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Translating the genetic and epigenetic heterogeneity underlying
human cancers into therapeutic strategies is an ongoing challenge.
Large-scale sequencing efforts have uncovered a spectrum of
mutations in many hematologic malignancies, including acute
myeloid leukemia (AML), suggesting that combinations of agents
will be required to treat these diseases effectively. Combinatorial
approaches will also be critical for combating the emergence of
genetically heterogeneous subclones, rescue signals in the micro-
environment, and tumor-intrinsic feedback pathways that all
contribute to disease relapse. To identify novel and effective drug
combinations, we performed ex vivo sensitivity profiling of 122 pri-
mary patient samples from a variety of hematologic malignancies
against a panel of 48 drug combinations. The combinations were
designed as drug pairs that target nonoverlapping biological
pathways and comprise drugs from different classes, preferably
with Food and Drug Administration approval. A combination ratio
(CR) was derived for each drug pair, and CRs were evaluated with
respect to diagnostic categories as well as against genetic, cytoge-
netic, and cellular phenotypes of specimens from the two largest
disease categories: AML and chronic lymphocytic leukemia (CLL).
Nearly all tested combinations involving a BCL2 inhibitor showed
additional benefit in patients with myeloid malignancies, whereas
select combinations involving PI3K, CSF1R, or bromodomain inhib-
itors showed preferential benefit in lymphoid malignancies. Ex-
panded analyses of patients with AML and CLL revealed specific
patterns of ex vivo drug combination efficacy that were associated
with select genetic, cytogenetic, and phenotypic disease subsets,
warranting further evaluation. These findings highlight the heuristic
value of an integrated functional genomic approach to the identi-
fication of novel treatment strategies for hematologic malignancies.
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The promise of precision medicine is the ability to align
medical interventions with individual patients at the time of

diagnosis and to alter treatment regimens as new mutations arise
and responses diminish. Although technical developments in next-
generation sequencing and computational biology have accelerated
progress in precision medicine, fundamental challenges remain.
Whole-genome and whole-exome sequencing technologies can
identify many target mutations, but these techniques are analyti-
cally intensive and may not reliably detect translocations, zygosity
changes, and low-allele burden mutations with clinical significance.
A further hindrance to the clinical utility of mutation status is a lack
of drug therapies that selectively target cancer-associated mutations,
with effective Food and Drug Administration (FDA)-approved

drugs existing for only a subset of the genes currently known to
underlie tumorigenesis (1). These limitations invite a complementary
strategy that assesses drug sensitivities obtained with targeted agents
designed to inhibit discrete cellular processes as a means of identi-
fying phenotypic indications for specific cancers (2). Associating
phenotypic responses with particular genetic alterations may then
beget precision-based therapies.
For blood cancers, the success with targeted therapies de-

veloped to inhibit BCR-ABL fusions that drive chronic myelog-
enous leukemia has spurred efforts to identify similar therapies
for other hematopoietic malignancy types. Acute myeloid leu-
kemia (AML), which results from the enhanced proliferation and
impaired differentiation of hematopoietic stem and progenitor
cells, has substantial underlying heterogeneity, a feature that
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ples with various hematologic malignancies were evaluated for
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signaling pathways. The diagnostic, genetic/cytogenetic, and
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effective drug combinations. For myeloid-derived tumors, such
as acute myeloid leukemia, several combinations of targeted
agents that include a kinase inhibitor and venetoclax, a selective
inhibitor of BCL2, are effective.

Author contributions: S.E.K., C.A.E., R.P., W.J.B., H.P., E.T., C.E.T., B.J.D., and J.W.T. de-
signed research; S.E.K., C.A.E., A.K., S.L.S., A.R., I.E., and H.H. performed research; V.K.,
S.L.S., A.R., I.E., H.H., M.W.D., R.C., R.T.S., J.W., D.A.P., B.C.M., E.T., and B.J.D. contributed
new reagents/analytic tools; S.E.K., C.A.E., A.K., M.M., B.J.D., and J.W.T. analyzed data;
and S.E.K., C.A.E., A.K., D.A.P., B.C.M., C.E.T., M.M., and J.W.T. wrote the paper.

Reviewers: K.F., Dana-Farber/Harvard Cancer Center; and A.Y.L., University of Hong Kong.

Conflict of interest statement: D.A.P. serves on the advisory boards for Pharmacyclics and
Gilead. J.W.T. receives research support from Agios, Array Biopharma, Aptose, AstraZeneca,
Constellation, Genentech, Gilead, Incyte, Janssen R&D, Seattle Genetics, Syros, and Takeda
and is a consultant for Leap Oncology. B.J.D. serves on the advisory boards for Gilead and
Roche TCRC. B.J.D. is principal investigator or coinvestigator on Novartis and BMS clinical
trials. His institution, Oregon Health & Science University, has contracts with these companies
to pay for patient costs, nurse and data manager salaries, and institutional overhead. He
does not derive salary, nor does his laboratory receive funds from these contracts. M.W.D.
serves on the advisory boards and/or as a consultant for Novartis, Incyte, and BMS and
receives research funding from BMS and Gilead. The authors certify that all compounds
and combinations tested in this study were chosen without input from any of our
industry partners.

