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It is not known how life originated. It is thought that prebiotic
processes were able to synthesize short random polymers. How-
ever, then, how do short-chain molecules spontaneously grow
longer? Also, how would random chains grow more informational
and become autocatalytic (i.e., increasing their own concentra-
tions)? We study the folding and binding of random sequences
of hydrophobic (H) and polar (P) monomers in a computational
model. We find that even short hydrophobic polar (HP) chains can
collapse into relatively compact structures, exposing hydrophobic
surfaces. In this way, they act as primitive versions of today’s pro-
tein catalysts, elongating other such HP polymers as ribosomes
would now do. Such foldamer catalysts are shown to form an
autocatalytic set, through which short chains grow into longer
chains that have particular sequences. An attractive feature of
this model is that it does not overconverge to a single solu-
tion; it gives ensembles that could further evolve under selec-
tion. This mechanism describes how specific sequences and con-
formations could contribute to the chemistry-to-biology (CTB)
transition.

origin of life | HP model | biopolymers | autocatalytic sets

mong the most mysterious processes in chemistry is how the

spontaneous transition occurred more than 3 billion years
ago from a soup of prebiotic molecules to living cells. What was
the mechanism of the chemistry-to-biology (CTB) transition? In
this paper, we develop a model to explore how prebiotic polymer-
ization processes might have produced long chains of protein-
like or nucleic acid-like molecules (1, 2). What polymerization
processes are autocatalytic? How could they have produced long
chains? Also, how might random chain sequences have become
informational and self-serving? Our questions here are about
physical spontaneous mechanisms, not about specific monomer
or polymer chemistries.

CTB Requires an Autocatalytic Process

Early on, it was recognized that the transition from simple chem-
istry to self-supporting biological behavior requires autocatalysis
(i.e., some form of positive feedback or bootstrapping, in which
the concentrations of some molecules become amplified and self-
sustaining relative to other molecules) (3-8). That work has led
to the idea of an autocatalytic set, a collection of entities in which
any one entity can catalyze another.

We first review some of the key results. A class of mod-
els called Graded Autocatalysis Replication Domain (GARD)
(9-11) predicts that artificial autocatalytic chemical kinetic net-
works can lead to self-replication, with a corresponding ampli-
fication of some chemicals over others. Such systems display
some degree of inheritance and adaptability. GARD model
is a subset of metabolism first models, which envision that
small molecule chemical processes precede information trans-
fer and precede the first biopolymers. Focusing on polymers,
Wu and Higgs (12) developed a model of RNA chain-length
autocatalysis. They envision that some of the RNA chains can
spontaneously serve as polymerase ribozymes, leading to auto-
catalytic elongation of other RNAs. A related model asserts
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that autocatalytic chain elongation arises from template-assisted
ligation and random breakage (13). Autocatalytic templating
of the self-replication of peptides has also been shown (14,
15). These are models of the “preinformational” world before
heteropolymers begin to encode biological sequence-structure
relationships.

Another class of models describes a “postinformational” het-
eropolymer world, in which there is already some tendency of
chains to evolve. In one such model, it is assumed that polymers
serve as their own templates because of the ability of certain het-
eropolymers to concentrate their own precursors (16-19). It sup-
poses an ability of molecules to recognize “self,” although with-
out specifying exactly how. In another such model (20), chains
undergo sequence-independent template-directed replication. It
indicates that functional sequences can arise from nonfunctional
ones through effective exploration of sequence space. These
postinformational models predict that template-directed repli-
cation will enhance sequence diversity (19). These are abstract
models of principle that do not specify what particular molecular
structures and mechanisms might be autocatalytic. Also, they do
not address the heteropolymeric or sequence-dependent infor-
mational aspects of the chains.

There has also been much experimental work leading, for
example, to the creation of artificial autocatalytic sets in the
laboratory (21-23). Such systems are designed so that pairs of
molecules can catalyze each other (i.e., autocatalysis), leading to
exponential growth of the autocatalytic members. For example,
mixtures of RNA fragments are shown to self-assemble sponta-
neously into self-replicating ribozymes that can form catalytic
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networks that can compete with others (24). One limitation,
however, is that these are fragments taken from existing
ribozymes, and therefore, they do not explain the origins from
more primitive random beginnings.

