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Mixed-lineage kinase domain-like protein (MLKL) is essential for
TNF-α–induced necroptosis. How MLKL promotes cell death is still
under debate. Here we report that MLKL forms SDS-resistant,
disulfide bond-dependent polymers during necroptosis in both
human and mouse cells. MLKL polymers are independent of
receptor-interacting protein kinase 1 and 3 (RIPK1/RIPK3) fibers.
Large MLKL polymers are more than 2 million Da and are resistant
to proteinase K digestion. MLKL polymers are fibers 5 nm in di-
ameter under electron microscopy. Furthermore, the recombinant
N-terminal domain of MLKL forms amyloid-like fibers and binds
Congo red dye. MLKL mutants that cannot form polymers also fail
to induce necroptosis efficiently. Finally, the compound necrosul-
fonamide conjugates cysteine 86 of human MLKL and blocks MLKL
polymer formation and subsequent cell death. These results dem-
onstrate that disulfide bond-dependent, amyloid-like MLKL poly-
mers are necessary and sufficient to induce necroptosis.
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Necroptosis is a form of programmed necrotic cell death,
morphologically characterized by organelle swelling and

plasma membrane rupture (1, 2). Recent studies have implicated
necroptosis in a broad range of pathological conditions including
infection, inflammation, sepsis, and ischemia injury as well as
neurodegeneration (3–8). Understanding the regulation of nec-
roptosis will have profound impact on human health.
The molecular mechanism of necroptosis has been under in-

tensive investigation in recent years. The best-studied pathway is
TNF-induced necroptosis. Upon TNF treatment and apoptosis
inhibition, a series of events leads to the formation of the
necrosome, which contains RIPK1, RIPK3, and MLKL (9–16).
RIPK3 phosphorylates at least two important sites in the acti-
vation loop region of the kinase-like domain of MLKL (14, 17,
18). Phosphorylated MLKL homo-oligomerizes and translocates
to cellular membranes to trigger cell death (17, 19, 20). However,
how MLKL oligomers kill cells is still under debate. Recombi-
nant MLKL was shown to bind phospholipids and cause liposome
leakage in vitro, leading to the model that oligomerized MLKL
could form pores to permeabilize cell membrane (17, 21–23).
Nonetheless, membrane translocation alone is not sufficient for
cell death induction, because some MLKL mutants can form
oligomers and translocate to the cell membrane but cannot kill
cells (24). Others reported that MLKL binds to a calcium trans-
porter or sodium transporters on the cell membrane to induce
ion influx (19, 20). Recently it was reported that recombinant
MLKL can form cation channels (25, 26). How to reconcile these
results and clarify the execution step of necroptosis remains
a big challenge.
One exciting development in the field is that RIPK1 and

RIPK3 form amyloid fibrils to activate necroptosis (27). Tradi-
tionally, amyloids are viewed as loss-of-function filamentous
protein aggregates associated with a multitude of neurodegen-
erative diseases (28, 29). Recently, they have received a lot at-
tention due to their ability to serve as polymeric platforms
capable of recruiting and nucleating signaling protein complexes
(30). For example, the death effector domain-containing pro-
teins FADD and caspase 8 were reported to form filamentous

structures to activate apoptosis (31). More recently, prion-like
polymerization has been shown to be responsible for mitochon-
drial antiviral signaling protein (MAVS)-dependent antiviral
innate immune response (32), and apoptosis-associated spec-like
protein (ASC)-dependent inflammasome assembly (33–35).
In this study, we report that upon necroptosis induction

MLKL forms disulfide bond-dependent amyloid-like polymers
that are distinct from RIPK1 and RIPK3 polymers. Recombinant
MLKL N-terminal domain (NTD) forms fibers in vitro. NTD with
all cysteines mutated fails to form polymers and is unable to in-
duce necroptosis efficiently. Furthermore, compound necrosulfo-
namide (NSA) conjugates cysteine 86 of human MLKL to block
MLKL polymer formation and subsequent cell death.