Freely available online through the PNAS open access option.
1Towhom correspondence may be addressed. Email: drukerb@ohsu.edu or tynerj@ohsu.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1703094114/-/DCSupplemental.

E7554–E7563 | PNAS | Published online August 7, 2017 www.pnas.org/cgi/doi/10.1073/pnas.1703094114

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1703094114&domain=pdf
mailto:drukerb@ohsu.edu
mailto:tynerj@ohsu.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1703094114/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1703094114/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1703094114


indicates the need for multiple targeted therapies or the use of
combinations.
AML diagnosis relies on cytogenetic analysis, as recurrent

chromosomal variations represent established prognostic markers,
even though nearly half of patients with AML have a normal
karyotype.
DNA sequencing of 200 patients with AML uncovered an

average of 13 somatic mutations in each genome, of which
5 mutations were recurrent (3). Common mutations in AML that
are also driver mutations represent potential therapeutic targets.
Recurrent mutations in transcription factors and epigenetic
regulators identified in AML suggest that aberrant transcrip-
tional circuits are a common feature underlying leukemogenesis
(3, 4). These circuits may drive oncogenic gene expression pro-
grams to alter differentiation, activate self-renewal, and generate
leukemia stem cells responsible for the initiation and propaga-
tion of disease (5–7). Of the many genes commonly mutated in
AML, targeted therapies in clinical trials or clinical use have
been developed for only five: PML-RARA, FLT3, KIT, IDH1,
and IDH2.
The standard treatment for AML is chemotherapy consisting

of cytarabine and anthracyclines, which is more effective in
adults younger than 60 y of age; however, the overall survival
rate 5 y after diagnosis is 25% (8). The outcome in older pa-
tients, who represent the majority of patients with this disease
and are unable to receive intensive chemotherapy, is poor, with a
median survival of 5–10 mo (9). It is also noteworthy that a
significant proportion of older patients with AML do not receive
any antileukemic therapy (10). A key exception is the subset of
patients with AML with acute promyelocytic leukemia, for which
the use of all-trans retinoic acid therapy results in excellent and
durable responses, suggesting the potential value of targeted
therapies for other AML subgroups (11, 12). Recent advance-
ments in understanding of the molecular pathogenesis of AML
have resulted in a growing number of molecularly targeted drug
candidates. However, several factors hinder the development of
effective single-agent targeted treatments, including the intra-
tumoral heterogeneity of hematologic malignancies, the emer-
gence of genetically heterogeneous subclones leading to relapse,
and rescue signals from the tumor microenvironment. Attempts
to develop small-molecule inhibitors of the tyrosine kinase FLT3,
in which activating mutations are detected in approximately 30%
of adult AML cases (13, 14), illuminate the difficulty for effective
single-agent targeted therapies. The short duration of response to
FLT3 inhibitors is largely attributable to the rapid selection for
and expansion of drug-resistant subclones (15–17). Targeted drugs
may yet improve treatment outcomes. However, it may be difficult
for these compounds, if used as single agents, to produce durable
remissions necessary for long-term disease management or
“bridging” the patient to successful bone marrow transplantation
therapy, the only current potential for cure. Combinations that
modulate distinct pathways may provide an opportunity for im-
proved responses (18). For example, the combination of an
MEK inhibitor (trametinib) with an RAF inhibitor (dabrafenib)
is now an approved therapy for BRAF mutation-positive meta-
static melanoma (19). A similarly attractive alternative strategy
for AML, supported by emerging data, is the use of molecularly
guided drug combinations, such as quizartinib and azacitidine,
which inhibit FLT3 and DNA methyltransferase activities, re-
spectively (20).
In the absence of a comprehensive portfolio of therapeutic

drugs targeting specific mutations, we used ex vivo functional
screening to identify drug sensitivities in primary samples from
patients with various hematologic malignancies. Based on data
accumulated from this assay to date, many instances of ex vivo
sensitivity to small-molecule kinase inhibitors have been vali-
dated against known genetic targets (e.g., BCR-ABL, FLT3-ITD,
RAS), and many novel drug/mutation associations have been

discovered (21–24). These data suggest that a similar screening
platform may identify combinations of targeted agents that are
more effective than either of their respective single agents, thus
defining and enabling a rational program for selecting clinically
relevant combinatorial therapies. Thus, to identify new therapeutic
combinations for AML and other hematologic malignancies, we
assessed the sensitivity of primary patient samples to various drug
combinations by using this ex vivo functional platform.