Here, we describe a dynamical mechanism that seeks to bridge
from the pre- to postinformational world across the CTB tran-
sition. We describe a physical basis for how short chains could
have spontaneously led to longer chains, how random chains led
to specific sequences, and a structural basis and plausible kinetics
for a prebiotic autocatalytic transition.

“Flory Length Problem”: Polymerization Processes Produce
Mostly Short Chains

Prebiotic polymerization experiments rarely produce long
chains. It is generally assumed that the prebiotic proteins or
nucleic acids that initiated the transition to biology must have
been at least 30- to 60-monomers long (25). Both amino acids
and nucleotides can polymerize under prebiotic conditions with-
out enzymes, but they produce mostly short chains (26-30).
Leman et al. (29) showed that carbonyl sulfide, a simple volcanic
gas, brings about the formation of oligopeptides from amino
acids under mild conditions in aqueous solution in minutes to
hours. However, the products are mainly dimers and trimers.
Longer chains can sometimes result through adsorption to clays
(31, 32) or minerals (33, 34), from evaporation from tidal pools
(35), from concentration in ice through eutectic melts (36), or
from freezing (37) or temperature cycling. Even so, the chain-
length extensions are modest (38).

For example, mixtures of Gly and Gly. grow to about 6-mers
after 14 d (39, 40) on mineral catalysts, such as calcium mont-
morillonite, hectorite, silica, or alumina. Or, in the experiments
of Kanavarioti et al. (36), polymers of oligouridylates are found
up to lengths of 11 bases long, with an average length of 4 after
samples of phosphoimidazolide-activated uridine were frozen in
the presence of metal ions in dilute solutions. Similar results are
found in other polymers: a prebiotically plausible mechanism
produces oligomers having a combination of ester and amide
bonds up to length 14 (38).

It is puzzling how prebiotic processes might have overcome
what we call the Flory Length Problem (i.e., the tendency of any
polymerization process to produce a distribution in which there
are more short chains and fewer long chains). Standard polymer-
ization mechanisms lead to the Flory or Flory-Schulz distribu-
tion of populations f (1), whereby short chains are exponentially
more populated than longer chains (41):

f()y=4d’11—a)"", [1]

where [ is the chain length, and « is the probability that any
monomer addition is a chain termination. The average chain
length is given by (I) = a(2 — a) (Fig. 14).

Prebiotic monomer concentrations are thought to have been in
the range of micromolar to millimolar (36, 42-45). Given micro-
molar concentrations of monomers and given (I) =2, the con-
centration of 40-mers would be ~ 10~*° mol/L. Fig. 1B shows
that, where the chain-length distributions are known for prebi-
otic syntheses, they are well fit by the Flory distribution [or expo-
nential law £ (1) o constant'] (16, 19).

Foldamer Autocat Mechanism: Short Hydrophobic Polar
Chains Fold and Catalyze the Elongation of Other
Hydrophobic Polar Chains

We propose the hypothesis that the CTB transition occurred
through foldable polymers (“foldamers”). Today’s biological
foldamers are predominantly proteins [although RNA molecules
and synthetic polymers can also fold (48-50)]. Many foldamers
adopt specific native conformations, mainly through a binary sol-
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Fig. 1. Polymerization processes lead to mostly short chains. (A) Spon-
taneous polymerization processes typically lead to a Flory distribution of
chain lengths. Green line gives (/) =6, and blue line corresponds to (/) =2
(B) Fitted distributions from experiments on prebiotic polymerization: red,
Kanavarioti et al. (36); cyan, Ding et al. (46); magenta, Ferris (47).

vation code of particular sequence patterns of the hydrophobic
(H) and polar (P) monomers (51). We call these hydrophobic
polar (HP) copolymers.

Since today’s biocatalysts are proteins, it is not hard to
imagine that early proteins could have been primitive cata-
lysts. Precision and complexity are not required for peptides
to perform biological functions. Proteins generated from ran-
dom libraries can sustain the growth of living cells (52), and
binding and catalysis from random peptides are not unusual
(53) (refs. 11-14 and 54 and references therein and refs. 55—
59). Even so, the sorts of actions suggested here are cur-
rently more in the realm of speculation than proven fact.
Below, we describe results of computer simulations that lead
to the conclusion that short random HP chains carry within
them the capacity to autocatalytically become longer and more
protein-like.