Results
MLKL Forms Polymers upon Necroptosis Induction in both Human and
Mouse Cells. RIPK1 and RIPK3 form amyloid complexes during
necroptosis (27). Because MLKL interacts with RIPK3 in the
necrosome, we asked if MLKL was also in amyloid-like complexes.
HT-29 human colon cancer cells underwent necroptosis upon
TNF (T), Smac-mimetic (S), and Z-VAD-FMK (Z) treatment.
MLKL was phosphorylated (Fig. 1A) and formed tetramers on a
nonreducing gel (Fig. 1B, lane 2). As expected, the majority of
phosphorylated MLKL was in the tetramer (Fig. 1B, lane 4).
Semi-denaturing detergent agarose gel electrophoresis (SDD-

AGE) detects large protein polymers resistant to 2% SDS
treatment (36). After necroptosis induction, RIPK1 and RIPK3
formed clear polymers, which clustered at the top (Fig. 1C, lanes
2 and 4). The migration patterns of RIPK1 and RIPK3 are almost
identical, confirming the earlier report that RIPK1 and RIPK3 are
presented in the amyloid complexes in a 1:1 ratio (27). Interestingly,
MLKL also formed polymers with a unique migration pattern (Fig.
1C, lane 6). MLKL polymers were more heterogeneous and spread

Significance

Necroptosis is a programmed form of necrotic cell death which
is implicated in a wide range of human pathological conditions.
It is controlled by receptor-interacting protein kinase 3 (RIPK3)
and its substrate mixed-lineage kinase domain-like protein
(MLKL). Phosphorylated MLKL forms tetramers and translo-
cates to membrane fractions to induce cell death. Here we re-
port that MLKL tetramers further polymerize to form disulfide
bond-dependent amyloid-like fibers, which are required for
necroptosis. Furthermore, induced polymerization of the MLKL
N-terminal domain is sufficient to activate necroptosis without
RIPK3. This work reveals a mechanism for MLKL activation and
generates exciting directions for necroptosis regulation.

Author contributions: S.L. and Z.W. designed research; S.L., H.L., A.J., S.H.-A., E.R., Y.X.,
and Z.W. performed research; S.L. and Z.W. analyzed data; and Z.W. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. Email: zhigao.wang@utsouthwestern.
edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1707531114/-/DCSupplemental.

E7450–E7459 | PNAS | Published online August 21, 2017 www.pnas.org/cgi/doi/10.1073/pnas.1707531114

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1707531114&domain=pdf
mailto:zhigao.wang@utsouthwestern.edu
mailto:zhigao.wang@utsouthwestern.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1707531114/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1707531114/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1707531114


out on the gel, and the majority of MLKL polymers migrated faster
than RIPK1/3 polymers, suggesting that the size of MLKL polymers
is smaller. Under this condition, the monomer form of MLKL was
barely detected (Fig. 1C, lane 5), possibly because the antigen
(amino acids 1–226) was not fully exposed. MLKL tetramers
and polymers were also detected in mouse L929 cells (Fig. 1 D
and E), suggesting that polymer formation of MLKL is con-
served across species.

MLKL Polymers Are Protease K-Resistant, High Molecular Weight
Complexes. To facilitate purification of MLKL polymers, we
engineered a HeLa:GFP-RIPK3:MLKL cell line in which en-
dogenous MLKL was knocked out using CRISPR-Cas9, and
C-terminal HA and Flag-tagged MLKL and GFP-RIPK3 were
stably expressed (Fig. 2A). With T/S/Z treatment these cells
underwent necroptosis and positively stained by propidium io-
dide (PI), which is a cell-impermeable DNA dye (Fig. 2B).
Moreover, MLKL was phosphorylated and formed tetramers
(Fig. 2 C and D). As in HT-29 cells, phosphorylated MLKL was
mostly in tetramers. On nonreducing gels, MLKL was sometimes
detected as doublets, possibly because of intramolecular disul-
fide bonds (Fig. 2D). Importantly, RIPK1, RIPK3, and MLKL
all formed SDS-resistant polymers (Fig. 2E). To address the
possibility that the size heterogeneity of the MLKL polymers
came from the degradation of large polymers during the running
of the SDD-AGE, we ran a 2D SDD-AGE. MLKL showed a
perfect diagonal pattern, indicating that there is no degradation
during SDD-AGE running (Fig. 2F). Some amyloid polymers are
more resistant to protease digestion (29). As shown in Fig. 2G,