Results
Freshly isolated primary mononuclear cells from patients with
various hematologic malignancies (N = 122) were cultured in the
presence of a panel of 48 drug combinations, each in a fixed
molar dose series. The drug combinations were designed as pairs
of inhibitors that target nonoverlapping biological pathways,
comprising different classes of compounds, including kinase in-
hibitors, bromodomain inhibitors, BH3 mimetics, and histone
deacetylase (HDAC) inhibitors. To maximize the translational
impact of any findings, combinations used FDA-approved drugs
if possible. For comparison, cells were also tested against graded
concentrations of each inhibitor alone, and sensitivity was
assessed by a methanethiosulfonate (MTS)-based viability assay
after 3 d. The efficacy of each combination relative to its re-
spective single agents was quantified with combination ratio
(CR) values, defined as the IC50 or area under the fitted dose–
response curve for the combination divided by the lowest IC50 or
area under the curve (AUC) value for either single agent. By this
metric, a CR value of less than 1 indicates the drug combination
is more effective than either single agent. We derived these CR
values because of known limitations of applying conventional
synergy calculations when one or more of the single agents is
completely ineffective on particular samples (25).
Patients were classified according to four general diagnostic

groups: AML, chronic lymphocytic leukemia (CLL), acute lym-
phoblastic leukemia (ALL), and myeloproliferative neoplasms
(MPNs) or myelodysplastic syndromes (MPNs; Table 1 and
Dataset S1). Unsupervised hierarchical clustering of CR values
for each drug combination revealed several distinct patterns of
efficacy (Fig. 1A). Myeloid leukemia patient samples were
enriched within a cluster of sensitivity to combinations pairing
the BCL2 inhibitor venetoclax with select kinase inhibitors
[dasatinib (multikinase), doramapimod (p38), sorafenib (multi-
kinase), or idelalisib (PI3KCD)]. This clustering pattern segre-
gated the majority of myeloid vs. lymphoid samples. Within each
of these larger myeloid and lymphoid clusters, subsets of samples
showed sensitivity to combinations involving the MEK inhibitor
trametinib and a second kinase inhibitor [idelalisib, palbociclib
(CDK4/6), or quizartinib (FLT3/CSF1R)]. In addition, a small
cluster of patients with leukemia showed sensitivity to combi-
nations of the HDAC inhibitor panobinostat in tandem with the
JAK inhibitor ruxolitinib and/or the multikinase inhibitor sor-
afenib. To confirm that these clusters result from the effective-
ness of the combination rather than that of a single agent, IC50
values for each single agent were mapped according to the
combination cluster pattern. Importantly, apart from venetoclax,
which, as a single agent, demonstrated potent and selective ef-
ficacy in lymphoid (predominantly CLL) patient samples, single-
agent efficacies did not align uniquely to a combination efficacy-
derived myeloid or lymphoid cluster (Fig. S1). This pattern of
venetoclax sensitivity is consistent with its recent approval for
treatment of patients with CLL with 17p deletions (26).
To enable comparisons among different measures of combi-

nation efficacy, AUC values were also calculated for each sam-
ple/drug pair, and IC50 and AUC values are highly correlated
(Spearman ρ = 0.806; Fig. 1B). Clustering of AUC CR values
yielded similar sensitivity clusters as those seen with IC50 CR
results (Fig. S2). In addition, there was a broad distribution in
the frequency and type of samples demonstrating combination
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efficacy. For instance, the palbociclib/ruxolitinib, alisertib/crizo-
tinib, vandetanib/vemurafenib, and palbociclib/quizartinib com-
binations were effective, according to both CR measures, in
more than 100 of 122 patient samples surveyed, encompassing all
four diagnosis categories. Furthermore, the HDAC inhibitor
panobinostat as a single agent showed potency across most of the
patient samples tested (Fig. S3). To relate these findings with
other definitions of synergy, IC50 and AUC CR effect measures
for a subset of combinations and samples were compared with
excess over Bliss (EOB) determinations (27). A high level of
agreement was observed between the two methods (Spearman r
values for IC50 CR or AUC CR vs. EOB, 0.953 and 0.928, re-
spectively; P < 0.0001).
To identify drug combinations that were more frequently ef-

