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Many animals are inhabited by microbial symbionts that influence
their hosts’ development, physiology, ecological interactions, and
evolutionary diversification. However, firm evidence for the exis-
tence and functional importance of resident microbiomes in larval
Lepidoptera (caterpillars) is lacking, despite the fact that these in-
sects are enormously diverse, major agricultural pests, and domi-
nant herbivores in many ecosystems. Using 16S rRNA gene
sequencing and quantitative PCR, we characterized the gut micro-
biomes of wild leaf-feeding caterpillars in the United States and
Costa Rica, representing 124 species from 15 families. Compared
with other insects and vertebrates assayed using the samemethods,
the microbes that we detected in caterpillar guts were unusually
low-density and variable among individuals. Furthermore, the abun-
dance and composition of leaf-associatedmicrobes were reflected in
the feces of caterpillars consuming the same plants. Thus, microbes
ingested with food are present (although possibly dead or dormant)
in the caterpillar gut, but host-specific, resident symbionts are
largely absent. To test whether transient microbes might still con-
tribute to feeding and development, we conducted an experiment
on field-collected caterpillars of the model species Manduca sexta.
Antibiotic suppression of gut bacterial activity did not significantly
affect caterpillar weight gain, development, or survival. The high
pH, simple gut structure, and fast transit times that typify caterpillar
digestive physiology may prevent microbial colonization. Moreover,
host-encoded digestive and detoxification mechanisms likely render
microbes unnecessary for caterpillar herbivory. Caterpillars illustrate
the potential ecological and evolutionary benefits of independence
from symbionts, a lifestyle that may be widespread among animals.
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Many animals are colonized by microbial symbionts that
have beneficial and fundamentally important impacts on

host biology. Microbes can regulate animal development, immu-
nity, and metabolism, mediate ecological interactions, and facili-
tate the evolutionary origin and diversification of animal clades
(1–7). These integral host–microbe relationships have led to a con-
ceptualization of animals as “holobionts” (8–10), superorganism-like
entities composed of the host plus its microbiome—defined here as
the entire assemblage of commensal, pathogenic, and mutualistic
microorganisms (11). Furthermore, the recent proliferation of
microbiome surveys supports a widely held assumption that mi-
crobial symbioses are universal across animals (12, 13).
The Lepidoptera (butterflies, moths, and their caterpillar lar-

vae), despite being key components of most terrestrial foodwebs
and extraordinarily diverse (14), are one group in which the role of
microbes remains ambiguous. Here we focus on caterpillars, which
are the main—and in some Lepidoptera, the exclusive—feeding
stage, and which have long been intensively studied in many fields
(15). The vast majority of caterpillars are herbivores, and some
herbivores rely on microbes to supplement nutrients, neutralize
toxins, or digest plant cell walls (16, 17). However, considering
caterpillars’ simple gut morphology and rapid digestive through-
put, it has been speculated that microbes cannot persist in the
caterpillar gut and do not contribute to digestion (18, 19). Indeed,
microscopy-based studies report no, or minimal, microbial growth
in caterpillar guts (20–22).

DNA- and culture-based investigations of caterpillar gut micro-
biomes have produced mixed findings, with conflicting implica-
tions for microbial involvement in caterpillar biology. Some
studies report a highly abundant and consistent bacterial com-
munity (23–25), characteristics that may indicate a functional as-
sociation with the host. Others report high intraspecific variability
in composition and similarity between diet- and gut-associated
microbes (26–29). Inconsistencies could arise from methodologi-
cal factors such as contamination of low-biomass samples (30),
starvation before sampling, sequencing of extracellular DNA, and
the use of laboratory-raised insects or artificial diets (27, 31, 32).
As an additional complication, many microbiome surveys do not
distinguish between dead or dormant passengers [“transients”
(33)] and persistent, living populations [“residents” (33) or
“symbionts” sensu (34)]. Furthermore, microbes in the latter cat-
egory may be parasitic or pathogenic, as well as beneficial. While
microbes were known to cause disease in caterpillars as early as
Louis Pasteur’s experiments on silkworms (35), their potential
importance as mutualists remains unclear.
Do caterpillars depend on gut microbes for feeding and de-