after necroptosis induction, two proteinase K-resistant MLKL
fragments were more prominent, suggesting that there is a con-
formational shift when MLKL forms polymers.
We then examined the size of RIPK1/3 and MLKL complexes

through gel filtration. In the DMSO-treated sample, RIPK1
eluted at around 150 kDa, possibly in a mixture of monomer and
dimer forms. Interestingly, RIPK3 spread out on the column,
while MLKL mainly eluted as monomers at below 67 kDa (Fig.
2H, Left). In the T/S/Z-treated sample, RIPK1 and RIPK3 mi-
grated to the void volume in complexes larger than 2 million Da,
while lactate dehydrogenase (LDH) did not change (Fig. 2H,
Right). MLKL formed complexes of more than 669 kDa, much
larger than a tetramer (∼240 KDa) or the recently reported
octamer (∼480 kDa) (26). Phosphorylated MLKL eluted solely
in the large complexes (lanes 11 and 12), which contained MLKL
polymers (Fig. S1, lanes 4 and 5).
Phosphorylation of MLKL at T357 and S358 by RIPK3 has

been shown to be required for MLKL activation (14, 17). We
examined if phosphorylation of those sites is required for MLKL
polymer formation. Consistent with a previous report (17), the
T357A/S358A mutant of MLKL could not form tetramers (Fig.
2I, lane 4). It also failed to form polymers (Fig. 2J, lane 4),
suggesting that phosphorylation of MLKL by RIPK3 at T357 and
S358 is required for MLKL polymer formation.

MLKL Polymers Are Disulfide Bond-Dependent, Amyloid-Like Fibers.
Multiple groups have reported that MLKL forms disulfide bond-
linked oligomers (17, 19, 20, 27). Therefore, we tested if MLKL
polymers were also linked by disulfide bonds. As shown in Fig. 3A,
after incubation with 10 mM DTT for 30 min, RIPK3 polymers
remained intact (lane 3). However, MLKL polymers completely
dissociated and migrated to the monomer position (lane 6), in-
dicating that disulfide bonds are required to maintain MLKL
polymers. This result also suggests that RIPK3 polymers and
MLKL polymers are different entities. Indeed, after GFP-
RIPK3 was depleted from the whole-cell lysates with an anti-GFP
antibody, MLKL tetramers were preserved (Fig. 3B, lane 4), and
MLKL polymers were intact (Fig. 3C, lane 4).
MLKL polymers were isolated from cells by anti-Flag immu-

noprecipitation and pH 3 buffer elution (Fig. 3D). The polymers
were preserved after elution, as demonstrated by SDD-AGE (Fig.
3E). The polymers were then subjected to negative-staining EM.
Fibers with a consistent diameter (5.1 nm) but of various lengths
were observed (Fig. 3F). The variation in the length might reflect
the heterogeneity seen by SDD-AGE. The diameter of MLKL
fibers is different from that reported for RIPK1/3 fibers, which
have a diameter of 11–12 nm (27). We propose a model in which
phosphorylated MLKL forms tetramers with stabilizing disulfide
bonds and tetramers serve as building blocks that polymerize to
form amyloid-like fibers to induce necroptosis (Fig. 3G).

Recombinant MLKL NTD Forms Disulfide Bond-Dependent Amyloid-
Like Fibers in Vitro. To exclude the possibility that the polymers
purified from the cells might still contain other proteins, we
turned to a recombinant system. The NTD of MLKL is sufficient
to induce necroptosis when overexpressed (20, 23, 24). More-
over, recombinant NTD could permeabilize liposomes (17, 21,
22). We purified recombinant human MLKL-NTD with a Flag
tag at the C terminus (Fig. 4A). Incubation of different con-
centrations of MLKL-NTD at 37 °C resulted in polymer for-
mation (Fig. 4B) in a time-dependent manner (Fig. 4C). As a
positive control, β-amyloid peptide (amino acids 1–42, Aβ42)
also formed polymers (Fig. 4D). Many amyloid-like polymers
bind dyes such as Congo red or thioflavin T. Both MLKL poly-
mers and Aβ42 polymers showed Congo red binding and right
shifted the maximal absorbance wavelength (Fig. 4E). DTT in-
cubation totally broke down the NTD polymers on SDD-AGE
(Fig. 4F), suggesting that disulfide bonds are also important for
holding recombinant polymers together.
There are four cysteines in the NTD: C18, C24, C28, and C86.