fective within specific diagnostic categories, the median CR
values for IC50 and AUC for each combination within each of the
four diagnostic subgroups were compared with a CR reference
value of 1 (Datasets S2 and S3). Combinations in which median
IC50 CR and AUC CR were significantly <1 within a specific
diagnostic subgroup were mapped to regions of a four-way Venn
diagram depending on subgroup efficacy observed (Fig. 1D).
Consistent with findings from clustering of CR values, several
combinations exhibited median CR values significantly less than
1 selectively among patient samples with myeloid malignancies,
including combinations of venetoclax and the CSF1R inhibitor
ARRY-382, p38 MAPK inhibitor doramapimod, or bromodo-
main inhibitor JQ1 (Fig. 1E). In contrast, six combinations were
selectively effective in CLL patient samples only, including qui-
zartinib/ibrutinib and JQ1/sorafenib (Fig. 1E). Representative
single-agent and combination dose–response curves for these
combinations are provided in Fig. S3. Several combinations were
significantly effective beyond either single agent in myeloid and
lymphoid samples, with the most common broad efficacy at-
tributable to the palbociclib/ruxolitinib combination. Although
no unique effective combinations were identified for ALL pa-
tient samples, this was likely attributable to its smaller cohort size
(n = 12) among the diagnostic categories surveyed. For a more
complete evaluation of combination benefit, median IC50 and
AUC values for each single agent were also compared across
diagnosis subgroups (Dataset S4). In particular, venetoclax sen-
sitivity was significantly different among disease types, with the
lowest median IC50 and AUC values observed for CLL samples
(median IC50, 51.4 nM vs. 2,105 nM for AML samples). Con-
trastingly, sensitivities to JQ1, quizartinib, sorafenib, and cabo-
zantinib were also different across subgroups, with selective
potency for AML samples by both CR effect measures. Notably,
none of the single agents except venetoclax and quizartinib dem-

onstrated significant selectivity for the same diagnosis subgroup
alone and in combination. Furthermore, CR values across the
patient cohort were not significantly associated with the general
patient characteristics of sex, age (either as a categorical or
continuous variable), or type of specimen analyzed (Dataset
S4). Viewed comprehensively, these findings suggest patterns
of disease-selective enhanced efficacy of targeted therapy
combinations that highlight potential opportunities for the
treatment of heterogeneous diagnostic subtypes of myeloid and
lymphoid malignancies.
For the two largest diagnostic groups, AML and CLL, ex-

panded panels of clinical, prognostic, mutational, cytogenetic,
and surface-antigen data were compiled for comparisons to CR
values for each drug combination. For AML samples (n = 58),
beyond general clinical characteristics such as age, sex, and white
blood cell (WBC) count, additional annotations examined in-
cluded mutational profiles from a focused panel of genes com-
monly mutated in AML, cytogenetic features from standard
chromosome analysis, and cell-surface antigen expression
according to flow cytometry (Fig. 2 and Datasets S5 and S6).
Notably, the most prevalent mutation in this cohort was NPM1
(33%), and approximately 50% of the cohort featured normal
karyotype. Patients harboring mutations in NPM1 demonstrated
significantly enhanced sensitivity to the JQ1/sorafenib combina-
tion [median IC50 CR, 0.437; false discovery rate (FDR)-
adjusted P = 0.010]. Patients harboring mutations in DNMT3A
exhibited significantly enhanced sensitivity to the JQ1/palbociclib
combination (median IC50 CR, 0.119; FDR-adjusted P = 0.017;
Fig. 3, Left). Patients with normal cytogenetics were significantly
sensitive to combinations of ruxolitinib/cabozantinib and JQ1/
sorafenib, whereas those harboring complex karyotypes were
significantly sensitive to the combination of idelalisib/quizartinib
(Fig. 3, Middle). Surface expression of several specific myeloid
markers was also associated with significant sensitivity to com-
binations involving venetoclax, including CD11b (integrin αM) to
venetoclax/JQ1 (median IC50 CR, 0.121; FDR-adjusted P =
0.001) and CD58 (LFA-3) venetoclax/doramapimod (median
IC50 CR, 0.040; FDR-adjusted P = 0.003; Fig. 3, Right).
CLL samples were characterized for the mutational status of

IgVH and TP53. Cytogenetic features for chromosomal deletions
and trisomy, as well as prognostic cell surface antigens such as
CD38 and ZAP70, were determined by standard chromosome
analysis and flow cytometry, respectively (Fig. 4 and Datasets S7
and S8). Among the tested combinations, the most significant
associations with respect to disease characteristics were observed
in patients harboring deletion of 13q, who showed significant
sensitivity to combinations of palbociclib with venetoclax (median

Table 1. Summary of select patient characteristics for surveyed sample cohort

Characteristic All patients (n = 122) ALL (n = 12) AML (n = 58) CLL (n = 42) MPN or MDS/MPN (n = 10)

Sex (n evaluable) n = 116 n = 12 n = 56 n = 42 n = 6
Female 59 8 30 20 1
Male 57 4 26 22 5

Age, y (n evaluable) n = 106 n = 9 n = 54 n = 37 n = 6
Median 62.1 29.7 53.7 65.9 60.7
Range 5.5–83.8 5.5–70.2 8.2–83.8 44.7–79.4 35.2–74.9

Sample type (n evaluable) n = 122 n = 12 n = 58 n = 42 n = 10
Peripheral blood 86 7 31 41 7
Bone marrow aspirate 34 5 25 1 3
Leukapheresis 2 0 2 0 0

WBC count (n evaluable) n = 115 n = 9 n = 55 n = 42 n = 9
Median, ×1,000/μL 42.9 60.0 34.6 45.8 92.7
Range, ×1,000/μL 0.5–309 10.3–169 0.5–240 5.8–309 26.3–240