Here are the premises of the model.

i) Some random HP sequences can fold into compact struc-
tures.
if) Some of those foldamers will have exposed hydrophobic
“landing pad” surfaces.
iii) Foldamers with landing pads can catalyze the elongation of
other HP chains.
iv) These foldamer catalysts form an autocatalytic set.
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Here is evidence for these premises.

i) Nondesigned random H P sequences are known to fold.
H P polymers have been studied extensively as a model
for the folding and evolution of proteins (51, 60-73).
Those studies show that unique folded structures can be
encoded simply in the binary patterning of polar and
hydrophobic residues, with finer tuning by specific inter-
residue contacts. This binary encoding of unique folding
is confirmed by experiments (74-77). Subsequently, the
HP model has contributed several notable insights and
advances, including sequence space superfunnels (64), the
nonrandomess of uniquely encoding sequences (65), the
determination of all uniquely encoding sequences of chain
length 25 (66), recombination (67), homology-like compara-
tive modeling features (68), and evolutionary switches (69).
A comprehensive review is in the work by Sikosek and
Chan (70).

ii) Exposed hydrophobic clusters and patches are common on
today’s proteins. A study of 112 soluble monomeric proteins
(78) found patches ranging from 200 to 1,200 A2, averag-

ing around 400 A?; they are often binding sites for ligands
or other proteins. Modern proteins have many sites of inter-
action with other proteins, typically nearly a dozen partners.
Almost three-quarters of protein surfaces have geometrical
properties that are amenable to interactions, and those sites
are enriched in hydrophobes (79).

iii) Surface hydrophobic patches on proteins are often sites of
catalysis (78, 80-82). For example, hydrophobic clusters on
the surface of lipases serve as initiation sites, where the
hydrophobic tail of a surfactant interacts with the patch first
(81). A hydrophobic cluster on Cytochrome-c Oxidase is
known to increase keat (82).

iv) Primitive proteins might have catalyzed peptide chain elon-
gation. Of course, today’s cells synthesize proteins using
ribosomes, wherein the catalysis is carried out by RNA
molecules. However, there are reasons to believe that pep-
tide chain elongation might alternatively be catalyzable by
proteins. First, peptide chain elongation entails a conden-
sation step and the removal of a water molecule (ref. 83,
chap. 3, p. 82). Dehydration reactions can occur in water if
carried out in nonpolar environments (84, 85), such as pro-
tein surfaces. Second, a major route of protein synthesis in
simple organisms, such as bacteria and fungi, uses nonri-
bosomal peptide synthetases, which do not involve mRNAs
(86, 87).

Modeling the Process of HP Chain Growth and Selection

The Dynamics of the Model. We assume that chain polymeriza-
tion takes place within a surrounding solution that contains a
sufficient supply of activated H and P monomers. Since liv-
ing systems—past or present—must be out of equilibrium, this
assumption is not very restrictive. In our model, activated H and
P monomers are supplied by an external source at rate a. A given
chain elongates by adding a monomer at rate 3. Just to keep the
bookkeeping simple, we consider a steady-state process, in which
molecules are removed from the system by degradation or dilu-
tion at a certain rate d. We assume that chains can undergo spon-
taneous hydrolysis because of interaction with water; any bond
can be broken at a rate h. Without loss of generality, we define
the unit rate by setting 8 = 1. All other rates are taken relative to
this chain growth rate.

Chain Folding in the Model. In addition, our model also allows for
how the collapse properties of the different HP sequences affect
the populations that polymerization produces. A standard way to
study the properties of HP sequence spaces is using the 2D HP
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lattice model (51, 60). In this model, each monomer of the chain
is represented as a bead. Each bead is either H or P. Chains
have different conformations represented on a 2D square lat-
tice. The free energy of a given chain in a given conformation
equals (the number of HH noncovalent contacts) x (the energy
ey of one HH interaction). Some HP sequences have a single
lowest free energy structure, which we call native, having native
energy Ena:

Enat = Nhe¢€H, [2]

where n;, is the number of HH contacts in the native structure
of that particular sequence.