We mutated each individual cysteine to a serine, and the
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Fig. 1. MLKL forms large polymers during necroptosis in human and mouse
cells. (A) HT-29 cells were treated with DMSO or 20 ng/mL TNF (T), 100 nM
Smac-mimetic (S), and 20 μM Z-VAD-FMK (Z). Cell lysates were subjected to
Western blotting with the indicated antibodies. P-MLKL antibody detects
phospho-S358 of human MLKL. (B) HT-29 cell lysates were separated by
nonreducing SDS/PAGE and detected with antibodies against MLKL or
p-MLKL. (C) HT-29 cell lysates were separated by SDD-AGE and detected with
RIPK1, RIPK3, or MLKL antibodies. (D) L929 cells were treated with DMSO or
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(E) L929 cell lysates were separated by SDD-AGE and detected with MLKL
antibody. IB, immunoblot.
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recombinant proteins still formed polymers (Fig. 4G). Disulfide
bonds are known to rearrange and shuffle (37), which might com-
pensate for the loss of a single cysteine. We then mutated all four
cysteines. The mutant 4CS was no longer able to form polymers
(Fig. 4 H and I). Even before incubation, the 4CS mutant migrated
faster than the wild type (compare lane 2 and lane 1), suggesting
that the wild-type NTD might have formed disulfide bond-linked
oligomers without incubation. Indeed, dimers and tetramers of NTD
were detected on a nonreducing gel, while 4CS only had mono-

mers (Fig. 4J). The NTD polymers were then subjected to negative
staining and EM analysis. The diameter of the fibers was slightly
smaller than the fibers isolated from cells, at about 4.6 nm (Fig. 4K).
The difference in the diameter might be because the recombinant
protein lacked the C-terminal kinase-like domain.

Disulfide Bonds Are Important for NTD-DmrB Polymer Formation and
Necroptosis Induction in Vivo. To examine the functional impor-
tance of the disulfide bond in the NTD, we used the dimerization
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Fig. 2. MLKL polymers are proteinase K-resistant, high molecular weight complexes. (A) Establishment of the HeLa:GFP-RIPK3:MLKL cell line. Endogenous
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then treated with DMSO or T/S/Z. Cell lysates were subjected to nonreducing or reducing SDS/PAGE (I) or SDD-AGE (J) and detected with the indicated
antibodies. IB, immunoblot.
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system from Clontech, in which the DmrB domain forms a dimer
with dimerizer (D) addition. The NTD of human MLKL was
fused to the DmrB domain with a C-terminal Flag tag and was
stably expressed in MLKL-knockout HeLa cells (Fig. 5A). With
D and Z treatment, the fusion protein formed tetramers (Fig.
5B) and polymers (Fig. 5C). Importantly, DTT completely dis-
sociated the polymers (Fig. 5C, lane 3). Again, the D/Z-treated
sample had prominent PK-resistant fragments (Fig. 5D).
The four-cysteine mutant NTD-4CS-DmrB did not form tet-

ramers on a nonreducing gel (Fig. 5E, lane 4) and failed to form
polymers on SDD-AGE (Fig. 5F, lane 4). MLKL translocates to
membrane fractions during necroptosis (17, 19, 20). As shown in
Fig. 5G, a portion of the NTD-4CS-DmrB mutant translocated
to the crude membrane fractions (lane 8), similar to the NTD-
DmrB (lane 4). Importantly, the NTD-4CS-DmrB mutant was
severely compromised in its ability to induce necroptosis (Fig. 5
H and I), while the single-cysteine mutants retained most of that
ability. These results highlight the importance of disulfide bond-
dependent MLKL polymer formation for necroptosis induction.