In total, primary samples from 122 patients with a variety of hematologic malignancies were screened for ex vivo sensitivity to
inhibitor combinations.
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Fig. 1. Differential patterns of selective efficacy of small-molecule combinations relative to single agents. (A) Unsupervised hierarchical clustering of IC50 CR
values for 122 patients with leukemia across 48 tested combinations. IC50 CR values were log-transformed and row- and column-clustered using Pearson
correlation pairwise average linkage method. Darker red color (lower CR values) indicates drug combinations exhibiting higher efficacy than either single
agent alone. Diagnostic category annotation of each sample is also shown. (B) Correlation of IC50 CR and AUC CR effect measure values. Shaded region
indicates sample/drug pairs for which the combination was more effective than either single agent (CR < 1) by both effect measures. (C) Distribution of
effective drug combinations based on frequency and diagnostic category. Bar labeled “all samples” indicates diagnosis group breakdown for all 122 surveyed
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IC50 CR, 0.040; FDR-adjusted P = 0.003) or trametinib (median
IC50 CR, 0.116; P = 0.006; Fig. 5).
Although strict association of a particular combination with a

patient feature may require a more complete understanding of
the inter- and intrasubgroup heterogeneity and expanded sample
size, we found statistically significant associations for select
prevalent biomarkers (Table 2). Furthermore, in the broader
context of the two largest diagnosis categories (AML and CLL),
certain inhibitor combinations demonstrated disease-specific
selective efficacy irrespective of genetic and clinical features.
For example, several combinations of venetoclax with a kinase
inhibitor have enhanced efficacy in AML (e.g., venetoclax/dor-
amapimod), whereas combinations of JQ1 with multiple kinase
inhibitors exhibit an enhanced efficacy preference for CLL (JQ1/
sorafenib; Fig. 6). Importantly, these results, obtained by directly
comparing the median CR values of the two largest disease
subsets, are consistent with our earlier findings from un-
supervised clustering. Thus, this approach uncovers multiple
potential opportunities for application of combination therapies
in distinct diagnostic, genetic/cytogenetic, and phenotypic sub-
sets of patients with AML and CLL.
To address the reproducibility of these results, we compiled an

independent validation dataset (N = 151) of a similar distribu-
tion of prospectively collected primary leukemia patient samples.
There is a high level of correlation for the median IC50 and AUC
CRs between the discovery and validation datasets for all com-
binations and samples tested (Spearman r = 0.975 and 0.949,
respectively; P < 0.0001; Fig. 6B). Given the particularly notable
efficacy of combinations involving venetoclax in AML patient
specimens from our discovery cohort, a subset of the most ef-
fective of these combinations was compared with those of the
validation-set AML samples, revealing similar sensitivity distri-

butions in both groups (Fig. 6C). Additionally, expanded synergy
analysis of this same subset of combinations was performed for
each drug alone over a seven-point dose series and all 49 possible
combinations of the two agents on a panel of human leukemia
cell lines (MOLM-13, MOLM-14, HL-60, OCI-AML2, OCI-
AML3). Overall, cell-line IC50 and AUC CR measures (de-
termined by equimolar series) correlated well with the Bliss
synergy score across the full matrix of combinations (Spearman
r = 0.649 and 0.787, respectively; P < 0.0001).

Discussion
As the vast molecular heterogeneity of cancer continues to be
unraveled, the necessity of defining actionable targeted thera-
peutic strategies for patients remains paramount to improvement
in outcomes. Given difficulties involving the often nondurable
responses and rapid development of resistance observed with
many single-agent targeted therapies, we sought to identify ef-
fective combination strategies for patients with hematologic
malignancies. Before this study, we screened more than 1,000 pri-
mary patient specimens against a panel of single-agent small-
molecule inhibitors. Using these historical drug sensitivity data, we
ranked drugs by their IC50 and used these rankings to assemble an
initial panel of drug combinations consisting primarily of kinase
inhibitors that targeted nonoverlapping pathways. Primary patient
samples with various hematologic malignancies were screened, and,
based on data from this initial panel, we generated a second iter-
ation including new combinations of kinase inhibitors as well as
combinations of inhibitors from select additional drug classes.
However, for both panels, broad cytotoxicity was problematic for
many combinations, and unsupervised hierarchical clustering of
CR values revealed no distinct clusters tracking with diagnosis
category. This preliminary work informed the design of the panel of
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Fig. 2. Clinical and genetic features of patients with AML surveyed. Panels of the indicated disease-specific clinical, prognostic, mutation, cytogenetic, and
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combinations used herein, which added several additional classes of
inhibitors as well as an intentional inclusion of FDA-approved drugs
or drugs in clinical development wherever possible. To this end,
defining drug combinations for ex vivo screening is a highly iterative
process of refinement. Although logistical considerations preclude
comprehensive evaluation of all possible pairwise combinations of
inhibitors, these cumulative data may also prove amenable to ap-
plied machine learning-based computational models to predict
novel drug target pairings in specific malignancies (28, 29), and may

