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In silico prediction of drug-target 
interaction networks based on drug 
chemical structure and protein 
sequences
Zhengwei Li   1, Pengyong Han   2,3, Zhu-Hong You4, Xiao Li4, Yusen Zhang5, Haiquan Yu2,  
Ru Nie1 & Xing Chen6

Analysis of drug–target interactions (DTIs) is of great importance in developing new drug candidates for 
known protein targets or discovering new targets for old drugs. However, the experimental approaches 
for identifying DTIs are expensive, laborious and challenging. In this study, we report a novel 
computational method for predicting DTIs using the highly discriminative information of drug-target 
interactions and our newly developed discriminative vector machine (DVM) classifier. More specifically, 
each target protein sequence is transformed as the position-specific scoring matrix (PSSM), in which the 
evolutionary information is retained; then the local binary pattern (LBP) operator is used to calculate 
the LBP histogram descriptor. For a drug molecule, a novel fingerprint representation is utilized to 
describe its chemical structure information representing existence of certain functional groups or 
fragments. When applying the proposed method to the four datasets (Enzyme, GPCR, Ion Channel and 
Nuclear Receptor) for predicting DTIs, we obtained good average accuracies of 93.16%, 89.37%, 91.73% 
and 92.22%, respectively. Furthermore, we compared the performance of the proposed model with that 
of the state-of-the-art SVM model and other previous methods. The achieved results demonstrate that 
our method is effective and robust and can be taken as a useful tool for predicting DTIs.

In the post-genomic era, the identification of interactions between drugs and targets plays a pivot role in devel-
oping new drug candidates for current targets and discovering new targets for old drugs. In addition, the iden-
tification of DTIs contributes to deciphering the underlying biological mechanisms and further providing great 
insight into various biological processes. The completion of the human genome project (HGP) and the develop-
ment of molecular medicine offer great opportunity to detect interactions between drugs and targets. Although 
much effort has been made in recent years, few of drug candidates have been approved by the Food and Drug 
Administration (FDA). The main reason lies in the unacceptable toxicity and adverse side-effects for those drug 
candidates. Recent research definitely indicates that the interactions between drugs and certain protein targets 
greatly affect the toxicity or side-effects of drug candidates1. With the rapid increasing amount of available knowl-
edge in biology and chemistry, a number of publicly available databases focusing on drug–target relations have 
been constructed, such as DrugBank2, SuperTarget and Matador3, Kyoto Encyclopedia of Genes and Genomes 
(KEGG)4, Therapeutic Target Database (TTD)5. These databases contain a small amount of experimentally vali-
dated interactions which are crucial for DTIs prediction and are considered as gold standards. Since the detection 
of DTIs by experimental methods is costly, laborious and inefficient, it is almost impossible for drug companies 
to carry out all experiments to identify the toxicity or side-effects of drug compound. Therefore, it is highly 
imperative to develop efficient and accurate computational methods to facilitate the identification of DTIs, which 
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can provide supporting evidence for the experimental studies and therefore accelerate the discovery of new drug 
candidates and targets.

So far, a number of in silico methods have been developed to address the issues of DTI prediction6–12. There 
are two main traditional computational methods, namely ligand-based and receptor-based approach. The 
ligand-based virtual screening method utilizes chemical structure similarity to predict DTIs. For instance, 
Keiser et al. adopted chemical 2D structural similarity of ligands to predict new molecular targets8. Campillos 
et al. employed phenotypic side-effect similarities to identify the interactions between drugs and targets9. The 
ligand-based approach, however, may not perform well for target proteins with a small number of known ligands. 
Receptor-based method like reverse docking has also been applied in DTI prediction when drug molecule and 
target protein bind each other10–12. However, this kind of method could not be applied to targets whose 3D struc-
tures are unknown. Therefore, the efficient computational methods directly based on protein sequence rather 
than 3D structure of protein appear to be useful for predicting DTIs.