A virtue of the HP lattice model is that, for chains shorter
than about 25-monomers long, every possible conformation of
every possible sequence can be studied by exhaustive com-
puter enumeration. Thus, folding and collapse properties of
whole-sequence spaces can be studied without bias or param-
eters. Prior work shows that the HP lattice model reproduces
many of the key observations of protein sequences, folding
equilibria, and folding kinetics of proteins (88). A main con-
clusion from previous studies is that a nonnegligible fraction
of all possible HP sequences can collapse into compact, struc-
tured, and partially folded structures resembling native proteins
(60) (Fig. 2). The reason that the 2-dimensionality adequately
reflects properties of 3D proteins is because the determinative
physics is in the surface to volume ratios (because the driving
force is burial of H residues). Also, it is convenient that the
10- to 30-mers that can be studied in 2D have the same sur-
face to volume ratios as typical 3D proteins, which are 100- to
200-mers (89).

We assume that folded states behave differently from unfolded
states, as they do in modern proteins. We suppose that a folded
chain is prevented from additional growth and also, is protected
from hydrolysis. This simply reflects that open chains are much
more accessible to degradation from the solvent or adsorption
onto surfaces than are folded chains. We suppose that unique
folders are better protected than other compact chains, since oil
drop-like chains have more core exposure to the solvent. We
take folding to be reversible, as it is for natural small proteins.
Therefore, some small fraction of the time, even folded chains
are unfolded, and in that proportion, our model allows additional

50%H

63%H

69%H

il o ) B

81%H

Fig. 2. Examples of HP sequences that fold to unique native structures
in the HP lattice model. Red (or pink if in the beginning of the sequence)
corresponds to H monomers, and blue corresponds to P.
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Fig. 3. Some HP foldamers have hydrophobic patches, which serve as land-
ing pads that can catalyze the elongation of other HP chains. Chain A folds
and exposes a hydrophobic sticky spot, or landing pad, where another HP
molecule B as well as a hydrophobic monomer C can bind. This localization
reduces the barrier for adding monomer C to the hydrophobic end of the
growing chain B.

growth or degradation. For this purpose, we estimate the folding
and unfolding rate coefficients for any HP sequence as (90)

k‘f _ AG _ Enat
In (k—u) =~%T = T Nlnz, [3]

where z is the number of rotational df per peptide bond.*

The Catalysis Step in the Model. Some HP sequences will fold to
have exposed hydrophobic surfaces. These surfaces could act as
primitive catalysts, as modern proteins do more optimally today.
Fig. 3 illustrates a standard elementary mechanism of catalysts,
namely translational localization of the reacting components. A
protein A (the catalyst molecule) has a hydrophobic landing pad
to which a growing reactant chain B and a reactant hydrophobic
monomer C will bind, localizing them long enough to form a
bond that grows the chain. It is important to notice here that the
hydrophobic landing pad can facilitate only the addition of the
hydrophobic monomer to a hydrophobic end of a chain, since
polar residues will not interact with hydrophobic landing pad.
How much rate acceleration could such a localization give?
Here is a rough estimate. For chain elongation, the catalytic rate
will increase if the polymerization energy barrier is reduced by
hydrophobic localization by a factor Bcat/Bnoncat ¢ exp(En -
ne/kT), where n. is the number of H monomers in the land-
ing pad (see Fig. 6). The free energy of a typical hydrophobic
interaction is 1-2k7'. We take the minimum size of a landing pad
to be three. For a landing pad size of three to four hydrophobic
monomers, this binding and localization would reduce the kinetic
barrier by 3-8kT, thus increasing the polymerization rate by one
or more orders of magnitude. Of course, this rate enhancement
is much smaller than the 107-fold of modern ribosomes (91), but
even small rate accelerations might ultimately become ampli-

*In principle, we could also specifically exclude sequences that are too hydrophobic on
the grounds that they would aggregate and exit the system. However, in practice, those
highly hydrophobic sequences do not contribute anyway, because they do not fold
uniquely. Therefore, we do not treat that process explicitly to keep the model simple.
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fied. The challenge in experimental tests here is that the initial
signals being sought are likely to be small, be in the noise, and
involve much sequence heterogeneity. Also, we do not mean to
imply a belief that the true prebiotic mechanism was necessarily
hydrophobic contacts and localization. Rather, it is intended to
show the plausibility of getting few kT barrier reductions from
simple undesigned surfaces.