be adaptable as a testing scheme for other tumor types given recent
developments to isolate circulating tumor cells (30, 31).
A critical finding in this study is the effectiveness of several

combinations of targeted agents that include a kinase inhibitor
and venetoclax, a selective inhibitor of BCL2, for myeloid-
derived tumors (Fig. 6). The relative sensitivity to these combi-
nations in the ex vivo assay supports the notion that coupling a
kinase-derived proliferative signal inhibitor with an antiapoptotic
agent improves efficacy. Furthermore, we confirmed the capacity
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of select venetoclax combinations to augment apoptotic cell
death in a panel of human AML cell lines (Fig. S4). Combina-
tions such as dasatinib, doramapimod, sorafenib, or idelalisib
with venetoclax are broadly effective on myeloid-derived tumor
samples and may be useful for treatment of AML in particular.
These combinations appear to be effective across a broad per-
centage of AML patient samples, irrespective of cohort subtype
heterogeneity. Consistent with these observations, recent reports
indicate the combined inhibition of BCR-ABL1 and BCL2 is a
promising strategy for targeting Philadelphia chromosome-
positive ALL as well as the stem cell population in chronic my-
eloid leukemia (32, 33). We also observed certain combinations
with venetoclax to be effective on CLL samples with 13q dele-
tions. Although venetoclax has recently achieved FDA approval
for patients with CLL with 17p deletions, our data suggest that
venetoclax, even as a single agent, may be more broadly effective
in patients with CLL with diverse cytogenetic profiles, and

combinations may offer options particularly for disease states in
which venetoclax as a single agent is not effective. It is note-
worthy that venetoclax is effective for a variety of hematologic
malignancy subsets, including CLL, multiple myeloma, and AML
(34–37). Additionally, we note that genetic features that are
considerably less frequent in AML or CLL will require expanded
sample sizes to more robustly interrogate possible associations
with inhibitor combination efficacy. Similarly, small sample sizes
of other diagnosis groups (ALL, MPN, or MDS/MPN) are a
limitation of the present study. We may potentially miss impor-
tant drug combinations because of small sample sizes and lower
power, and, as such, these diagnostic groups will require larger
sample sizes to permit the identification of relationships between
combination efficacy and disease-specific features.
Developments in functional screening technology have pro-

duced several assay platforms for the evaluation of responses of
tumor cells to exogenous perturbations. Functional screening

Table 2. Selective inhibitor combination sensitivities by feature among AML and CLL patient samples surveyed

Feature type Diagnosis category Combination

IC50 AUC

Median CR P value* Median CR P value*

Mutation
DNMT3A AML JQ1/palbociclib 0.1187 0.0171 0.5693 0.0189
NPM1 AML JQ1/palbociclib 0.1138 0.0045 0.6830 0.0120
NPM1 AML JQ1/sorafenib 0.4375 0.0108 0.6952 0.0091

Cytogenetics
Complex karyotype AML Idelalisib/quizartinib 0.1753 0.0227 0.6872 0.0078
Normal karyotype AML Ruxolitinib/cabozantinib 0.3289 0.0126 0.8040 0.0015
Normal karyotype AML JQ1/sorafenib 0.4375 0.0378 0.8495 0.0197
del(13q) CLL Trametinib/palbociclib 0.1161 0.0057 0.4121 <0.0001
del(13q) CLL Venetoclax/palbociclib 0.2673 0.0013 0.5269 <0.0001

Surface antigen
CD11b AML Venetoclax/doramapimod 0.0441 0.0136 0.4503 0.0185
CD11b AML Venetoclax/JQ1 0.1205 0.0014 0.2539 0.0070
CD14 AML Venetoclax/JQ1 0.1004 0.0201 0.2539 0.0061
CD15 AML Venetoclax/idelalisib 0.0308 0.0189 0.6769 0.0309
CD58 AML Venetoclax / ARRY-382 0.0381 0.0012 0.2796 0.0006
CD58 AML Venetoclax/dasatinib 0.0229 0.0007 0.2594 0.0021
CD58 AML Venetoclax/doramapimod 0.0402 0.0031 0.4396 0.0035
CD58 AML Venetoclax/ruxolitinib 0.0027 0.0036 0.3359 0.0053