NSA Blocks NTD Polymer Formation in a Cysteine 86-Dependent
Manner to Block Necroptosis. Compound NSA conjugates cyste-
ine 86 of human MLKL to block necroptosis (14). We examined
the effect of NSA on MLKL polymer formation. As shown in Fig.
6A, NSA inhibited recombinant NTD polymerization in vitro in a

dose-dependent manner (lanes 3 and 4). However, it had no effect
on NTD-C86S (lanes 7 and 8), indicating that NSA needs to con-
jugate cysteine 86 of MLKL to block polymer formation.
Next, we tested if NSA affected polymer formation in vivo.

Compound necrostatin-1 (Nec-1) blocks RIPK1 activity (38), which
is not required for necroptosis in the NTD-DmrB cells. As shown in
Fig. 6B, neither Nec-1 nor NSA could block dimerizer-induced
tetramer formation in NTD-DmrB cells (lanes 3 and 4). How-
ever, NSA blocked polymer formation (Fig. 6C, lane 4). When
cysteine 86 was mutated to serine, NSA was no longer able to block
polymer formation (Fig. 6C, lane 8). Consequently, NSA blocked
necroptosis in NTD-DmrB cells, but not in NTD-C86S-DmrB cells
(Fig. 6D). These results suggest that NSA conjugates cysteine 86 of
human MLKL to block MLKL polymer formation and necroptosis.

NSA Blocks MLKL Polymer Formation and Necroptosis in Human Cells
but Not in Mouse Cells. In HeLa:GFP-RIPK3:MLKL cells, both
Nec-1 and NSA blocked necroptosis (Fig. 7A). By inhibiting
RIPK1 activity, Nec-1 blocked MLKL phosphorylation (Fig. 7A,
lane 3) and tetramer formation (Fig. 7B, lane 3). On the other
hand, NSA modestly reduced MLKL phosphorylation and tet-
ramer formation (Fig. 7 A and B, lane 4). Moreover, phos-
phorylated MLKL was still present in the tetramers (Fig. 7B,
lane 8). The RIPK3 polymers did not form in Nec-1–treated
samples but still formed in NSA-treated samples (Fig. 7C, lanes
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3 and 4). Importantly, MLKL polymers did not form in NSA-
treated samples (lane 8), indicating that NSA conjugation to

cysteine 86 of MLKL blocks MLKL polymer formation. This
again suggests that MLKL polymers and RIPK3 polymers are
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distinct entities. On the gel filtration column, in both T/S/Z- and
T/S/Z plus NSA-treated samples, RIPK3 migrated to the void
volume, consistent with the SDD-AGE result. However, in the
T/S/Z plus NSA-treated sample, MLKL did not migrate to the
void volume, confirming that NSA blocked MLKL polymer
formation (Fig. 7D, lane 1). NSA also blocked MLKL polymer
formation in HT-29 cells (Fig. S2). It has been shown that NSA
enhances necrosome formation (14, 16). We examined its effect
on phosphorylated MLKL. Consistent with previous results, NSA
increased RIPK3 interaction with RIPK1 and MLKL. Interestingly,
it also enhanced the presence of phosphorylated MLKL in the
necrosome (Fig. 7E, lane 6). With T/S/Z plus NSA treatment,
RIPK3, RIPK1, and MLKL still translocated to the membrane
fraction (Fig. 7F, lane 6). However, less phosphorylated MLKL was
present in the membrane fraction compared with T/S/Z treatment
alone (Fig. 7F, lanes 5 and 6). These results suggest that NSA en-
hances necrosome formation but blocks the polymerization of
MLKL tetramers and subsequent cell death (Fig. 7G).
NSA cannot conjugate mouse MLKL because mouse MLKL

lacks the cysteine corresponding to cysteine 86 of human MLKL
(14). It did not block necroptosis efficiently in mouse L929 cells
(Fig. 7H). It also did not block tetramer formation (Fig. 7H, lane

4). During necroptosis mouse MLKL formed polymers that
could be dissociated with DTT incubation, suggesting that they
are also disulfide bond-dependent (Fig. 7I, lane 3). Importantly,
Nec-1 totally blocked polymer formation, while NSA did not
(Fig. 7J), correlating with their ability to block cell death.