velopment? To answer this question, we first characterized gut
microbial abundance and composition across a taxonomically and
geographically broad array of wild caterpillars (SI Appendix, Fig.
S1). Our analyses are focused on the digestive tract, the most likely
habitat for microbial colonization, as abundant microbes have not
been observed elsewhere in the caterpillar body (31, 36). We ap-
plied the same methods to 24 additional insect, bird, and mammal
species that we expected to have functional microbiomes to assess
the reliability of our protocol and to contextualize our findings.
We then conducted a field-based experiment testing whether gut
bacteria impact larval growth and survival of the model species
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Manduca sexta (Sphingidae). Our findings question the generality
of animal–microbe symbioses and may inform a multitude of re-
search programs based on caterpillar herbivory in both natural and
managed ecosystems (e.g., refs. 37–39).

Results
Using quantitative PCR and sequencing of the 16S rRNA gene,
we found that wild caterpillars representing a broad diversity
of Lepidoptera had gut bacterial densities multiple orders of
magnitude lower than the microbiomes of other insects and
vertebrate feces measured using identical methods (one-way
ANOVA, F1,145 = 228.2, P < 0.0001, Fig. 1A) (SI Appendix, Table
S1). Some animals host symbiotic fungi (40), but fungal biomass
was also lower in caterpillar guts relative to other insects and
vertebrates (median 6.1 × 102 vs. 9.5 × 104 rRNA gene copies per
gram, respectively; one-way ANOVA, F1,145 = 36.03, P <
0.0001). While mitochondrial rRNA genes from fungi and other
eukaryotes (as well as chloroplasts) are detectable using primers
designed for bacteria and archaea (41), more targeted charac-
terization of fungi in caterpillar guts is warranted. As another

indicator of low microbial biomass, in most caterpillars over 80%
of fecal 16S rRNA gene sequences were from plant chloroplasts
or mitochondria versus ∼0.1% for other herbivores or omnivores
with plant-rich diets (Wilcoxon rank-sum test, P < 0.0001, Fig.
1B). In a subset of caterpillars from which we sampled whole,
homogenized midgut and hindgut tissue, plant DNA represented
an even higher proportion of sequences in guts than in feces (SI
Appendix, Fig. S2A). This pattern is more likely a function of
plant DNA degradation during intestinal transit than of bacterial
proliferation, as bacterial density remained similar or decreased
slightly from midgut to feces, depending on the caterpillar spe-
cies (SI Appendix, Fig. S2B).
Animals with functionally important, resident microbiomes

tend to host a high abundance of microbial taxa shared among
conspecific individuals (e.g., refs. 42–44). Indeed, within species
of the other insects and vertebrates analyzed here, microbiomes
were largely made up of a common set of bacterial phylotypes
(Fig. 1C). For example, >99% of sequences in any one honeybee
belonged to phylotypes found in the majority of honeybees in-
cluded in the analysis. In contrast, even when consuming the same
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Fig. 1. Comparisons of bacterial density, relative abundance of plant DNA, and intraspecific variability between caterpillars and other animals expected to
host functional microbiomes. Medians are indicated by black dashed lines, and points are horizontally jittered. Data for each species are listed in SI Appendix,
Table S1. One caterpillar species yielding <100 total sequences was excluded. For species with multiple replicates, the median is plotted. (A) The density of
bacterial 16S rRNA gene copies in caterpillar feces versus fecal (vertebrates) or whole-body homogenate (other insect) samples of other animals (n =
121 caterpillar species, 24 other species). Two caterpillar species with lower amplification than DNA extraction blanks are not shown. (B) The proportion of
sequence libraries assigned to plant chloroplast or mitochondrial rRNA (n = 123 caterpillars, 21 other herbivores). (C) The proportion of bacterial sequences
belonging to core phylotypes, defined for each species as those present in the majority of conspecific individuals analyzed. Included are species with at least
three replicates with >100 bacterial sequences each (n = 7 caterpillars, 19 other animals). For species with more than three replicates, points show the median
core size across all combinations of three individuals, and error bars show the interquartile range.
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species of food plant under similar conditions, caterpillars had a
much lower proportion of their gut bacterial assemblage belonging
to core phylotypes (one-way ANOVA, F1,24 = 165.3, P < 0.0001,
Fig. 1C). In Schausiella santarosensis, which among the seven
caterpillar species (mostly Saturniidae) examined had the highest
median core size of ∼70%, four of its six core phylotypes were
Methylobacterium, a typical inhabitant of leaf surfaces (45). This
observation hints that many of the core taxa found in caterpillar
guts may be transient, food-derived microbes.
Caterpillar gut microbiomes are dominated by leaf-associated