To simulate this dynamics, we run stochastic simulations. For
this purpose, we used the Expandable Partial Propensity Method
(92). It is an exact stochastic simulation algorithm that improves
on computational performance of the Gillespie method (93) for
systems in which the number of potential species is much larger
than the number of species actually present in the system. Also,
we have shown that it gives probability distributions of molecule
counts that are identical to those of the Gillespie algorithm
(92). In Gillespie-like simulations, the time between reactions
is stochastic and can be extracted from the simulations. In our
simulations, one step is the time between two reactions, equal
to 1/(rate of spontaneous monomer addition) s. In a single time
step, one catalyst molecule can support only one growing chain
plus one monomer unit. The growth rate of every single unfolded
polymer is one. Only polymers which have come into contact with
a catalyst have higher growth rate for this particular time step.
They also can grow spontaneously with a rate of one.

The description and corresponding C+ + library can be found
at https://github.com/abernatskiy/epdm.

Results and Discussion

Folding Alone Does Not Solve the Flory Length Problem, but Folding
Plus Catalysis Does. We compare three cases. Case 1 is a reference
test, in which sequences grow and undergo hydrolysis, but no
other factors contribute. Case 2 allows for chain folding but not
for catalysis, and case 3 allows for both chain folding and catal-
ysis. Case 1 simply recovers the Flory distribution, as expected,
with exponentially decaying populations with chain length (Fig.
4, gray lines). In case 2, when chains can fold, they can bury
some monomers in their folded cores. Thus, chains that are com-
pact or folded degrade more slowly than chains that do not fold.
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Fig. 4. Chains become elongated by foldamer catalyst HP sequences. Case
1 (gray): a soup of chains has a Flory-like length distribution in the absence
of folding and catalysis. Case 2 (blue): a soup of chains still has a Flory-
like length distribution in the absence of catalysis (but allowing now for
folding). Case 3 (red): a soup of chains contains considerable populations
of longer chains when the soup contains HP chains that can fold and cat-
alyze. We run 30 simulations for every case. To produce each line, we took a
time average over 10° time points in the steady-state interval, then counted
molecules for each length, and divided it by the total molecular count.
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Fig. 5.

The distributions over individual sequences are highly heterogeneous. We show the populations (molecule counts of individual sequences) for the

three cases. In case 1, we do not allow folding or catalysis. In case 2, we allow folding but not catalysis, and in case 3, both folding and catalysis are allowed.
For all of the cases, gray dots represent populations of the sequences that cannot fold, blue dots represent sequences that fold but cannot catalyze, and
red dots represent sequences which act as catalysts and for which at least one elongation reaction has been catalyzed. For cases 1 and 2, populations of the
sequences of the given length are distributed exponentially. Thus, we can take mean or median population for the given length as a faithful representation
of the behavior of average sequence of that length. Case 3 is drastically different: the populations of the sequences of the given lengths are distributed
polynomially. While most of the sequences have very low population for the longer chains, several sequences (mostly autocatalytic ones) have very high
ones and constitute most of the biomass. For case 3, neither mean nor median is a good representation of the behavior of the chains; as we can see from
the figure, all of the chains basically separate into two groups with different distributions, and this information cannot be shown in the mean or median.
Every point is a time average over 10° time points in the steady-state interval. Lower limit of 10~° is because of computational precision.

Fig. 5, case 2 shows that folded polymers have higher popula-
tions than unfolded ones. Given a strong enough evolutionary
pressure, even small advantages (as in case 2) could result in the
selection of foldable structures. This conclusion is in the agree-
ment with the work of Shakhnovich and coworkers (94), which
showed that compact structures are favored by selection under
conditions of aggregation and hydrolysis.