Recently, a variety of computational methods based on machine learning have been proposed to predict DTIs 
by building a classification model treating each drug-target pair as one sample13–18. These studies are mainly based 
on the assumption that similar drug molecules are likely to interact with similar target proteins. The drug-target 
pairs with known interaction are labeled as positive samples while randomly connected pairs (non-interacting) 
are treated as negative ones. Each sample is a concatenation of drug feature vector and protein feature vector. 
Francisco et al. proposed a multi-target QSAR model to predict DTIs by calculating 2D molecular descriptors 
for drug feature extraction14. Mei et al. proposed their BLM-NII algorithm to predict new target probability of 
a specified drug which is highly reliable in predicting DTIs15. Chen et al. employed a machine learning based 
approach to identify drug target groups by integrating the compound information of chemical–chemical similar-
ities, chemical–chemical connections and chemical–protein connections16.

In this study, we attempt to formulate the DTIs as an extended structure–activity relationship (SAR) classifica-
tion problem. The interactions between drugs and their targets can be considered as “activity” properties, which 
are largely dependent on the structural information from both drug molecules and target proteins. We represent 
drugs by their substructure fingerprints representing existence of certain functional groups or fragments, employ 
local binary pattern (LBP) to transform target protein sequence data and apply principal component analysis 
(PCA) to the connected feature vector to reduce the impact of noises. Then, our newly developed discriminative 
vector machine (DVM) classifier is employed in the classification for the four pharmaceutically gold targets: 
Enzyme, GPCR, Ion Channel and Nuclear Receptor. DVM is a probably approximately correct (PAC) learning 
algorithm which can reduce the error caused by generalization and has strong robustness19. The achieved results 
indicate that our method is effective and robust and can be taken as a useful tool for further studies of DTIs.

Results and Discussion
Evaluation metrics.  To evaluate the performance of related approaches, four evaluation metrics, including 
precision (Pre), accuracy (Acc), sensitivity (Sen), and Matthews’s correlation coefficient (MCC), are calculated 
accordingly. Their corresponding calculating formulas are as follows:

=
+

Pre TP
TP FP (1)

=
+

Sen TP
TP FN (2)

=
+

+ + +
Acc TP TN

TP FP TN FN (3)

=
× − ×
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where TP represents the number of interacting drug-target pairs predicted correctly (i.e., true positive) while TN  
stands for the number of non-interacting drug-target pairs predicted correctly (i.e., true negative). Similarly, FP 
is the number of non-interacting drug-target pairs falsely predicted to be interacting drug-target pairs (i.e., false 
positive), and FN  denotes the number of interacting drug-target pairs falsely predicted to be non-interacting 
drug-target pairs (i.e., false negative). Additionally, receiver operating characteristic (ROC) curves are calculated 
for evaluating the performance of the proposed method and SVM-based method. A model with no prediction 
ability would yield the diagonal line. The closer the ROC area is to 1, the higher the prediction ability of model is. 
To summarize ROC curve in a numerical way, the area under an ROC curve (AUC) is calculated accordingly.

Results of proposed method on the four gold datasets.  In this study, to reduce data dependence and 
avoid overfitting of the proposed method, five-fold cross validation was employed as testing strategy. Specifically, 
each dataset (Enzyme, GPCR, Ion Channel and Nuclear Receptor) was randomly split into five parts of roughly 
equal size of which four parts of them served to train the DVM model, and the remaining part was set aside for 
testing in turn. The whole process is repeated five times and five prediction models were constructed, tested and 
evaluated separately. To be fair, the parameters of DVM classifier were set to the same on all the four datasets.

The five-fold cross validation results of the proposed method on all the four benchmark datasets are listed in 
Tables 1–4. When applying the proposed method to the Enzyme dataset, we obtain the best prediction results 
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of average precision (Pre), accuracy (Acc), sensitivity (Sen), Matthews’s correlation coefficient (MCC) and area 
under ROC curve (AUC) of 93.18%, 93.16%, 92.90%, 86.32% and 92.88%, respectively, and their standard devi-
ations are 0.64%, 0.43%, 1.19%, 0.88% and 0.87%, respectively (see Table 1). On the GPCR dataset, our method 
yields the average precision, accuracy, sensitivity, MCC and AUC of 89.40%, 89.37%, 89.27%, 78.77% and 88.56%, 
respectively, and their standard deviations are 1.10%, 1.21%, 2.30%, 2.41% and 1.74%, respectively (see Table 2). 
Similarly, it can be seen from Table 3 that the average precision, accuracy, sensitivity, MCC and AUC on the Icon 
Channel dataset reach 90.90%, 91.73%, 92.65%, 83.47% and 91.71%, respectively, and the corresponding standard 
deviations are 0.47%, 0.96%, 1.74%, 1.94% and 1.36%, respectively. In Table 4, the averages of precision, accuracy, 
sensitivity, MCC and AUC on the Nuclear Receptor dataset are 88.67%, 92.22%, 96.62%, 84.80% and 93.00% 
respectively. However, their standard deviations are 4.43%, 2.32%, 3.13%, 4.60% and 4.19%, respectively, which 
are the highest values in the four tables. The possible reason for such results is that the number of samples in the 
Nuclear Receptor dataset is only 90, relatively less than that of other datasets. The receiver operating characteristic 
(ROC) curves performed by our method on the four benchmark datasets are illustrated in Figures 1–4.

