting that the ROI does not explain much of the variation seen in the linear mixed effects model. All organ 
variance was less than 30% of the residual variance; on average, it was 8% of the residual variance.
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Figure 4 demonstrates an example of the difference in parameter values exported from different algorithms. 
The Ktrans maps from the same axial slice of a patient are shown for all algorithms. It can be seen that some 
algorithms output mostly lower Ktrans values while others output mostly higher Ktrans values. In addition, some 
algorithms fit the noise data in voxels outside of the anatomy while other algorithms generated Ktrans maps only 
within the anatomy.

Carletta’s thresholds for good agreement between algorithms (α ≥ 0.8) and sufficient agreement for tentative 
conclusions (0.800 > α > 0.667) were used31 to assess the results of Krippendorff ’s alpha tests. The tests were 
run using all of the algorithms and also subsets of the algorithms, which were placed into Tofts-Kermode and 
extended Tofts groups. Of all of these tests, only those in the extended Tofts group had alphas that fell in range 
for tentative conclusions: 7 of the 108 tested correlations in this group had alphas in this tentative conclusions 
range. No alphas were in the good agreement range. An illustration of this inconsistent sorting of patients is 
shown in the supplemental material (Supplemental Fig. 3). Carletta’s thresholds for good agreement and tentative 
conclusions are weaker than those suggested by others. Krippendorff32 and Neuendorf33 suggested using higher 
standards, which would remove all the metrics found to be partially reliable across algorithms.

Few statistically significant Spearman correlations (p < 0.05) were observed: 8% of all tested Ktrans correlations 
and 29% of all tested ve correlations across all aglorithms. The only trend in these correlations across algorithms 
was a statistically significant Spearman correlation of ve in the GTV-P.

Discussion
Use of DCE-MRI is increasing in oncology research and investigators have performed many promising studies 
indicating correlations between predicted therapeutic outcome and DCE-MRI metrics7,8. However, many differ-
ent DCE-MRI platforms were employed in these studies, and no studies have demonstrated whether data and 

Figure 1.  Plots of algorithm performance in a DRO with no noise for (a) Ktrans and (b) ve. The simulated values 
are on the x-axis, and the measured values from each algorithm are on the y-axis. The 45° line represents 100% 
accuracy of the measured values. Each color represents a different algorithm, and each shape represents a 
different ve column in (a) and a different Ktrans row in (b).
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conclusions regarding HNSCC can be aggregated. We addressed this issue by analyzing the same sets of DRO 
and HNSCC patient data with a subset of the currently used algorithms that are based on the Tofts-Kermode or 
extended Tofts model, as these pharmacokinetic models are the ones most commonly employed in DCE-MRI.

The key results from this study are that algorithms were able to determine high values from low values on 
DROs, but workflow differences may obscure the ability to discern values across algorithms in patients. This may 
be specifically related to T1 mapping which was not controlled in the patient portion of this study. Specifically, 
trends among algorithms from the same institution (institution supplied both Tofts-Kermode and extended Tofts 
algorithms) were consistent, but not across institutions. This highlights the effect of preprocessing, also shown by 
the impact of spatial averaging on the calculated error. Therefore, translatability of DCE-MRI across algorithms 
is not currently feasible.

A digital phantom was used to assess algorithms with a known “ground truth”. The DROs we used had SNRs of 
0.18 to 1.80 in the noisy DROs. Although these SNR values and Ktrans and ve values within the DRO are below that 
typically found in head and neck cancer cases34–37, the DROs were used due to their availability and Quantitative 
Imaging Biomarkers Alliance-backed quality. The DROs, however, do not come with instructions for interpreta-
tion of results, which makes conclusions difficult especially for the DROs that contain very high noise.

The good algorithm performance for the noiseless DRO is consistent with the results reported by Huang et 
al.25 and suggest that the algorithms tested here are constructed properly. However, the error increased dramat-
ically when high levels of noise were added to the images. Our assessment using percentage error may explain 
why the error appeared extremely high in the low Ktrans and ve regions as a small absolute error in this region will 
appear with a high percentage error. Heat maps of the error with the noisy DROs are shown in the supplementary 
data (Supplemental Fig. 2) to remove this discrepancy in percentage error between low and high values.

