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In the absence of advection, confined diffusion characterizes trans-
port in many natural and artificial devices, such as ionic channels,
zeolites, and nanopores. While extensive theoretical and numerical
studies on this subject have produced many important predictions,
experimental verifications of the predictions are rare. Here, we
experimentally measure colloidal diffusion times in microchannels
with periodically varying width and contrast results with predic-
tions from the Fick–Jacobs theory and Brownian dynamics simula-
tion. While the theory and simulation correctly predict the entropic
effect of the varying channel width, they fail to account for hydro-
dynamic effects, which include both an overall decrease and a spa-
tial variation of diffusivity in channels. Neglecting such hydrody-
namic effects, the theory and simulation underestimate the mean
and standard deviation of first passage times by 40% in channels
with a neck width twice the particle diameter. We further show that
the validity of the Fick–Jacobs theory can be restored by reformu-
lating it in terms of the experimentally measured diffusivity. Our
work thus shows that hydrodynamic effects play a key role in dif-
fusive transport through narrow channels and should be included
in theoretical and numerical models.
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D iffusive transport occurs prevalently in confined geometries
(1, 2). Notable examples include the dispersion of tracers in

permeable rocks (3), diffusion of chemicals in ramified matrices
(4), and the motion of submicrometer corpuscles in living tissues
(5, 6). The subject of confined diffusion is of paramount rele-
vance to technological applications and for this reason, has been
generating growing interest in the physics (1, 2), mathematics (7),
engineering (3), and biology communities (5, 6, 8).

Spatial confinement can fundamentally change equilibrium and
dynamical properties of a system via two different effects: lim-
iting the configuration space accessible to its diffusing compo-
nents (1) and increasing the hydrodynamic drag (9) on them.
The former (entropic effect) has been extensively studied analyt-
ically and numerically in the case of quasi-1D structures, such as
ionic channels (10), zeolites (4), microfluidic channels (11, 12),
and nanopores (13). In these systems, transport takes place along
a preferred direction, with the spatial constraints varying along
it. Focusing on the transport direction, Jacobs (14) and Zwanzig
(15), in the absence of advective effects, assumed that the trans-
verse dfs equilibrate fast and proposed to eliminate them adia-
batically by means of an approximate perturbation scheme. In
first order, they derived a reduced diffusion equation, known as
the Fick–Jacobs (FJ) equation, reminiscent of an ordinary 1D
Fokker–Planck equation in vacuo, except for two entropic terms
(2, 16–19). Predictions of the FJ equation have been extensively
checked against Brownian dynamics (BD) simulations in different
types of channels (16, 19–27). Using the FJ theory and BD simula-
tions, researchers have predicted a variety of novel entropy-driven
transport mechanisms, such as drive-dependent mobilities (2, 18,
20), stochastic resonance (28, 29), absolute negative mobilities

(30), entropic rectification (31, 32), and particle separation (33).
Several of these predictions are presently recognized as being of
both fundamental and technological importance.

While these previous studies (2, 14–33) significantly improved
our understanding of the entropic effects of confining bound-
aries, they largely ignored the hydrodynamic effects, which
are notoriously difficult to treat analytically and in simulations
(9, 34). How will hydrodynamic effects change the established
entropic picture? To address this important question, we turn
to laboratory experiments (12, 35–39) and measure the diffu-
sive dynamics of micrometric colloidal particles through chan-
nels with systematically modulated cross-sections. Contrasting
the experimental results with predictions obtained by FJ approx-
imation and from BD simulation, we discover that, as the chan-
nel’s width shrinks toward the particle’s diameter, hydrodynamic
effects (9, 34, 40–43) grow in strength and become comparable
with the predicted entropic effects, thus indicating an unexpected
breakdown of the standard FJ theory and BD simulation in nar-
row channels. We further show that hydrodynamic effects can be
incorporated by using an experimentally measured local diffusiv-
ity. With such a phenomenological modification, the FJ theory
and BD simulation accurately predict the experimental data.

Results
Our channels were fabricated on a coverslip by means of a
two-photon direct laser writing system, which solidifies polymers
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according to the preassigned channel profile, f (x ), with a sub-
micromicrometer resolution. As shown in Fig. 1A, the quasi-2D
channel has a uniform height of 2.5µm (z direction). The curved
side walls are 0.7 -µm thick, and their inner side walls are a dis-
tance ±h(x ) away from the channel’s axis (x direction).

After fabrication, channels were immersed in water with flu-
orescently labeled Polystyrene spheres of radius r = 0.5µm. A
holographic optical tweezer was used to drag a particle into the
channel through a narrow entrance (red asterisks in Fig. 1A). The
entrances are barely wider than the particle diameter so as to
create insurmountable entropic barriers (2), which prevent the
particle inside the channel from escaping. Particle motion in the
quasi-2D channel was recorded through a microscope at rate of
30 frames per second for up to 20 h (see Movie S1 for a short
segment of typical data). The projected particle trajectory in the
xy plane was extracted from the recorded videos by standard
particle-tracking algorithms; particle diffusion perpendicular to
the imaging xy plane was not resolved in our measurements.