However, folding alone does not solve the Flory Length Prob-
lem (Figs. 4, blue lines and 5, case 2). Folding does increase the
populations of some foldamer sequences relative to others, but
the effects are too small to affect the shape of the overall dis-
tribution (Fig. 4, blue lines). It has been previously shown (94)
that sequences capable of collapsing into compact structures can
be prebiotically selected under just the forces of hydrolysis and
aggregation alone. Our work is not necessarily in disagreement.
That prior work posits a postbiotic mechanism driven by a selec-
tive force toward an optimization goal, whereas this mechanism
is prebiotic and emergent, where sequence space is searched ran-
domly with no preferential selection. A few iterations of this pre-
biotic mechanism could amplify small advantages.

Case 3 gives considerably larger populations of longer chains
than cases 1 or 2 give (red lines in Fig. 4). When chains can both
fold by themselves and also catalyze the elongation of others,
such polymerization processes will “bend” the Flory distribution.
This effect is robust over an order of magnitude of the hydrolysis
and dilution parameters. The result is that some HP chains can
fold, expose some hydrophobic surface, and reduce the kinetic
barrier for elongating other chains. These enhanced populations
of longer chains occur, although the degree of barrier reduction
is relatively small.

Case 3 is qualitatively different from cases 1 and 2. Although
cases 1 and 2 have substantial variances, they have well-defined
mean values that diminish exponentially with chain length. Case 3
has much bigger variances and a polynomial distribution of chain
lengths, and therefore, neither the mean nor median is a good
representation of the behavior of the chains (Fig. 5, case 3).

The Foldamer Catalyst Sequences Form an Autocatalytic Set. This
model makes specific predictions about what molecules consti-
tute the autocatalytic set—which HP sequences and native struc-
tures are in it and which ones are not. Fig. 6 shows a few of the
HP sequences that fold to single native structures. Fig. 64 shows
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those foldamers that are catalysts, whereas Fig. 6B shows those
foldamers that are not catalysts.

In short, all HP sequences that are foldamer catalysts are
members of the autocatalytic set: any two HP foldamer cata-
lyst sequences are autocatalytic for each other. Fig. 7 shows two
examples of autocatalytic paired chain elongations. Fig. 7, Upper
shows cross-catalysis: a polymer A elongates a polymer B, while
B is also able to elongate A. Fig. 7, Lower shows autocatalysis:
one molecule C elongates another C' molecule in solution.

The Size of the Autocatalytic Set Grows with the Size of the Sequence
Space. An important question is how the size of an autocat-
alytic set grows with the size of the sequence space. Imagine first
the situation in which the CTB transition required one or two
“special” proteins as autocatalysts. This situation is untenable,
because sequence spaces grow exponentially with chain length.
Therefore, those few particular special sequences would wash

A Catalytic foldamers B Non-catalytic foldamers

it

e
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kL

Fig. 6. (A) HP lattice chains that fold and are autocatalytic. They fold into
unique structures and have landing pads that can catalyze the elongation
of each other. (B) HP chains that fold but are not catalytic. Most chains are
not catalysts, but the size of the autocatalytic set is nonnegligible (Fig. 8).
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Cf Cu Cgr

Fig. 7. (Upper) Cross-catalysis of two different sequences. (Lower) Auto-
catalysis of two copies of an identical sequence. Dashed arrows repre-
sent multiple reactions of chain growth. Among them, there are both
-++HH + H — ---HHH catalyzed reactions and spontaneous chain elon-
gations. Catalysis is represented by red solid arrows. Solid black lines are
folding reactions. Chains, which we call “autocatalytic,” experience catalysis
during one (or more often, several) of the steps of elongation. Then, when
they reach the length at which they can fold (A, By, Cy), they fold and serve
as catalysts themselves (A, By, Cr). Mutual catalysis can happen between dif-
ferent sequences (here, A and B) and between different instances of the
same sequence (here, C).