bacteria, further suggesting that resident, host-specific symbionts
are sparse or absent. The bacterial phylotypes present in the
feces of at least half of the sampled individuals are Staphylo-
coccus, Escherichia, Methylobacterium, Klebsiella, Enterococcus,
and Sphingomonas (SI Appendix, Table S2). Of these, all but
Staphylococcus—a potential caterpillar pathogen (46) or a tran-
sient from human skin (47)—are also among the 10 most com-
mon phylotypes found in paired leaf samples. Across caterpillars,
a median 89.6% (interquartile range: 80.2–99.0%) of fecal bac-
terial sequences belonged to leaf-associated phylotypes. How-
ever, bacterial assemblages were not identical between leaves
and caterpillar feces (PERMANOVA, pseudo-F1,196 = 12.54,
R2 = 0.06, P = 0.001). Besides the potential growth of parasites
and/or mutualists in the gut, this difference could arise from di-
gestion filtering out subsets of the leaf microbiome.
Low precision may partly explain the extensive variation in

caterpillar gut bacterial loads (Fig. 1A) as these estimates are a
product of bacterial sequence composition and total 16S rRNA
gene counts (SI Appendix, SI Methods), both of which contain
measurement error. However, transient inputs of leaf microbes
also generate variation among caterpillar species and individuals.
Leaf bacterial densities differed greatly within (tomato) and be-
tween (milkweed, eggplant, tomato) plant species, and these dif-
ferences were reflected in the feces of monarch (Danaus plexippus)

and M. sexta caterpillars feeding on them (linear regression, R2 =
0.24, P = 0.031; Fig. 2A). Furthermore, bacterial densities dropped
by a median of 214-fold from leaves to feces (Fig. 2A), suggesting
that any potential bacterial growth within the gut is relatively
minor. The extent of this reduction varied widely (from 5- to
8,385-fold, Fig. 2A), possibly because of interindividual or in-
terspecific differences in physiological traits that eliminate leaf
microbes, such as gut pH. Variation in bacterial taxonomic com-
position among leaves and caterpillar feces was also correlated
(Mantel test, r = 0.28, P = 0.001; Fig. 2B). In other words, cat-
erpillars consuming leaves with more distinct bacterial assem-
blages had more distinct bacterial assemblages in their feces, as
would be expected if gut microbes are diet-derived and only
transiently present. Moreover, this process can explain a relation-
ship between host relatedness and microbiome structure, a pattern
sometimes termed “phylosymbiosis” (48). Specifically, although
confamilial caterpillars in Costa Rica had marginally more similar
gut bacterial assemblages than did caterpillars in different families
(PERMANOVA, pseudo-F6,43 = 1.47, P = 0.053), they had also
been feeding on plants with especially similar leaf microbiomes
(PERMANOVA, pseudo-F6,42 = 1.73, P = 0.005).
Supporting our claim that caterpillars lack resident gut