From Tables 1–4, we can observe that the powerful DVM-based prediction model combined with LBP his-
togram protein descriptor and drug substructure fingerprints is accurate, effective and robust for predicting 
drug-target interactions. We owe the good performance of the proposed method to the choice of effective feature 
extraction method and the powerful DVM classifier. In addition, the LBP histogram descriptors of target proteins 

Test set Pre (%) Acc (%) Sen (%) MCC (%) AUC (%)

1 94.10 93.33 92.12 86.67 93.21

2 92.37 93.33 94.29 86.69 92.94

3 93.06 92.56 92.28 85.13 91.93

4 92.92 92.91 91.73 85.74 92.22

5 93.46 93.68 94.09 87.35 94.13

Average 93.18 ± 0.64 93.16 ± 0.43 92.90 ± 1.19 86.32 ± 0.88 92.88 ± 0.87

Table 1.  Five-fold cross validation results by our method on the Enzyme dataset.

Test set Prec (%) Accu (%) Sen (%) MCC (%) AUC (%)

1 94.12 94.44 94.12 88.85 93.50

2 83.33 88.89 93.75 78.26 91.67

3 90.91 91.67 95.24 82.83 86.69

4 90.00 94.44 100.00 89.44 97.81

5 85.00 91.67 100.00 84.60 95.31

Average 88.67 ± 4.43 92.22 ± 2.32 96.62 ± 3.13 84.80 ± 4.60 93.00 ± 4.19

Table 4.  Five-fold cross validation results by our method on the Nuclear Receptor dataset.

Test set Pre (%) Acc (%) Sen (%) MCC (%) AUC (%)

1 88.80 87.80 86.72 75.61 87.73

2 89.68 90.55 91.13 81.11 88.71

3 90.32 88.58 86.82 77.23 88.31

4 90.40 90.55 90.40 81.10 91.37

5 87.79 89.37 91.27 78.81 86.69

Average 89.40 ± 1.10 89.37 ± 1.21 89.27 ± 2.30 78.77 ± 2.41 88.56 ± 1.74

Table 2.  Five-fold cross validation results by our method on the GPCR dataset.

Test set Pre (%) Acc (%) Sen (%) MCC (%) AUC (%)

1 90.72 91.19 91.35 82.37 90.89

2 90.28 91.36 93.51 82.71 91.91

3 91.26 93.39 94.91 86.81 93.75

4 91.47 91.02 90.54 82.04 90.14

5 90.79 91.69 92.93 83.41 91.85

Average 90.90 ± 0.47 91.73 ± 0.96 92.65 ± 1.74 83.47 ± 1.94 91.71 ± 1.36

Table 3.  Five-fold cross validation results by our method on the Icon Channel dataset.
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not only retain the sufficient evolutionary information of amino acids, but also differentiate amino acids effec-
tively while substructure fingerprints also contain highly discriminative information of drugs.

To validate the performance of our unbiased method not strongly related to the selection of negative samples, 
without loss of generality, we also carried out additional five-fold cross validation with five different negative 
training samples (non-interacting) randomly selected from the GPCR and drug molecules dataset. As shown in 
Table 5, although the obtained results on different negative training samples are slight different, these results are 
consistency in general and the average precision, accuracy, sensitivity, MCC and AUC are all higher than 89%, 

Figure 1.  ROC curves by our method on the Enzyme dataset.