*P values are FDR-adjusted.
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efforts in hematologic malignancies have often involved the culture
of patient cells in conventional 2D tissue culture platforms, some-
times with conventional culture conditions (38–40) and other times
using additives or feeder cell coculture that promote certain phe-
notypic aspects of the cells, such as preservation of primitive cell
differentiation state (41) and cell proliferation (42). A key feature of
our ex vivo assay is that it provides drug sensitivity data within 4 d, a
time frame that can support and influence clinical decision-making.
Furthermore, this approach addresses some of the challenges in
deploying effective therapies in which there is a substantial gap be-
tween clinical, diagnostic, or genetic markers and available drugs.
Ideally, the integration of functional and genomic data types may
facilitate more precise insight into the molecular mechanisms con-
tributing to disease. For example, our data suggest that combined
targeting of the BTK inhibitor ibrutinib and the multikinase inhibitor
quizartinib may represent a promising strategy for patients with CLL.
The efficacy of ibrutinib is well established for CLL (reviewed in

ref. 43). Although quizartinib is primarily considered to be a
FLT3 inhibitor, it is also a potent inhibitor of CSF1R, a target
recently implicated for CLL treatment because of its effects on
supportive nurse-like monocyte/macrophage cells that express
CSF1R (44–46), highlighting the importance of teasing out
tumor-intrinsic mechanisms from tumor-extrinsic microenviron-
ment contributions to sensitivity/resistance. Accordingly, simulta-
neous inhibition of BTK- and CSF1R-mediated signaling pathways
may result in further improvement of responses (Fig. 6).
Although we have identified several links between actionable

diagnostic and genetic features and effective combinations of
targeted agents, we also acknowledge certain limitations to our
analyses. For example, the inhibitor screening method requires
the use of prospectively collected, freshly isolated patient sam-
ples as a consequence of a clinical visit. Variability in the number
of mononuclear cells recovered from a specimen limits the scope
and number of inhibitors that may be tested. Furthermore, the
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challenge of overcoming noise in the drug sensitivity data caused
by variations in biological response and technique limit the utility
of applying conventional methods of determining synergy (25).
Additionally, as a result of the prospective nature of sample
collection, there are differences in sample size and frequency of
genetic parameters surveyed within a given diagnostic group. To
address these issues, we used an integrated and robust approach,
including the development of a CR to measure relative efficacy
of inhibitor combinations, requiring that both effect measures
(IC50 and AUC) achieve significance, performing rank-based
tests of the median within and between relevant subgroups,
and applying multiplicity adjustments to the P values from these
tests. We also note that developments in new oncology drugs
within various drug classes will present opportunities to increase
target/pathway representation in combination screening. Finally,
our assay makes use of aggregate readings of whole mononuclear
cell population responses to drug combinations and single
agents, whereby a readout that offers granularity of responses at
the single-cell level would provide additional data for parsing of
drug combination efficacy. Recent approaches that make use of
single-cell imaging or flow cytometry (47–51), or CRISPR/
Cas9 gene silencing (52), will be useful in enhancing our initial
view of combination efficacy and in identifying new targets.
In summary, our data identify promising drug combinations

that were previously unrecognized but may promote the testing
of a select number of these drug combinations in clinical trials.
Validation of these combinations will require testing in clinical
trials, which may be suitable initially for patients with AML with
the relapsed/refractory disease. Accordingly, we formed combi-
nations with FDA-approved drugs to facilitate their translational
effect. With respect to the BCL2 inhibitor venetoclax, there is
now compelling clinical evidence supporting its evaluation in
combination with other agents for AML (53). Independent of
the findings reported here, three clinical trials currently in the
recruitment phase will provide opportunities to evaluate targeted
combinations of the BCL2 inhibitor (venetoclax) with an MEK
inhibitor (cobimetinib; ClinicalTrials.gov ID code NCT02670044),
an MDM2 inhibitor (idasanutlin; ClinicalTrials.gov ID code
NCT02670044), or a BET inhibitor (ABBV-075; ClinicalTrials.
gov ID code NCT02391480) on patients with relapsed/refractory
AML who are not eligible for induction therapy. Collectively,
these findings may yield new therapeutic options for patients while
advancing the use of ex vivo functional testing as a valid assay in
the clinical decision-making process.

Materials and Methods
Patient Samples. All patients gave consent to participate in this study, which
had the approval and guidance of the institutional review boards at Oregon
Health & Science University (OHSU), University of Utah, University of Texas
Medical Center (UT Southwestern), Stanford University, University of Miami,
and University of Colorado. Mononuclear cells were isolated by Ficoll-
gradient centrifugation from freshly obtained bone marrow aspirates or
peripheral blood draws and plated into assays within 24 h. All samples were
analyzed for clinical characteristics and drug sensitivity. AML and CLL patient
samples were additionally analyzed with respect to expanded, disease-
specific panels of clinical, prognostic, genetic, cytogenetic, and surface an-
tigen characteristics obtained from patient electronic medical records. Genetic
characterization of AML samples included results of a clinical deep-sequencing
panel of genes commonly mutated in hematologic malignancies (GeneTrails
panel from Knight Diagnostic Laboratories, OHSU; Foundation Medicine re-
ports from UT Southwestern).