microbiomes, we show experimentally that the growth and sur-
vival of field-collected M. sexta caterpillars are not dependent on
gut bacterial activity. As measured by qPCR, wild M. sexta con-
tain ∼61,000-fold lower bacterial loads than expected from al-
lometric scaling relationships based on animals with resident
microbiomes (ref. 49 and SI Appendix, Fig. S3). Feeding M. sexta
antibiotics reduced this already low number of gut bacteria by 14-
to 365-fold (range of medians across dosages), as measured using
culture-dependent methods (linear regression, R2 = 0.13, P =
0.003; SI Appendix, Fig. S4A). Bacterial colony counts were
correlated with the number of 16S rRNA gene copies (Pearson
correlation, r = 0.38, P = 0.003; SI Appendix, Fig. S4B).
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Fig. 2. The abundance and composition of caterpillar fecal bacteria compared with paired diet (leaf) samples. (A) The density of bacterial 16S rRNA gene copies
in ground leaves versus feces for 16 caterpillars collected in Colorado. Parallel lines indicate an association between plant and fecal bacterial abundances across
pairs. (B) The correlation between beta diversity (Bray–Curtis dissimilarity) across caterpillar fecal samples collected in Costa Rica and paired leaf-surface samples
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Suppression of viable bacteria had no effect on pupal weight
(linear regression, antibiotics: P = 0.45; sex: P = 0.014; in-
teraction: P = 0.70; Fig. 3), which is predictive of fecundity in
insects (50), nor on development time (linear regression, anti-
biotics: P = 0.19; sex: P = 0.023; interaction: P = 0.63; SI Ap-
pendix, Fig. S5A). Likewise, antibiotic treatment did not affect
survival from larval hatching to adult emergence (logistic re-
gression, 95% CI of odds ratio = 0.76–9.39, P = 0.19; SI Ap-
pendix, Fig. S5B), nor generally impact total feces production, a
metric integrating leaf consumption and assimilation efficiency
(linear regression, antibiotics: P = 0.07; sex: P = 0.002; in-
teraction: P = 0.048). As expected with M. sexta (51), we found
clear sexual size dimorphism, suggesting that our experimental
design had sufficient power to detect biologically meaningful
differences. Given that antibiotics reduced fecal bacteria to a
variable extent within and among treatments (SI Appendix, Fig.
S4A), we repeated the aforementioned analyses using gut bac-
terial abundance as the predictor variable. In all cases there was
no significant relationship with host performance (P > 0.1),
further indicating that reducing or eliminating gut bacteria from
caterpillars does not reduce M. sexta fitness.

Discussion
Consistent with previous microscopy-based (20–22) and molecular
studies (26–29), we found that microbial symbionts are generally
absent or present only in low numbers in caterpillar guts.
As expected for herbivores consuming microbe-rich leaf tissue,
diet-derived microbes are transiently present in caterpillar guts,
wherein they may be dead or inactive. That the microbial biomass
in caterpillar guts is far lower than in the guts or whole bodies of
many other animals (Fig. 1A), and also lower than in leaves (Fig.
2A), suggests a lack of persistent microbial growth. Moreover, any
potential microbial metabolism might be too limited to sub-
stantially affect digestive processes, as illustrated by our observa-
tion that M. sexta caterpillars contain microbial loads orders of
magnitude lower than comparably sized animals with resident
microbiomes (SI Appendix, Fig. S3). Caterpillar gut microbiomes
also exhibit high inter- and intraspecific variability in both abun-
dance and composition (Figs. 1 and 2). Lacking resident pop-
ulations, they may be easily influenced by the idiosyncrasies of
which microbes are present on a given leaf and in what abundance,
and which can survive transit through the digestive tract. Ingested
microbes that die within the host could still be beneficial as food
or by stimulating the immune system, but are not themselves

symbionts [following the original definition of symbiosis as the
“living together of different species” (referenced in ref. 34)].
In tandem with the transient nature of gut microbiomes across

caterpillar species, the experiment on M. sexta suggests that mi-
crobes are unlikely to have cryptic, but essential, functions in
caterpillar guts. Antibiotic suppression of viable gut bacteria had
no apparent negative consequences for M. sexta, contrasting
sharply with the many examples of major reductions in host
growth or survival upon removal of beneficial symbionts (e.g., refs.
52–54). If anything, caterpillars treated with antibiotics showed
slight (but not statistically significant) increases in performance
(Fig. 3 and SI Appendix, Fig. S5B). Antibiotics increase weight gain
of laboratory-bred caterpillars (55–57), and commercially made
caterpillar diets often contain antibiotics. This effect might reflect
microbial parasitism occurring in even apparently healthy cater-
pillars, or costly immune responses to the presence of pathogens
(58). Aside from known leaf specialists, many of the most fre-
quently detected bacterial genera in this study (SI Appendix, Table
S2) have been reported to cause disease in caterpillars (36, 46, 59,
60). Additionally, even normally transient gut microbes can neg-
atively affect caterpillars under certain circumstances, such as after
ingestion of insecticidal toxins (61), and thus may be important to
understanding caterpillar herbivory and pest management.
The lack of a resident gut microbiome in caterpillars may di-