Figure 2.  Heat maps of the percentage error for Ktrans (top left) and ve (bottom left) by algorithm in the 28 DROs 
with noise. The percentage error is defined using the formula ([measured − simulated]/simulated *100). The 
left side of the heat map is grouped by the timing interval used for the DRO (6 or 10 s), the timing offset used 
for the DRO (0 or 3 s for the 6 s timing interval, 0 or 5 s for the 10 s timing interval), and the SNR (0.18–1.8). 
The inset (top right) shows the Ktrans and SNR values for each block in the heat maps. The maximum percentage 
error is defined as 100%, and the minimum percentage error is set to −100%. Any errors greater than the 
maximum percentage are also mapped as 100% error in color. Each DRO is differentiated by its sampling 
interval, timing offset, and SNR as determined by the S0 and sigma value used to create the DRO.
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The difference between algorithms was significant for DROs according to the Wilcoxon rank-sum test results, 
which is consistent with the results reported by Beuzit et al.26, who used SNRs of 10 and 100 and still found sig-
nificant differences between different software packages. A limitation of this test is that if the differences between 
two algorithms are small but all of one sign (such that all values from one algorithm are higher than all values 
from another algorithm), the differences will be statistically significant. This does not appear to be the cause of 
the statistically significant differences observed here because each algorithm has its own error signature, and we 
could not identify a systematic error in any of the algorithms.

The DRO results demonstrated the potential of DCE-MRI quantitative metrics for clinical application, an 
illustration of which was the patient data set we used. The significance of including algorithm in the linear mixed 
effects models was consistent with the Wilcoxon rank-sum test results for the DROs. The small variance explained 
by the ROI compared with the residual variance in the linear mixed effects models was surprising. If associations 
can be found using DCE-MRI, different trends between normal tissue and tumor would particularly be expected, 
yet the ROI provided little explanation of the variance in the data in the linear mixed effects models.

A majority of the algorithms tested produced statistically significant Spearman correlations of ve in the GTV-P. 
The agreement of Spearman correlations across algorithms within the GTV-P but not within normal tissue may 
be due to a difference in contrast-induced signal change, as the GTV-P has a much higher signal change than does 
normal tissue in DCE-MRI. This means that the GTV-P has higher Ktrans and lower error in the presence of noise 
based on the DRO data. However, this agreement of Spearman correlations of ve in the GTV-P is contradicted by 
the Krippendorff ’s alpha results for the GTV-P. Only the midtreatment Ktrans value in the extended Tofts group 
had an alpha in the range where tentative conclusions can be drawn. This discrepancy may be explained by small 
interpatient variability in the Ktrans and ve values, which limited the algorithms’ ability to separate patients into 
above or below the median. However, the Spearman rank correlation coefficient identifies trends and is not as 
affected by interpatient differences in values as Krippendorff ’s alpha if the trend is consistent.

The Krippendorff ’s alpha results demonstrated that different algorithms do not consistently classify patients’ 
Ktrans and ve values, change in values, or percent change in values. These results indicate that there is currently 
no clinical level at which these quantitative metrics can be used across algorithms to quantify patients. Based 
on the algorithms’ performance for the DROs in the stratified permutation test in our study, this result from 
Krippendorff ’s alpha tests is surprising. However, small interpatient variation in the Ktrans and ve values may have 

Figure 3.  Percentages of (a) Ktrans and (b) ve values removed from patient images. The boxplots for each 
algorithm include the percentages removed for all patients and contours.
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caused the low inter-algorithm reliability. This low inter-algorithm reliability, even within the Tofts-Kermode 
and extended Tofts groups, contrasts with the results described by Huang et al.25. They found good parameter 
agreement for percentage change when they grouped algorithms by pharmacokinetic model and that all of the 
algorithms provided good prediction of response to therapy as assessed using univariate logistic regression. This 
difference may have resulted from the imaging technique used, tissue of interest, and/or patient distribution of 
Ktrans and ve values.