out as biology moves into an increasingly larger sequence space
sea. In contrast, Fig. 8 shows that this mechanism resolves this
problem. On the one hand, the fraction of HP sequences that
are foldamers is always fairly small (about 2.3% of the model
sequence space), and the fraction of HP sequences that are also
catalysts is even smaller (about 0.6% of sequence space). On the
other hand, Fig. 8 shows that the populations of both foldamers
and foldamer cats grow in proportion to the size of sequence
space. The implication is that the space of autocats in the CTB
might have been large. Fig. 9 makes a closely related point. It
shows that, for longer chains, the fraction of biomass that is pro-
duced by autocatalysts completely takes over and dominates the
polymerization process relative to just the basic polymerization
dynamics itself, although the catalytic enhancements are quite
modest. This is caused by two factors: (i) the number of autocata-
lysts grows longer sequences (Fig. 8), and (i) folding alone is not
sufficient to populate longer chains. We find that the hydropho-
bicities of the dominant sequences ranges from 50 to 80%, with
an average of 68%.

Evolvability of HP Ensembles. A key challenge in models of
the CTB transition is “winner take all.” Suppose one type of
molecule is better than others by some criterion. It will tend to
win out. This is an undesirable feature of a CTB model, because
it means that no additional evolvability or selection is possible
(for example, discussions are in refs. 19 and 95). Early origins
processes are more likely to have led to ensembles that are fur-
ther evolvable. For a complex system that has many attractors, a
perturbation can move the system over a threshold to the basin
of another attractor. This allows for exploration of the sequence
space and additional evolvability.

Fig. 10 shows that this model is not winner take all. Differ-
ent initial seed conditions for the simulations lead to different
dynamical attractors, with no stable switching between them. Fig.
10B shows some of the sequences and folded states in each of
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the respective autocatalytic sets for the green vs. red distribu-
tions. Each of the two attractors has its own signature ensemble
of HP sequences that is an emergent property of the dynamics.
We expect that there will be many such dynamical attractors in
more refined models (20 monomer types rather than 2, allow-
ing for longer chains, etc.). Moreover, because this model gen-
erates many different folds, it should generate many other types
of catalytic functions other than chain elongation. These too will
lead to additional dynamic attractors. Our goal here has not been
to consider the evolution of functionalities beyond “ribosome-
like chain elongation,” but ensemble models, such as this one,
would lead to many other potential functionalities. Also, simu-
lating chains longer than N =25, it is likely to give richer and
more complex behavior, as is true of real amino acid sequences.

At this point, we note what our model is and what it is not.
First, it aims to capture a few principles in a coarse-grained way.
This model only looks at the prebiotic question of how poly-
merizing random peptide-like molecules could collapse, partially
fold, and catalyze the elongation and sequence differentiation
of other sequences. It does not address how the genetic code
evolved or how other protein functionalities evolved. Second, its
catalytic mechanism is simply a translational localization in this
case of the two reactants, polymer B and monomer C, in a chain
extension reaction. It indicates how foldamer surfaces could give
a nonnegligible (but probably small) reduction in the barrier
to polymerization. Other binding and catalysis mechanisms are
possible in foldamers; here, we simply show that this physics is
plausible. Third, the mechanism is based on the same princi-
ple that today’s enzyme catalysts exploit: folded polymers can
catalyze reactions, because the folded state is a miniature solid,
having interatomic positions relatively fixed over timescales that
are long enough for reactants to see a fixed potential sur-
face. Unfolded polymers fluctuate too rapidly and are not good
catalysts.

Fourth, the sequence evolution in this mechanism is not
toward trivial states, such as the all H sequence, because those
states do not have unique and stable folded states. The all H
sequence is like an oil droplet, with a fluctuating ensemble of
ground states that spends little time in any one and therefore,
has more exposure to hydrolysis than unique folders have. How
much more? The main point here is a qualitative one. Unfolded
chains are most susceptible to degradation (they have no core),
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Fig. 8. Different sequence spaces grow exponentially with chain length:
gray, the space of all HP sequences; blue, the space of foldamers; red, the
space of foldamer catalysts.
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compact structures are less susceptible (they have cores but fluc-
tuating ones), and unique folds are even less susceptible still
(their cores are relatively stable). What is most important is not
where the boundary is drawn but that there is some distinction
among those three states. All H sequences would also tend to
aggregate, and therefore, discriminating between oil drops and
unique folds also gives a simple way to avoid confounding effects
of aggregation. (Although aggregation is interesting in its own
right as a possible mechanism of CTB, it is not the focus of this
work.)