Negative 
Samples Prec (%) Accu (%) Sen (%) MCC (%) AUC (%)

1 89.65 ± 2.20 88.61 ± 0.95 89.50 ± 1.62 79.21 ± 1.92 89.84 ± 1.26

2 89.13 ± 2.04 88.98 ± 2.25 87.87 ± 2.64 77.98 ± 2.59 86.67 ± 2.15

3 90.39 ± 2.33 90.16 ± 1.72 89.91 ± 1.39 80.35 ± 1.41 91.14 ± 1.64

4 91.68 ± 2.89 90.08 ± 2.51 88.36 ± 2.74 80.50 ± 2.03 90.04 ± 2.99

5 89.74 ± 2.69 89.37 ± 1.95 89.06 ± 2.98 78.88 ± 2.15 89.76 ± 2.43

Table 5.  Comparisons of five-fold cross validation prediction performance using five different randomly 
selected negative training samples on the GPCR dataset.

Figure 2.  ROC curves by our method on the GPCR dataset.
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88%, 87%,77% and 86%, respectively, which further demonstrate that our approach for selecting negative samples 
in this study is appropriate for assessing prediction performance.

Comparisons between discriminative vector machine and support vector machine.  To further 
evaluate the proposed method, the state-of-the-art support vector machine (SVM) classifier was constructed 
accordingly. Here we used LIBSVM toolbox as SVM classifier to carry out the prediction of DTIs. To be fair, the 
two methods adopted the same feature data on all the four gold dataset. A general grid search scheme was used to 
optimize LIBSVM’s two parameters (regularization parameter C, kernel width parameter γ) and they (C, γ) were 
at last tuned to 0.5 and 0.7, respectively. Additionally, Gaussian function was chosen as the kernel function. For 
the DVM and SVM classifiers, all the input feature vectors were normalized in the range of [0, 1].

The predictive results of the two methods are summarized in Tables 6–9 and the corresponding ROC curves 
are illustrated in Figures 5–8. It can be drawn from these tables and figures that the achieved results hold nearly 
the same varying tendency. Taking the Ion Channel dataset as an example, the averages of Pre, Acc, Sen, MCC and 
AUC of SVM reach 85.12%, 85.59%, 86.24%, 71.24% and 85.89%, respectively, significantly lower than those by 
DVM, which are 90.90%, 91.73%, 92.65%, 83.47% and 91.71%, respectively. Similarly, the majority of their stand-
ard deviations of SVM are also higher than those of DVM. Additionally, as shown in Figures 5–8, the ROC curves 
of the DVM-based prediction model are superior to those of the SVM-based classifier, which suggests that DVM 
with the same feature descriptors performs better than SVM in general. There are two possible reasons for such 
results. (1) Based on k nearest neighbors (kNNs), robust M-estimator and manifold regularization, DVM reduces 
the influence of outliers and overcomes the weakness of the kernel function to meet the Mercer condition. (2) 
Although there are three parameters (β, γ, and θ) in DVM model, those parameters slightly affect its performance 
and they are more easily tuned than those of SVM.

Comparison with previous studies.  As mentioned before, there are a variety of computational methods 
for predicting drug-target interactions. To further illustrate the effectiveness of the proposed approach, we com-
pared its performance with other published methods which adopted the same five-fold cross validation frame-
work and were based on the same four datasets. Table 10 lists the average AUC (area under the receiver operating 
curve) values for the method by Jian-yu Shen et al.20, NetCBP21, the method by Yanamishi et al.22, KBMF2K7, and 

Model
Testing 
Set Pre (%) Acc (%) Sen (%) MCC (%) AUC (%)

SVM

1 90.24 90.68 91.31 81.37 90.70

2 88.64 89.15 89.71 78.30 88.47

3 89.85 90.00 90.60 79.99 89.96

4 90.39 91.71 92.78 83.44 91.37

5 90.81 89.68 88.51 79.38 89.26

Average 89.99 ± 0.74 90.24 ± 0.88 90.58 ± 1.44 80.50 ± 1.78 89.95 ± 1.02

DVM

1 94.10 93.33 92.12 86.67 93.21

2 92.37 93.33 94.29 86.69 92.94

3 93.06 92.56 92.28 85.13 91.93

4 92.92 92.91 91.73 85.74 92.22

5 93.46 93.68 94.09 87.35 94.13

Average 93.18 ± 0.64 93.16 ± 0.43 92.90 ± 1.19 86.32 ± 0.88 92.88 ± 0.87

Table 6.  Five-fold cross validation results on the Enzyme dataset of DVM and SVM.