Uncertainties in DCE-MRI exist due to AIF selection and imaging parameters12,13,16–18,22, but we did not 
explore them in this study because they were controlled: we examined each algorithm with the same patient 
DCE-MRI images, variable-flip-angle images, and AIF. In previous studies, T1 mapping and AIF selection 
impacted Ktrans and ve values12–17,22,38–40. The agreement between algorithms that we observed may have been 
lower if we had included all of the differences typically seen in a multisite clinical trial, including different scan-
ners, scanning protocols, AIFs, DCE-MRI algorithms at each institution. In our relatively controlled study, we 
observed statistically significant differences in both DRO and patient data among the algorithms. It must be 
acknowledged that there is no ‘ground truth’ against which these algorithms can be compared, and it is unclear 
whether there was a true therapeutic effect that should have been identified by DCE-MRI of patient data. Even 
if there was no net effect across this population of patients, however, it is clear that different approaches to 
DCE-MRI analysis have significant impact on within-patient trends.

We chose the upper bound for Ktrans since one of the algorithms in this study used 5 min−1, providing a feasible 
physical upper limit. We chose the lower bound for Ktrans because when a given pixel or voxel has a poor fit within 
an algorithm, it is often given a value of 0 or a negative value. Accordingly, we excluded these values from analysis. 
We chose the bounds for ve based on the physical limits given by its definition as a fractional space. Furthermore, 
poor fits in an algorithm are often mapped to 0 or 1. Therefore, we excluded these values. While 0 is a physically 
realistic value for Ktrans and 0 and 1 are physically realistic values for ve, these values must be excluded owing to a 
high proportion of bad pharmacokinetic model fits mapped to these values. The high percentage of values that 
must be removed represents an area of improvement for future algorithms. Cron et al.27 demonstrated that as 
noise in DCE-MRI scans increases, the percentage of nonphysical Ktrans and ve values increases. Thus, voxel-based 
analysis of DCE-MRI quantitative metrics may not be reliable, so global metrics, such as average, of regions must 
be used for studies. For regions in which a high percentage of values are excluded, the average value extracted is 
not a reliable metric, as it comes from only a small subregion which is not representative of the whole region. This 

Figure 4.  Illustration of differences in Ktrans (min−1) maps exported by different algorithms for one axial DCE-
MRI slice.
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issue can be mitigated on the imaging end by increasing the SNR at the cost of the increased scan time, poorer 
temporal resolution, spatial resolution, or coverage, and potentially on the software end by improving how algo-
rithms handle noise through the use of DROs.

In summary, we showed that rigorous standardization and careful quality assurance of software programs, 
including comparison of parameter calculations with standard data sets, are needed for collating pharmacoki-
netic analysis of DCE-MRI data among different algorithms. This must include assessment of the impact of image 
noise on quantitative metric error. Authors recently reported the need for careful quality assurance for functional 
MRI41. Efforts like those by the Quantitative Imaging Biomarkers Alliance to standardize DCE-MRI acquisition 
parameters represent a natural step forward for quality assurance and serve as the foundation for the current 
quality assurance work used in the present study.

To support these efforts, we provided our data set in a repository to allow for their use as perpetual head and 
neck cancer patient-derived standards for future DCE-MRI software and/or algorithm development in addition 
to the extant DRO library maintained by one of the authors (D. Barboriak). To that end, we recommend the 
following:

	 1.	 Consistent use of the same software for DCE-MRI analysis within a given study and for cross-comparisons 
between studies.

	 2.	 Specification and setting of acquisition parameters before proceeding with clinical trials as with the present 
data set.

	 3.	 Before performing multi-institution clinical trials, confirmation that DCE-MRI parameter values are con-
sistent across institutions.

	 4.	 Inclusion of reference to a DRO with clinically relevant SNRs to benchmark performance of DCE-MRI 
software using clear evaluation criteria.