Ex Vivo Functional Screen. Small-molecule inhibitors, purchased from LC
Laboratories and Selleck Chemicals, were reconstituted in DMSO and stored
at −80 °C. The CSF1R inhibitor ARRY-382 was obtained from Array Bio-
pharma. Inhibitors were distributed into 384-well plates prepared with a
single agent per well in a seven-point concentration series ranging from
10 μM to 0.0137 μM for each drug (except dasatinib, which was plated at a
concentration range of 1 μM to 0.00137 μM). Similar plates were prepared
with the 48 indicated pairwise inhibitor combinations in seven-point fixed

molar concentration series identical to those used for single agents. The final
concentration of DMSO was ≤0.1% in all wells, and all sets of single-agent
and combination destination plates were stored at −20 °C and thawed im-
mediately before use. Primary mononuclear cells were plated across single-
agent and combination inhibitor panels within 24 h of collection. Cells were
seeded into 384-well assay plates at 10,000 cells per well in RPMI 1640 media
supplemented with FBS (10%), L-glutamine, penicillin/streptomycin, and
β-mercaptoethanol (10−4 M). After 3 d of culture at 37 °C in 5% CO2, MTS
reagent (CellTiter96 AQueous One; Promega) was added, optical density was
measured at 490 nm, and raw absorbance values were adjusted to a refer-
ence blank value and then used to determine cell viability (normalized to
untreated control wells).

Inhibitor Dose–Response Curve Analysis and Effect-Measure Calculations.
Normalized viability values (40) at each dose of a seven-point dilution se-
ries for 21 small-molecule inhibitors and 48 pairwise combinations of two of
these single agents were analyzed for each of 122 primary leukemia sam-
ples. Dose concentrations were log10-transformed, and a probit regression
curve was fit to each seven-point drug sensitivity profile by using maximum-
likelihood estimation for the intercept and slope. This parametric model was
chosen over a polynomial because the probit’s monotonic shape reflects a
dose–response curve typically seen in samples incubated with cytotoxic or
inhibitory agents (54). Normalized viability values greater than 100%, in-
dicating higher cell viability than the average viability across control wells on
a given plate, were truncated to 100% to produce a percentage response
variable amenable to probit modeling. From the fitted probit curve for each
sample/drug pairing, the IC50 was defined as the lowest concentration to
achieve 50% predicted viability and the AUC was computed by integration
of the curve height across the tested dose range. If the predicted cell viability
(i.e., probit curve height) was ≤50% at the lowest tested dose or >50%
across the entire dose range, the IC50 was designated as the lowest dose or
highest dose, respectively. For sensitivity profiles with 100% normalized vi-
ability at all seven dose points, the IC50 and AUC were designated as the
highest tested dose and the maximum possible AUC, respectively. For sen-
sitivity profiles with 0% viability at all seven dose points, the IC50 and AUC
were designated as the lowest tested dose and a value (0.5) just below the
minimum probit-derived AUC, respectively.

To quantify the efficacy of an equimolar drug combination in comparison
with its constituent single agents, a CR effect measure was generated based
on the specific IC50 and AUC values for each inhibitor triad (the drug com-
bination and the two single agents). The IC50 CR and AUC CR values were
defined as the ratio of the combination’s IC50 or AUC to the minimum IC50 or
AUC for the two single agents, respectively. Each sensitivity profile modeled
by probit regression was assigned a fit statistic based on the P value for the
test of whether the fitted curve’s slope was horizontal. Generally, a smaller
fit statistic produced by a decreasing slope indicates a better fit and, by
extension, provides a measure of confidence in the curve-derived IC50 and
AUC for a particular sample/drug pair. A CR effect measure value less than
1 indicates that a sample is more sensitive to the drug combination than it is
to either of the single agents that constitute the combination.

Statistical Analysis. Unsupervised hierarchical clustering and heat-map dis-
plays of inhibitor sensitivity were generated by using GenePattern software
(Broad Institute). Inhibitor combination efficacy was compared for all samples
(N = 122) across a panel of general clinical variables: diagnostic category
(AML, ALL, CLL, MPN or MDS/MPN), age (categorized as <18, 18–39, 40–64,
or ≥65 y), sex, and type of specimen (peripheral blood, bone marrow aspi-
rate, leukapheresis). For each CR effect measure, a one-sample Wilcoxon
signed-rank test was used to assess whether the median CR value was sig-
nificantly less than 1 to identify effective drug combinations for each sub-
group. Furthermore, differences in median CR across the subgroups of these
variables were evaluated with the Kruskal–Wallis test. Additional diagnosis-
specific clinical and genetic variables were examined for AML (n = 58) and
CLL (n = 42) patient samples. Similar tests were performed on a subgroup’s
median CR and on differences across subgroups for each of these clinical or
genetic variables. Subgroups for all mutations, cytogenetic abnormalities,
and cell surface antigens were defined as positive or negative. Correlations
between continuous clinical variables (e.g., WBC count) and CR values were
appraised with Spearman correlation coefficients. For all within-subgroup
and between-subgroup nonparametric tests, FDR adjustments (55) were
applied to P values with an adaptive linear step-up method to account for
tests being performed on each of the 48 inhibitor triads.
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