N-Terminal–Tagged MLKL Fails to Form Polymers to Promote Necroptosis.
It was reported that N-terminal–tagged MLKL could not in-
duce necroptosis (20, 26), but the reason is not well understood.
C-terminal Flag-tagged or N-terminal Flag-tagged MLKL was
overexpressed in MLKL-knockout HeLa cells. Both formed
tetramers (Fig. 7K). However, unlike MLKL-C-Flag, N-Flag-MLKL
failed to form large polymers (Fig. 7L). This correlated with
their ability to induce cell death (Fig. 7M), again suggesting
that polymer formation is essential for MLKL to induce
necroptosis.

Discussion
The following experiments lead us to believe that disulfide bond-
dependent MLKL fibers are necessary and sufficient for nec-
roptosis induction. (i) MLKL forms SDS-resistant polymers on
SDD-AGE. (ii) Large MLKL polymers elute in the void volume
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of gel filtration, with a size more than 2 million Da. (iii) MLKL
polymers are proteinase K-resistant. (iv) MLKL polymers are
fibers under EM. (v) MLKL polymers are independent of
RIPK1 and RIPK3 fibers. (vi) MLKL polymers are DTT-
sensitive. (vii) Recombinant NTD of MLKL forms polymers in
vitro. (viii) NTD polymers bind the amyloid dye Congo red.
(ix) The NTD with all cysteines mutated fails to form polymers in
vitro and in vivo. Moreover, it cannot induce necroptosis effi-
ciently. (x) NSA conjugation to cysteine 86 of human MLKL
blocks MLKL polymer formation and subsequent necroptosis.
(xi) N-terminal–tagged MLKL cannot form polymers, providing
a possible explanation for its inability to induce necroptosis,
shown previously (19, 26).
The MLKL polymers have some unique features. First, they

are disulfide bond-dependent, gain-of-function fibers. Although
some misfolded neurodegenerative proteins such as PrP and
SOD1 form loss-of function fibers that contain disulfide bonds
(39), here we show that disulfide bonds are required for the gain-
of-function activity of amyloid-like MLKL fibers. There is also
disulfide bond formation in the MAVS polymers, but it is not
required for MAVS activity (32). Second, the MLKL polymeri-
zation process has a relatively stable tetramer step, which is
separable from polymers. For example, NSA could preserve the
tetramers and block polymer formation, and N-Flag-MLKL
could form tetramers but could not form polymers. These re-
sults suggest that polymerization from tetramers to polymers is a
tightly regulated process. Third, unlike the β-sheet structure of
RIPK1 and RIPK3 amyloids (27), MLKL polymers possibly
contain mainly helical structures, because the entire NTD is
comprised of helixes (21, 40, 41). This is similar to the MAVS
and ASC polymers which are also comprised of α-helical bundles
and do not bind thioflavin T (32–34). It has been suggested that
amyloid fibrils be defined as “fibrillar polypeptide aggregates
with cross-β conformation” (42). We consider MLKL polymers
amyloid-like because they are fibrillar polypeptide aggregates
that bind the amyloid dye Congo red but possibly do not form
cross-β conformation.
MLKL localizes in a reducing environment of the cytosol, but

it still forms disulfide bonds upon necroptosis induction. One
possibility is that within the necrosome, the RIPK1/3 polymers
serve as a nucleating factor to concentrate and phosphorylate
MLKL, which induces MLKL conformation changes to a state in
which cysteines are in close proximity to form intra- and in-
termolecular disulfide bonds. Disulfide bond formation would
further stabilize the adopted conformation and facilitate down-
stream polymerization. A piece of supporting evidence is that
purified NTD spontaneously forms dimers and tetramers in vitro
(Fig. 4J). Moreover, in cultured cells, after the addition of
dimerizer, NTD-DmrB forms polymers instead of only dimers
despite the reducing cytosolic environment (Fig. 5C). These re-
sults suggest that NTD could undergo conformation shifts to
form disulfide bonds when brought together. A second possibility
is that the necroptotic signal generates a local burst of reactive
oxygen species (ROS), which could induce oxidation of MLKL.
A recent report demonstrated that upon necroptosis induction
mitochondria ROS promoted RIPK1 autophosphorylation and
RIPK3 recruitment (43). It is possible that the same mitochon-
dria ROS could regulate MLKL disulfide bond formation and
polymerization. There is also a possibility that MLKL tetramers
could be transported to an oxidizing environment, such as the
lumen of the endoplasmic reticulum or lysosome.
NSA conjugates cysteine 86 of human MLKL and blocks