Clinically, our DRO data point to the fact that algorithms differed substantially despite reliance on the same 
basic underlying pharmacokinetic model(s), performing relatively stable in low-noise conditions. This, coupled 
with the inter-algorithm variability observed with the in vivo head and neck cases (which were performed in 
immobilization on a single MRI platform with standard AIF selection) suggests that, at present, any clinical trial 
desiring to implement DCE-MRI, should at a minimum, use a single pre-specified DCE-MRI software workflow, 
and eschew use of multiple algorithms. This also means that DCE-MRI findings from one software are broadly 
uninterpretable in a differing platform at present.

Until quantitative metrics can be reliably calculated across algorithms, patient-derived DCE-MRI analyses 
with different algorithms cannot be aggregated. Semiquantitative metrics, such as the area under the curve, have 
been shown to be more reproducible than quantitative metrics and may be the best interim option for use in 
prognostic studies using different algorithms42. Further refinement is required before DCE-MRI software-derived 
parameters can be used as a routine cross-institutional metric for multi-site clinical trials.

Materials and Methods
Algorithms.  Eleven algorithms from six institutions and one commercial software package were analyzed. 
They consisted of seven Tofts-Kermode models (identified herein as algorithms 2, 3, 5, 6, 8, 10, 11) and four 
extended Tofts models (algorithms 1, 4, 7, 9). Spatial averaging on the DCE-MRI images was used in algorithms 
5, 6, 7, 8, and 9. All algorithms are currently used for research applications at the respective institutions. The algo-
rithms are described in Table 1.

DROs.  DROs provided by the Radiological Society of North America Quantitative Imaging Biomarkers 
Alliance were used to assess algorithm performance. The DROs had six Ktrans values ranging from 0.01 min−1 
to 0.35 min−1 that were constant across the rows and five ve values ranging from 0.01 to 0.5 that were constant 
down the columns, resulting in 30 different Ktrans-ve pairs, each encompassing 10 × 10 pixels. The Ktrans and ve 
values were used to generate synthetic image data using the Tofts-Kermode two-parameter model run in JSim, an 
open-source modeling system23,43. One DRO without noise44 and 28 DROs with noise (SNR 0.18–1.8)45 simulated 
by varying the sampling interval, timing offset, S0, and sigma value were used to evaluate algorithm performance. 
For each Ktrans-ve pair, the output pixels from the algorithms were subjected to a threshold to non-physiologic 
pixels (0 < Ktrans output <5 and 0 < ve output <1) and then averaged.

Institution Model(s) Used

Massachusetts General Hospital Tofts-Kermode (description in Supplemental Data)

MD Anderson Cancer Center Tofts-Kermode and Extended Tofts (description in Supplemental 
Data)

Netherlands Cancer Institute Tofts-Kermode and Extended Tofts47

nordicICE Extended Tofts48

Oregon Health & Science 
University Tofts-Kermode and Tofts-Kermode14,49,50

Princess Margaret Cancer Center Tofts-Kermode and Extended Tofts51,52

University of Texas at Austin Tofts-Kermode53,54

Table 1.  Description of Algorithms. Algorithms are listed in alphabetical order not order displayed in figures.
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Patients.  Fifteen patients diagnosed with human papillomavirus-positive oropharyngeal squamous cell car-
cinoma were included in this study under a protocol approved by the institutional review board at MD Anderson 
Cancer Center. All patients gave their study-specific informed consent. All methods were performed in accord-
ance with the relevant guidelines and regulations. Patients underwent DCE-MRI scans from December 2013 to 
October 2014. The criteria for study inclusion were an age older than 18 years, histologically documented stage III 
or IV human papillomavirus-positive oropharyngeal squamous cell carcinoma according to the American Joint 
Committee on Cancer 7th edition staging criteria, eligibility for definitive chemoradiotherapy, and an Eastern 
Cooperative Oncology Group performance status of 0 to 2. Patients were excluded for any of the following rea-
sons: definitive resection of a primary tumor, administration of induction chemotherapy before radiotherapy, a 
prior cancer diagnosis except that of appropriately treated localized epithelial skin cancer or cervical cancer, prior 
radiotherapy to the head and neck, contraindications for gadolinium-based contrast agents, and claustrophobia.