Model
Testing 
Set Pre (%) Acc (%) Sen (%) MCC (%) AUC (%)

SVM

1 85.04 85.43 85.71 70.87 84.92

2 85.82 83.86 83.94 67.59 84.86

3 84.03 84.25 82.64 68.42 85.43

4 83.87 85.43 85.95 70.85 87.18

5 87.41 88.58 90.77 77.19 88.64

Average 85.23 ± 1.30 85.51 ± 1.66 85.80 ± 2.76 70.98 ± 3.37 86.21 ± 1.48

DVM

1 88.80 87.80 86.72 75.61 87.73

2 89.68 90.55 91.13 81.11 88.71

3 90.32 88.58 86.82 77.23 88.31

4 90.40 90.55 90.40 81.10 91.37

5 87.79 89.37 91.27 78.81 86.69

Average 89.40 ± 1.10 89.37 ± 1.21 89.27 ± 2.30 78.77 ± 2.41 88.56 ± 1.74

Table 7.  Five-fold cross validation results on the GPCR dataset of DVM and SVM.
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our proposed method. It can be observed that the proposed method has an obvious improvement in the predic-
tion performance for DTIs in term of AUC. The average growths of our result to the best result of four previous 
methods on the datasets of Enzyme, GPCR, Ion Channel and Nuclear Receptor are 9.92%, 1.21%, 13.08% and 
6.77%, respectively. The high predictive performance of the proposed method may attribute to the novel feature 
extraction method which extracts highly discriminative information of target proteins and drug molecules, and 
the use of DVM classifier which has been demonstrated to be robust and powerful.

Conclusion
In the post-genomic era, study of drug-target interactions is very important in developing new drug candidates 
for current targets and discovering new targets for old drugs. However, experimental methods for identifying 
DTIs are time-consuming, costly and challenging even nowadays. In this work, we propose a novel computa-
tional method for predicting DTIs which makes the best of the substructure fingerprints of drug molecules and 
the sequence information of target proteins. Additionally, the biological evolutionary information of protein is 
also taken into account during the process of feature extraction. When applied to the four benchmark datasets 
(Enzyme, GPCR, Ion Channel and Nuclear Receptor), the proposed method achieves average accuracies of 93.16%, 
89.37%, 91.73% and 92.22%, respectively. To further evaluate the performance of the proposed method, it is 
compared with SVM-based model and other previous approaches. The achieved results show that our proposed 
method is highly competitive and can be taken as a powerful tool for predicting drug-target interactions.

Figure 3.  ROC curves by our method on the Icon Channel dataset.

Figure 4.  ROC curves by our method on the Nuclear Receptor dataset.
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Materials and Methods
Gold standard datasets.  In this study, we evaluate the predictive method of DTIs on four gold benchmark 
datasets, namely Enzyme, GPCR, Ion Channel and Nuclear Receptor, which are from KEGG BRITE23, SuperTarget 
& Matador3, DrugBank24 and BRENDA25, respectively. As shown in Table 11 the number of known drugs tar-
geting Enzyme, GPCR, Ion Channel and Nuclear Receptor, are 445, 223, 210 and 54, respectively, and the number 
of known protein targeted by these drugs are 664, 95, 204 and 26, respectively. The number of known interac-
tions between these drugs and targets are 2926, 635, 1476 and 90, respectively. Therefore, the total interacting 
pairs of drug-target are 5127 and they are then employed to build the positive samples in the cross-validation 
experiments.

In general, drug-target interactions network is usually formulated as a bipartite graph where drug molecules 
and target proteins are nodes and the known drug–target interactions are edges between these nodes. Compared 
with a fully connected bipartite graph, the number of initial edges is extremely small. Take ion channel data-
set as an example, its corresponding bipartite graph has up to 210 × 204 = 42840 edges. However, there are 
only 1476 initial connections which is significantly less than the number of possible negative samples (42840–
1476 = 42364). To correct the bias caused by the imbalance samples, we randomly selected the non-interacting 
drug-target pairs (as negative samples) with the same number of the interacting drug-target pairs (as positive 
samples). As a matter of fact, such a set of negative samples generated randomly may contain very few drug-target 
pairs interacting really; nevertheless, in view of the large scale of DTIs, the number of real interactions pairs pos-
sibly collected in negative sets is very small.