MLKL polymer formation. However, the C86S mutant and
mouse MLKL without the corresponding cysteine still form
tetramers and polymers, suggesting that cysteine 86 itself is not
essential for polymer formation. One logical explanation is that
conjugated NSA occupies the space between the tetramer
building blocks and prevents them from coming close enough to
polymerize. This is supported by the facts that NSA does not
totally block tetramer formation and that the C86S mutant forms
polymers in the presence of NSA (Fig. 6).

N-terminal–tagged MLKL fails to form large polymers and
cannot induce necroptosis (19, 26). These results suggest that
the exact N-terminal sequences are important for polymer
formation in the cells. One possibility is that the bulky N-ter-
minal tag, like NSA conjugation, creates steric hindrance for
polymerization. Another possibility is that the exact N-terminal
sequences are involved in binding to other proteins or lipids on
the membranes, which are important for polymer formation.
Supporting evidence for membrane involvement in MLKL
polymerization is that recombinant NTD oligomerizes after
exposure to liposome (21). Furthermore, N-Flag-MLKL could
translocate to the plasma membrane (26), but it could not form
polymers (Fig. 7L), suggesting that polymerization occurs after
membrane translocation. NTD-4CS-DmrB also could trans-
locate to membrane fractions but could not form polymers
(Fig. 5), again suggesting that polymerization might occur on
the membranes.
Multiple models have been proposed for how MLKL executes

necroptosis. Our result that MLKL forms polymers does not
contradict the proposed models. It is possible that the reported
octamer (26) is another stable intermediate in the process of
forming polymers. It is also conceivable that the MLKL polymers
would generate a large insult on the membranes through exposed
positive charges. Alternatively, the MLKL polymers could recruit
ion channels or others to dysregulate their function. Further-
more, the MLKL polymers could potentially serve as platforms
to recruit and nucleate other downstream signaling molecules.
This sequential polymerization model has been demonstrated for
the ASC inflammasome, in which the sensors form amyloid fibers
to induce ASC fiber formation, which in turn induces caspase
1 fiber formation, eventually leading to caspase 1 activation (33,
34). It is worth mentioning that these potential polymer functions
are not mutually exclusive. Future experiments are needed to
elucidate the exact mechanism.
An interesting note is that fungi also use a pore-forming do-

main, termed the “HeLo-like” (HELL) domain, to induce cell
death (44). The HELL domain is an amyloid-controlled, cell
membrane-targeting, cell death-inducing domain. It also targets
a lipase to the membrane to help dismantle cell membrane. Most
interestingly, the HELL domain is homologous to the NTD of
MLKL. It seems that evolution has selected the MLKL-like
proteins for executing programmed necrosis. This raises many
interesting questions: How is MLKL polymerization regulated?
How is MLKL membrane targeting regulated? Are there other
proteins associated with MLKL at the membranes? Is a lipase
involved? Answering these questions would provide a clearer
picture of how MLKL induces necroptosis.

Materials and Methods
General Reagents and Stable Cell Lines. The antibodies and other reagents as
well as the methods for generating the stable cell lines are listed in
Supporting Information.

Nonreducing SDS/PAGE.Nonreducing SDS/PAGE is carried out as is regular SDS/
PAGE, except that cell lysates were mixed with SDS sampling buffer without
the reducing agent 2-Mercaptoethanol.