Patient median age was 56 years (range, 47–68), with 14 men and 1 woman. All patients received radiotherapy 
at 70 Gy in 33 fractions. The majority of the patients (87%) received cisplatin-based chemotherapy concurrently 
with radiotherapy. Patient, disease, and treatment characteristics are listed in Table 2. Patient 12 did not have a 
primary tumor because he underwent bilateral tonsillectomy before scanning.

All patients underwent DCE-MRI scans within 1 week prior to treatment, 3–4 weeks after the start of treat-
ment, and 6–8 weeks after the completion of treatment. The DCE-MRI scans were done using a 3.0 T Discovery 
750 MRI scanner (GE Healthcare) with six-element flex coils and a flat insert table (GE Healthcare). The same 
immobilization devices (individualized head and shoulder mask, customized head support, and intraoral 
tongue-immobilizing/swallow-suppressing dental stent) were employed in longitudinal scans to improve image 
co-registration and to reduce interval physiologic motion (e.g., swallowing).

Thirty axial slices with a field of view of 25.6 cm and thickness of 4 mm were selected to cover the spatial 
region encompassing the palatine process region cranially to the cricoid cartilage caudally for all scans. Prior to 
DCE-MRI, T1 mapping was performed using a total of six variable-flip-angle three-dimensional spoiled gradient 
recalled echo sequences (flip angles: 2°, 5°, 10°, 15°, 20°, and 25°; repetition time/echo time, 5.5/2.1 ms; number of 
effective excitations, 0.7; spatial resolution, 2 mm × 2 mm × 4 mm; scan time, 3 minutes). The DCE-MRI acquisi-
tion consisted of a three-dimensional fast spoiled gradient recalled echo sequence to gain sufficient SNR, contrast, 
and temporal resolution. The following scan parameters were used: flip angle, 15°; repetition time/echo time, 
3.6/1.0 ms; number of effective excitations, 0.7; spatial resolution, 2 mm × 2 mm × 4 mm; temporal resolution, 
5.5 s; number of temporal frames, 56; pixel bandwidth, 326 Hz; acceleration factor, 2; and scan time, 6 minutes. 
Gadopentetate dimeglumine (Magnevist; Bayer HealthCare Pharmaceuticals) was administered intravenously to 
the patients at the end of the sixth frame (dose, 0.1 mmol/kg at a rate of 3 mL/second) followed by a 20-mL saline 
flush via a power injector (Spectris MR Injector; Medrad) at a rate of 3 mL/second.

Variable-flip-angle images, DCE-MRI images, and a bootstrapped population AIF measured in a region of 
interest in the carotid artery11 were distributed to each institution to use in their algorithm(s) to generate Ktrans 
and ve parameter maps for each patient.

Each patient had 6 regions of interest (ROIs)—contralateral and ipsilateral parotid glands, contralateral and 
ipsilateral submandibular glands, sublingual glands, and a primary gross tumor volume (GTV-P)—contoured 
on his or her pretreatment images by a radiation oncologist with 7 years of experience (A.S.R. Mohamed). 
Midtreatment and posttreatment images were deformably registered to the pretreatment images using a 

Patient 
Number Sex

Age 
(years)

Race/ 
Ethnicity

Smoking 
Status

Primary 
Tumor Site

TNM 
Category

Chemotherapy 
(weekly)