Why should we believe a simple lattice model, particularly a
2D one? The 2D HP lattice model is among the most canoni-
cal models for studying sequence spaces of foldamers. The rea-
son for the reliance on this model is that, because it is stud-
ied by computational exhaustive enumeration, it is unbiased by
any preconceptions about the nature of sequence space or arbi-
trary choices of energy parameters. This approach is the only
unbiased, complete, and practical way to explore plausibilities
of physical hypotheses, such as this one. Also, previous studies
have shown that this model captures many important principles
of folding and sequence-to-structure relationships. The principal
value of such modeling is that it generates hypotheses that can
be tested.

We note that this model is not necessarily exclusive to proteins.
Nucleic acid molecules are also able to fold in water, indicating
differential solvation. Although our model focuses on hydropho-
bic interactions, it is simply intended as a concrete model of
solvation that could more broadly include hydrogen bonding or
other interactions. Therefore, although our analysis here is only
applicable to foldamers, that does not mean that it is limited
to proteins. The unique power that foldable molecules have for
catalyzing reactions—in contrast to other nonfoldable polymeric
structures—is that foldamers lead to precisely fixing atomic inter-
relationships in relatively stable ways over the folding time of the
molecule. It resembles a microscale solid, with the capability that
substrates and transition states can recognize, bind, and react to
those stable surfaces. For example, serine proteases use a cat-
alytic triad of three amino acids. Therefore, foldability in some
type of prebiotic polymer could conceivably have had a special
role in allowing for primitive catalysis. Here, we use a toy model
to capture that simple idea, namely that a folded polymer can

0.75¢
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Fig. 9. The longer the chains, the bigger the contribution of the autocat-
alysts. Each red line shows how the contribution of autocatalytic chains to
the biomass of the given length grows with chain length. Different red lines
correspond to different simulation runs. The black line shows the median
over 30 simulations.
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Fig. 10. Sequences can evolve to different autocatalytic sets. (A) HP cat-
alytic system has at least two attractors. The lines are length distributions
from case 3. Again, each line represents distribution of length in the steady
state for one simulation run. It is clear that there are two kinds of distribu-
tion which get realized during the simulations. The system bifurcates either
to a state represented by a green line or to one represented by a red one.
These are the same lines as in Fig. 5A but separated in two sets by the clus-
tering algorithm k-means. (B) Structure of the sequences which most often
are main contributors into the total population of the polymers of their
length. Upper corresponds to the macrostate shown in red in A, and Lower
corresponds to the one shown in green.
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position a small number of residues in a way that can catalyze a
reaction.

Finally, we comment on the spirit of this model. In much
of biological modeling, experiments come first, providing the
premises for a model that can supply the rest of the chain of
logic from premises to conclusions. However, this type of model
serves a different goal, more in the spirit of other models in
physics. In this predictions first approach, theory precedes and
motivates subsequent experiments that can prove or disprove
it. In predictions first modeling, the experimental premises are
more an outcome than an input. Predictions first modeling is
especially crucial for murky problems of science, such as in the
origins of life, where even the basic premises are not all yet in
plain sight. Our hope here is that this modeling can guide new
experiments.

Conclusions

It has been recognized that life’s origins require some form of
autocatalysis (5, 6, 8). However, what molecular structural mech-
anism might explain it? Here, we find that autocatalysis is inher-
ent in the following process (Fig. 7). HP polymers are synthe-
sized randomly. A small fraction of those HP polymers folds into
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relatively stable compact states. A fraction of those folded struc-
tures provides relatively stable landing pad hydrophobic surfaces.
Those surfaces can help to catalyze the elongation of other HP
molecules having foldable sequences.

The HP model allows for unbiased counting of sequences that
do fold, do not fold, or fold and have a potentially catalytic
hydrophobic landing pad. A nonnegligible fraction of all possible
HP sequences folds to unique structures (2.3% for lengths up to
25-mers). The fraction of all possible HP sequences that have cat-
alytic surfaces (as defined above) is 12.7% of foldable sequences
or 0.3% of the whole-sequence space. These ratios remain rela-
tively constant with chain length, at least up to 25-mers (Fig. 8).
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