rectly result from a digestive physiology that is unfavorable to
microbial growth (18). The midgut, the largest section of the di-
gestive tract in which caterpillars digest leaf material and absorb
the resulting nutrients (62), is a particularly hostile environment
for microbes (24). It is highly alkaline, with pH values often >10
(63) and as high as 12 (64), and contains host-encoded antimi-
crobial peptides (65). Additional attributes of the caterpillar gut
that may hinder microbial colonization include a simple tube-like
morphology without obvious microbe-housing structures (18), a
continually replaced lining (the peritrophic matrix) covering the
midgut epithelium (66), and short retention times [food transit
takes ∼2 h in M. sexta (67)]. Although some insects harbor sym-
bionts in specialized organs (68), to our knowledge, similar
structures have not been reported in caterpillars. Buchner’s
foundational survey of animal endosymbiosis describes Lepidop-
tera only as “a group in which no symbiont bearers have been
discovered” (ref. 68, p. 817). Moreover, previous studies did not
find microbes that were abundant outside of the gut (31, 36), al-
though in infected populations the reproductive parasite Wolbachia
may inhabit other larval tissues (69).
Without the aid of microbial symbionts, how are caterpillars

able to overcome the dietary challenges posed by herbivory?
Caterpillars use a combination of mechanical disruption, endog-
enously produced digestive enzymes, and high pH to extract easily
solubilized nutrients, primarily from the contents of plant cells (18,
70, 71). Although this method of processing leaves is relatively
inefficient, essential nutrients are not totally absent, so that cat-
erpillars can compensate by simply eating more (18, 62). Some
insects likely require microbes for detoxification (16), but many
caterpillars possess host-encoded mechanisms for degrading or
tolerating plant allelochemicals (72). However, there may be a
vestigial role for microbes in these processes, as genomes of many
Lepidoptera contain microbial genes encoding enzymes with re-
lated functions (73, 74). These gene acquisitions may have enabled
a symbiont-free feeding strategy.
The caterpillars surveyed here are likely to be representative

of most externally leaf-feeding Lepidoptera, as we included a
range of diet breadths, from monophagous to highly generalist,
and many of the most diverse families (SI Appendix, Fig. S1).
However, a lack of resident gut microbiome in the caterpillar
may not apply to the adult butterfly or moth. For example, adult
honeybees have abundant gut microbes, while the larvae do not
(75). Compared with caterpillars, adult butterflies host distinct
bacterial communities (31) and high gut microbial loads (76). On
the other hand, unlike honeybees or butterflies, many Lepidop-
tera do not feed as adults, and in these groups microbes may
be altogether irrelevant to digestion or nutrition. However, we
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cannot exclude the possibility that microbial symbionts influence
host fitness by their potential activities in eggs or pupae.
The extraordinary diversity and abundance of Lepidoptera (14)

indicate that a symbiont-independent feeding strategy can be
highly successful. Perhaps such success reflects a release from
constraints imposed on other animals that do host and depend on
symbionts. There are costs to engaging in mutualisms (e.g., refs.
77–79), and in a gut microbiome context one cost includes nutrient
competition between host and microbes (80). A high availability of
food allows caterpillars to “skim the cream” (62), assimilating
simple nutrients that might otherwise be used by gut microbes and
excreting recalcitrant material. In other words, “Why not do the
digestion yourself rather than pay someone else to do it?” (ref. 81,
p. 53). Another cost is the risk of gut microbes becoming patho-
genic (61, 82) or of foodborne pathogens exploiting a gut envi-
ronment that is hospitable to mutualists. The extreme conditions
in the caterpillar midgut may lower these risks by limiting the
growth of both pathogens and potential mutualists.
Dependence on microbes with different physiological toler-