1 M 52 White N Base of 
tongue T3N1M0 Cisplatin

2 M 53 White Y Base of 
tongue T2N2aM0 Cetuximab

3 M 60 White Y Tonsil T4N2bM0 Cisplatin

4 M 55 White Y Tonsil T3N2bM0 Cisplatin

5 M 65 White N Base of 
tongue T2N1M0 Cetuximab

6 M 57 Hispanic Y Tonsil T2N2cM0 Cisplatin

7 M 60 White Y Base of 
tongue T2N2bM0 Cisplatin

8 M 58 Black Y Base of 
tongue T2N2cM0 Cisplatin

9 M 62 Asian Y Tonsil T4N2cM0 Cisplatin

10 F 48 White Y Tonsil T4N2bM0 Cisplatin

11 M 56 White N Tonsil T2N2cM0 Cisplatin

12 M 68 White Y Tonsil TxN2cM0 Cisplatin

13 M 47 White N Tonsil T3N2bM0 Cisplatin

14 M 47 White Y Tonsil T3N2bM0 Cisplatin

15 M 55 White N Base of 
tongue T4N2bM0 Cisplatin

Table 2.  Study Patient Demographics.
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commercially available software program (Velocity AI, version 3.0.1; Varian Medical Systems). The deformation 
vector fields were exported from the deformation software and used with an in-house MATLAB code (MATLAB 
2014b; MathWorks) to deform the ROIs and extract Ktrans and ve values from the six ROIs on each parameter map 
at the three time points. For each ROI, Ktrans and ve values were subjected to the same threshold constraints as in 
the DROs and then averaged.

Statistical methods.  A stratified permutation test was designed to determine whether the Ktrans and ve val-
ues from an algorithm for a specific DRO were generally ordered correctly in the DRO. Permutation tests work 
by rearranging data in many possible ways in order to estimate the sampling distribution for the test statistic. 
Algorithms were compared on a pairwise basis using a paired Wilcoxon rank-sum test to determine if the outputs 
of two algorithms were statistically different (R software package, version 3.3.1). Algorithms were split into two 
groups based on if spatial averaging was used on the DCE-MRI scans. The two groups were compared using a 
one-sided student’s t-test to determine if lower error on the DROs was calculated when spatial averaging was 
used. All p-values were adjusted using the Benjamini-Hochberg correction for multiple comparisons.

For patient DCE-MRI data, consistency of trends across algorithms was assessed using linear mixed effects 
models (R lme4 package, version 1.1.12) constructed for the differences between the pretreatment and midtreat-
ment, pretreatment and posttreatment, and midtreatment and posttreatment quantitative metrics, and percent 
change in these three time differences. Two mixed effects models were created: one in which the algorithm was 
a fixed effect and the ROI was a random effect (Δ ~ algorithm + (1|ROI)) and one in which only the random 
effect of the ROI was included (Δ ~ 1 + (1|ROI)). A likelihood ratio test was performed for these two models to 
determine if the algorithm was a significant factor in the measured changes. All p-values were adjusted using the 
Benjamini-Hochberg correction for multiple comparisons (R, version 3.3.1). We used linear mixed effects models 
with likelihood ratio tests instead of ANOVA tests because in most comparisons we observed statistically different 
variances as determined using the Levene test, which violates one of the assumptions of ANOVA tests. Intraclass 
correlation coefficient is more appropriate for complete data sets46, so it was not applicable for this data set.

For all ROIs, patients were categorized as above or below the median values from a given algorithm using 
three different metrics: (1) each time point, (2) difference between time points, and (3) percent difference between 
time points. Krippendorff ’s alpha was used to assess inter-algorithm reliability (R, irr package, version 0.84). We 
used Krippendorff ’s alpha to compare algorithms because of its ability to handle missing data, which occurred 
because for some algorithms, all Ktrans and ve values were outside the threshold for a given patient’s ROI.

Trends within each algorithm were assessed using Spearman’s rank correlation coefficient (R, version 3.3.1). 
Spearman correlations were conducted using three different sets of time points: (1) all three time points, (2) only 
the pretreatment and midtreatment time points, and (3) only the pretreatment and posttreatment time points 
were evaluated. All p-values were adjusted using the Benjamini-Hochberg correction for multiple comparisons. 
For all statistical tests, p-values below 0.05 after adjustment were considered significant.
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