Representation of drug molecules and target proteins.  Representation of drug molecules.  A vari-
ety of descriptors for encoding drug compounds have been proposed, including topological, constitutional, 
geometrical and quantum chemical properties etc. Additionally, recent studies indicate that drug compounds 
can also be effectively represented by the molecular substructure fingerprints26, 27. Substructure fingerprints can 
directly encode molecular structure information in binary bits which denote the absence or presence of specific 

Figure 5.  Comparison of ROC curves between DVM and SVM on the Enzyme dataset.

Model
Testing 
Set Pre (%) Acc (%) Sen (%) MCC (%) AUC (%)

SVM

1 84.46 85.93 87.11 71.90 85.40

2 85.71 84.58 83.11 69.19 85.19

3 87.75 86.10 85.48 72.20 86.11

4 83.55 84.75 86.39 69.53 85.48

5 84.11 86.61 89.12 73.36 87.28

Average 85.12 ± 1.67 85.59 ± 0.89 86.24 ± 2.21 71.24 ± 1.80 85.89 ± 0.85

DVM

1 90.72 91.19 91.35 82.37 90.89

2 90.28 91.36 93.51 82.71 91.91

3 91.26 93.39 94.91 86.81 93.75

4 91.47 91.02 90.54 82.04 90.14

5 90.79 91.69 92.93 83.41 91.85

Average 90.90 ± 0.47 91.73 ± 0.96 92.65 ± 1.74 83.47 ± 1.94 91.71 ± 1.36

Table 8.  Five-fold cross validation results on the Ion Channel dataset of DVM and SVM.
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substructures of a given drug molecule. If a substructure exists in a given drug molecule, the corresponding bit in 
fingerprint is assigned to 1, or else to 0. Although the substructure fingerprint divides the whole molecule into a 
number of fragments, it has the ability to retain highly discriminative structural information of drug molecules. 
In addition, it does not require the 3D conformation of drug compound and thereby does not cause error accu-
mulation. The substructure fingerprints sets adopted in this study are collected from the PubChem system. The 
drug fingerprints record the information of mostly common 615 substructures and therefore the length of feature 
vector of drug molecule is 615.

Representation of target proteins.  Effective protein descriptors can provide highly discriminatory nature 
for identifying DTIs and thus boost the performance of prediction model. Up to now, there are many feature 
descriptors proposed for protein sequences. Most of these descriptors are based on the position-specific scoring 
matrix (PSSM) of protein sequences. PSSM is a representation of a protein sequence which provides the proba-
bility of any given amino acid occurring at a particular position and carries the evolutionary information of the 
sequence28. In this study, we adopt the position specific iterated BLAST (PSI-BLAST) tool to create PSSMs for all 
target protein sequences, via 3 iterations setting the E-value cutoff at 0.001 for the query protein sequence against 
multiple sequence alignment. The PSSM of a query protein sequence can be expressed as

= = … = …P P i L j{ }, 1, 2, , , 1, 2, , 20 (5)i
j

where L is the length of the protein sequence and 20 denotes the 20 standard amino acids; Pi
j is the score for the 

jth amino acid in the ith position of the given protein sequence29.

Figure 6.  Comparison of ROC curves between DVM and SVM on the GPCR dataset.

Figure 7.  Comparison of ROC curves between DVM and SVM on the Ion Channel dataset.
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Local binary pattern (LBP)30 is a powerful operator for image description that is based on the signs of differ-
ences of neighboring pixels. Despite its simplicity, LBP is very descriptive and has been successfully applied to a 
wide variety of different tasks. The original version of the descriptor labels the pixels by threshold the 3 × 3 neigh-
borhood of each pixel with the center value and summing the threshold values weighted by 2 to the power of i. 
Given a pixel of an image, an LBP operator is calculated as follow:

∑= − = <
≥=

− {LBP s v v s x x
x( )2 , ( ) 0, 0

1, 0 (6)P R
i

P

i c
i

,
0

1

where vc is the value of central pixel, vi is the value of its neighbors, P represents the total number of sampling 
points and R is the radius of the neighborhood. Furthermore, two extensions of original operator are proposed by 
Ojala et al.30. (1) Different sizes of neighborhood were employed to retain discriminative features at different 
scales. (2) Uniform patterns were proposed to use a small subset of 2P patterns, which contain at most two bitwise 
transitions from 0 to 1 or vice versa. After labeling an image with a LBP operator, a histogram of the labeled image 
can be defined as