ances than the host constrains overall niche breadth (7, 78).
Compared with groups lacking functional microbiomes, animals
whose biology is heavily influenced by microbial mutualists may
be less able to switch to new food plants or new habitats over
evolutionary time. Indeed, it has been argued that while micro-
bial symbioses can provide novel ecological functions, they may
also increase the extinction risk of host lineages (7, 83). As
Lepidoptera represent one of the most species-rich animal ra-
diations (84), a conspicuous question is whether independence
from microbes may, in some cases, facilitate host diversification.
Caterpillars do not appear to be unique in lacking a resident

microbiome that is important for feeding and development.
Microbiomes of walking sticks (85), sawfly larvae (86, 87), a sa-
prophagous fly (88), a parasitic horsehair worm (89), a leaf beetle
(90, 91), and certain ants (92) display features similar to those that
we observed in caterpillars. Our data suggest that some verte-
brates also have minimal gut microbiomes and feed relatively
autonomously. Feces of the herbivorous goose Branta bernicla had
low bacterial loads and a high proportion of plant DNA, and the
insectivorous bat Myotis lucifugus had similarly low fecal bacterial
loads (SI Appendix, Table S1). These species exhibit caterpillar-
like physiological traits such as a short gut and rapid digestive
transit (93, 94). Additional examples in the literature might be
obscured by contaminants masquerading as mutualists (95), a
frequent absence of quantitative information (92) and experi-
mental validation of microbial function in vivo, and publication
bias against “negative results.”
While recent literature has documented extraordinary varia-

tion in the types of services provided by microbial symbionts, less
explored is variation in the degree to which animals require any
such services. Animals likely exist on a spectrum from tightly
integrated host–microbe holobionts to simply animals, sensu
stricto, in which a microbial presence is only relictual (i.e.,

mitochondria and horizontally transferred genes). Documenting
the existence of microbially independent animals, as well as their
ecological, physiological, and phylogenetic contexts, is a first step
toward understanding the causes and consequences of evolu-
tionary transitions along this continuum.

Methods
Sampling and Sequencing. Caterpillar fecal samples (n = 185) were obtained
from actively feeding, field-collected individuals in Arizona, Colorado,
Massachusetts, and New Hampshire and in Área de Conservación Guana-
caste, Costa Rica. To sample plant microbiomes, we collected leaves from the
same branch used to feed caterpillars before fecal or gut sampling. All
species were identified by morphology. Noncaterpillar animals were in-
cluded if microbiome samples were available in our laboratory or were
readily collectable during caterpillar sampling. We extracted DNA, PCR-
amplified the 16S rRNA V4 gene region, and sequenced amplicons on an
Illumina MiSeq in the same manner as previous insect microbiome studies
(31, 91). These DNA extracts and primers were also used for quantitative
PCR, which provides microbial biomass estimates concordant with those
from microscopy (92) and culturing (SI Appendix, Fig. S4B). We did not find
evidence that low amplification of caterpillar fecal bacteria is due to primer
bias, PCR inhibitors, or storage methods (SI Appendix, SI Methods).

Antibiotic Experiment. We collected M. sexta eggs from Datura wrightii
plants near Portal, Arizona. Seventy-two newly hatched larvae were ran-
domly and evenly divided among six treatments varying from 0 to 1.68 mg
total antibiotics per milliliter of distilled water, and reared in separate un-
used plastic bags on D. wrightii foliage. Water with or without antibiotics
was sprayed onto leaves, which were then briefly dried before feeding. The
compounds used here (rifampicin, tetracycline, and streptomycin in a
1:2:4 ratio) have been shown to suppress bacterial symbionts in other insect
herbivores (53, 96). More detail is provided in SI Appendix, SI Methods.

Data Analysis. Statistical analyses were conducted in R. Differences in mi-
crobial loads, core sizes, and M. sexta performance were tested using linear
models. M. sexta survival was analyzed using logistic regression. We used a
Mantel test to estimate the rank correlation between leaf and fecal micro-
biome dissimilarities. A Wilcoxon rank-sum test was used for proportions of
plant DNA. Differences in community composition were analyzed using
PERMANOVA. DNA sequences, metadata, and R code are available at
https://figshare.com/articles/Data_files_for_Hammer_et_al_Caterpillars_lack_a_
resident_gut_microbiome_/4955648.
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