SDD-AGE and 2D SDD-AGE. A detailed protocol is described in ref. 36. Briefly,
1% agarose was boiled in 1× Tris-acetate-EDTA (TAE), and SDS solution was
added to a final of 0.1% to cast the gel. Cell lysates were loaded with sample
buffer (0.5× TAE, 5% glycerol, 2% SDS, and 0.02% bromophenol blue). The
gel was run at 4 V/cm gel length in 1× TAE with 0.1% SDS. The proteins were
transferred to a PVDF membrane with TBS buffer [20 mM Tris (pH 7.4) and
150 mM NaCl] using capillary transfer. The membrane was then processed by
Western blotting. For 2D analysis, an entire lane of the 1D gel was cut out
and laid in the gel-casting tray. The second gel was poured around the gel
slice and run as the regular SDD-AGE.

Cell Lysates and Immunoprecipitation. Cell pellets were lysed with five vol-
umes of lysis buffer [50mMTris (pH 7.4), 137mMNaCl, 1mMEDTA, 1%Triton
X-100, and 10% glycerol, supplemented with protease inhibitors] and in-
cubated on ice for 30 min. Cell lysates were spun down at 20,000 × g for
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15 min, and the supernatant was collected. Lysates (1 mg) were incubated
with 20 μL anti-Flag agarose at 4 °C overnight. The beads were washed five
times with lysis buffer and eluted with 60 μL elution buffer (0.2 M glycine,
pH 2.8) for 5 min. The eluates were immediately neutralized with 6 μL of 1 M
Tris, pH 7.4.

For crude membrane fractionation, cell pellets were resuspended in five
volumes of buffer A [20 mM Tris (pH 7.4), 10 mM KCl, and 1 mM MgCl2] and
incubated on ice for 20min. The cells were passed through a 22-gauge needle
30 times and centrifuged at 500 × g for 10 min. The supernatant was
centrifuged again at 20,000 × g for 10 min and saved as cytosol fraction. The
pellet was extracted with lysis buffer, centrifuged at 20,000 × g for 10 min,
and saved as the crude membrane fraction.

Negative Staining. Two hundred mesh carbon/formvar-coated copper grids
were rendered hydrophilic by glow-discharge in air. Protein sample (5 μL) was
applied to the grid and incubated for 30 s. After wicking, the samples were
stained with 5 μL of 1% uranyl acetate for 1 min, wicked, and air dried for a
minimum of 15 min. Images were obtained on a FEI Tecnai G2 Spirit
electron microscope.

Cell Death Assays. (i) The CellTiter-Glo assay (Promega) was performed
according to the manufacturer’s instructions. Luminescence was recorded
with a Synergy 2 machine (BioTek). (ii) For PI staining, 2,000 cells were plated
in each well of a 96-well glass-bottomed plate. After cell death induction,
1 μM PI and 10 μg/mL DAPI were added to cells for 10 min at room tem-
perature. Images were taken using a Cytation 3 machine (BioTek). Percent-
age of cell death was calculated by dividing the number of PI+ cells by the
number of DAPI+ cells. (iii) SYTOX Green staining was performed as for PI

staining except that 1 μM SYTOX Green was used. Three wells were used for
each treatment.

Recombinant Protein Purification and Polymerization. cDNA encoding amino
acids 2–178 of humanMLKL was cloned into pGEX-4T vector. Cysteine mutants
were generated by site-directed mutagenesis. GST fusion proteins were puri-
fied from BL21 Escherichia coli cells with glutathione-Sepharose beads (GE)
according to the standard protocol. The GST tag was cleaved from beads with
thrombin. The proteins were further purified through gel filtration and
Q-Sepharose columns. (i) Purified NTD was dialyzed against PBS buffer and
incubated at 37 °C in PBS buffer containing 0.1% Triton X-100 for polymeri-
zation. (ii) Aβ42 peptide (AnaSpec) was dissolved in double-distilled H2O at
350 μM. It was diluted in PBS containing 0.1% Triton X-100 to a final con-
centration of 10 μM and incubated at 37 °C for polymerization.

Congo Red Binding. Congo red was dissolved in PBS to 100 μM and passed
through a 0.22-μm filter. Polymers were incubated with 50 μM of Congo red
at room temperature for 10 min, and the absorbance was measured with a
wavelength scan from 400–600 nm using a Synergy 2 machine (BioTek).
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