∑= = = …H I f x y i i S( ( , ) ), 1, ,
(7)

i
x y,

where S is the number of different labels produced by LBP operator and γI( ) is 1 if γ is true and 0 otherwise. In 
this work, each PSSM matrix of a protein sequence is treated as an image and the number of neighbors is set to 8. 
After a PSSM matrix is processed by LBP histogram operator, a corresponding 256-dimentioanl feature vector is 
formed accordingly.

Figure 8.  Comparison of ROC curves between DVM and SVM on the Nuclear Receptor dataset.

Model
Testing 
Set Pre (%) Acc (%) Sen (%) MCC (%) AUC (%)

SVM

1 83.33 83.33 83.33 66.67 84.26

2 80.00 86.11 94.12 73.41 86.38

3 86.67 75.00 65.00 52.92 71.56

4 76.47 75.00 72.22 50.08 73.46

5 82.35 83.33 82.35 66.56 83.59

Average 81.76 ± 3.41 80.55 ± 4.65 79.40 ± 10.00 61.93 ± 8.91 79.85 ± 6.09

DVM

1 94.12 94.44 94.12 88.85 93.50

2 83.33 88.89 93.75 78.26 91.67

3 90.91 91.67 95.24 82.83 86.69

4 90.00 94.44 100.00 89.44 97.81

5 85.00 91.67 100.00 84.60 95.31

Average 88.67 ± 4.43 92.22 ± 2.32 96.62 ± 3.13 84.80 ± 4.60 93.00 ± 4.19

Table 9.  Five-fold cross validation results on the Nuclear Receptordataset of DVM and SVM.
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feature reduction by PCA.  Principal component analysis (PCA) is a statistical method that uses an orthogonal 
transformation to convert a set of observations of possibly correlated variables into a set of values of linearly 
uncorrelated variables called principal components. To reduce computing load and the influence of noise, PCA 
is introduced to extract the most discriminatory low-dimensional features of both drugs and target proteins. The 
obtained compact representations of drug compounds and target proteins are then employed to identify their 
interactions.

Discriminative Vector Machine.  Classification is a fundamental issue in pattern recognition field and 
there are a wide variety of classification algorithms. In this study, our newly developed discriminative vector 
machine (DVM) classifier is adopted for classification prediction. DVM is a probably approximately correct 
(PAC) learning model which can reduce error accumulation and has strong robustness19. Given a test sample y, 
the first step of DVM is to find its top k nearest neighbors (kNNs) to suppress the effect of outliers. The kNNs of y 
can be expressed by Xk = [x1, x2, …, xk], where xi is the ith nearest neighbor. For convenience, Xk can be also rep-
resented as Xk = [xk,1, xk,2, …, xk,c], where xk j,  comes from the jth class. Then the objective of DVM is to solve the 
following minimization problem:

∑ ∑ ∑β δ β γ β β∅ − + + −β
= = =

y X w(( ) ) ( )
(8)

min

i

d

k k i k
p

k

q

k

pq k
p

k
q

1 1 1

2
k

where β−y X( )k k i is the ith element of β−y Xk k and βk has the form of β β β…[ , , , ]k k k
k1 2  or β β β…[ , , , ]k k k c,1 ,2 , , 

where βk i,  is the coefficient from the ith class. ∅ is a M-estimator used to improve the robustness of DVM. There 
are many robust estimators like Welsch M-estimator, MBA (Median Ball Algorithm) estimator and Cauchy 
M-estimator31. In this study, a robust Welsch M-estimator ∅ = − −x exp x( ( ) (1/2)(1 ( ))2 ) is adopted to attenuate 
error accumulation so that outliers would have less impact on prediction. ||βk|| is a norm of βk and the corre-
sponding l2-norm is adopted accordingly. The last section of equation (8) is the manifold regularization where wpq 
is the similarity between the pth and the qth nearest neighbor (NN) of y. In this work, wpq is defined as the cosine 
distance between the pth and the qth NN of y. Thus the corresponding Laplacian matrix L can be depicted as

= −L D W (9)

where W  is the similarity matrix whose element is = … = …w p k q k( 1, 2, , ; 1, 2, , ),pq  D is a diagonal matrix 
whose ith element di is the sum of = …w q k( 1, 2, , )iq . According to equation (9), the last section of equation (8) 
can be represented as γβ βLk

T
k. Construct a diagonal matrix P = diag(pi) whose element = …p i d( 1, 2, , )i  is

=
β

σ
−

−

p e (10)i

y X(( ) )k k i
2
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where σ is the kernel size which can be calculated by:

σ θ β β= × − × −y X y X d( ( ) ( )/ ) (11)k k
T

k k

where θ is a constant to suppress the effect of outliers. In this work, it is set to 1.0 as in the literature32. Based on the 
equations (9), (10) and (11), the minimization of the equation (8) can be represented as

β β δβ γβ β− − + +βarg y X P y X L( ) ( ) (12)
min

k k
T

k k k k
T

k2
2

k

Dataset Our method
Shen et al. 
(2015) NetCBP

Yamanishi et al.
(2010) KBMF2K

Enzyme 0.9288 ± 0.0087 0.812 0.8251 0.845 0.832

GPCR 0.8856 ± 0.0174 0.875 0.8235 0.812 0.857

Icon Channel 0.9171 ± 0.0136 0.811 0.8034 0.731 0.799

Nuclear Receptor 0.9300 ± 0.0419 0.871 0.8394 0.830 0.824

Table 10.  Prediction performances of NetCBP21, Yamanishi et al.22, KBMF2K7, and our method on the four 
benchmark datasets in terms of average AUC.

Dataset
drug 
compounds

target 
proteins Interactions

Enzyme 445 664 2926

GPCR 223 95 635

Ion Channel 210 204 1476

Nuclear Receptor 54 26 90

Table 11.  The four drug–target interaction datasets.
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According to the theory of half-quadratic minimization, the global solution βk of equation (12) can be 
addressed by:

β δ γ= + + −X PX I L X Py( ) (13)k k
T

k k
T1

After the related coefficients for each class are calculated, the test sample y can be identified as the ith class if 
the residual β−y Xki ki  is minimal.

= − β = … cR y X , i 1, 2, , (14)ii ki ki
min

In this work, there are two classes in total to be identified: non-interacting drug-target pair (class 1) and inter-
acting drug-target pair (class 2). If R1 are less than R2, the sample y will be classified as non-interacting drug-target 
pair (class 1), otherwise as interacting drug-target pair (class 2). For three free parameters (δ, γ, θ) of the DVM 
model, it is time-consuming to directly search their optimal values. It is gratifying that DVM model is so stable 
that all these parameters only affect its performance slightly if they are set in the feasible ranges. Based on the 
above knowledge and through grid search, the parameters δ and γ are assigned as 1E-3 and 1E-4 respectively. Just 
as described before, θ is a constant and is set to 1 throughout the whole process. Actually, for large data set, the 
DVM classifier would spend relatively more time in finding the representative vector, so multi-dimensional 
indexing techniques can be adopted to speed up search process to a certain extent.

Procedure of proposed method.  In this work, the procedure of our proposed method mainly consists 
of two steps: feature extraction and classification prediction. The feature extraction also contains two sub steps: 
(1) the PSI-BLAST tool is employed to represent each target protein sequence and the corresponding PSSM is 
obtained; then LBP operator is used to obtain LBP histogram vector. (2) Based on substructure information 
of drug molecule, the fingerprint vector of drug molecule is calculated. Then the corresponding DTI pair is 

Figure 9.  Flow chart of the proposed method.
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constructed by concatenating the two vectors of protein sequence and drug substructure. To reduce the compu-
tational burden and suppress the effect of noise, principal component analysis (PCA) method is then employed 
to extract the highly discriminatory feature information. As mentioned before, each of the four datasets (Enzyme, 
GPCR, Ion Channel and Nuclear Receptor) is divided into training set and test set separately. Then the classifica-
tion prediction on each dataset is also divided into two sub-procedures. (1) The training set is used to train the 
DVM model; (2) the trained DVM model is employed to predict DTIs on the four datasets and the performance 
metrics are evaluated correspondingly. In the same way, the SVM model is also built for predicting DTIs on these 
four datasets. The flow chart of our approach is shown as Figure 9.
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