Inside the channels, the particle diffuses in a flat energy land-
scape. To show that, we quantized the measured particle coor-
dinates (x , y) into small bins (0.4 × 0.25 µm2) and counted the
number of times that the particle enters each bin. As shown in

Fig. 1. (A) Scanning electron image of a channel of inner height 2.5 µm.
Narrow openings at the two ends are marked by red asterisks. Inset illus-
trates the channel’s geometry: the laser-scanning contour, f(x), the wall
inner boundary, h(x), and the effective boundary of the space accessible
to the particle center, g(x); dt ' 0.7 µm and r = 0.5 µm are the wall thick-
ness and the particle radius, respectively. (B) Spatial distribution of particle
counts in a typical 20-h-long experiment. The effective channel boundary is
marked by black lines and is denoted by ±g(x) (Eq. 1); here, gn = 0.5 µm,
and gw = 4.5 µm.

Fig. 1B, particle counts are uniformly distributed with a standard
deviation (SD) of about 12% of the mean. Regions where the
particle counts drop sharply to zero are inaccessible to the parti-
cle’s center and in Fig. 1B, are delimited by the black curves (Fig.
2A, Inset). The effective channel’s boundary [denoted by g(x )] is
a periodic function; in the central region, the boundary was given
the form of a cosine, which then tapers off to a constant in corre-
spondence with the bottlenecks, that is

g(x ) =


1

2
(gw + gn) +

1

2
(gw − gn) cos

(
16πx

7L

)
, |x | < 7

16
L

gn ,
7

16
L ≤ |x | ≤ L

2

.

[1]

The length of the channel unit cell was kept fixed in all experi-
ments, L= 12.5µm, while the parameters gn and gw , represent-
ing its minimum and maximum half-width, respectively, were
varied. For the channel shown in Fig. 1B, gn = 0.5µm, and
gw = 4.5µm.

First Passage Time Statistics. From acquired particle trajectories,
we measured the first passage times (FPTs) (7, 44, 45). As in
the FJ theory, we focus on the particle motion along the channel
direction and measure the duration of the unconditional first pas-
sage events that start at x = 0 (red segment in Fig. 2A, Inset) and
end at x =±∆x (blue segments in Fig. 2A, Inset), with no restric-
tion on the transverse coordinate y . Distributions of experimen-
tally measured unconditional FPTs, also denoted by T (±∆x |0),
are plotted in Fig. 2 A and B; all distributions (for three ∆x
values in two channels of different bottleneck half-width, gn)
exhibit an exponential tail, similar in spirit with the narrow
escape problem (7). From these measured FPT distributions, we
extract the means, 〈T (±∆x |0)〉, and the SDs, σT (±∆x |0) :=√
〈T 2(±∆x |0)〉 − 〈T (±∆x |0)〉2; our results are plotted in Fig.

2 C–F against the diffusing distance, ∆x . A decrease of the bot-
tleneck width, gn , from 1.5µm in Fig. 2C to 0.5µm in Fig. 2D
sharply increases the diffusion time. For instance, the mean FPT
to the center of the adjacent cells, 〈T (±L|0)〉, nearly triples from
300 s in Fig. 2C to 900 s in Fig. 2D. A similar increase can be
observed in the SDs, σT (±∆x |0), depicted in Fig. 2 E and F.
To this regard, we notice that, for both channels, the experimen-
tal curves 〈T (±∆x |0)〉 and σT (±∆x |0) almost overlap, which
is to be expected in view of the exponential decay of the rele-
vant FPT distributions (45). We note that the long-time chan-
nel diffusion coefficient (1) Dch = limt→∞〈[x (t)− x (0)]2〉/(2t)
can be estimated in terms of an appropriate mean FPT: that is
(45), Dch =L2/(2〈T (±L|0)〉). In periodically corrugated chan-
nels, Dch has been estimated within the FJ formalism by means
of the Lifson–Jackson formula for diffusivity (46).

We next compare our experimental data with the predictions
of the standard FJ theory and BD simulations. The channel
geometry renders our experimental system effectively 2D; ana-
lytical and numerical studies were carried out in the same dimen-
sion. Following the FJ scheme and taking advantage of sym-
metry properties of our experiments, we calculate the analytical
expression,

〈TFJ (±∆x |0)〉 =

∆x∫
0

dη

g(η)D(η)

η∫
0

g(ξ)dξ, [2]

for the mean FPT. Here, D(x ) is the effective local diffusivity
containing the entropic corrections that result from the adiabatic
elimination of the transverse coordinate, y . Among the (slightly)
different functions D(x ) proposed in the recent literature (21),
we adopted the Reguera–Rub̀ı heuristic expression (16), that is,

D(x ) =
D0

[1 + g ′(x )2]
1
3

, [3]
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Fig. 2. (A and B) Probability distributions, (C and D) averages, and (E and F) SDs of the FPTs in (A, C, and E) wide (gn = 1.5 µm) and (B, D, and F) narrow
(gn = 0.5 µm) channels with the same maximum half-width, gw = 4.5 µm. In A and B, experimental data (symbols) are compared with the outcome of
BD simulations (curves) for the spatially modulated diffusivity, Dhyd(x). The relevant channel profiles, ±g(x), are shown in A, Inset and B, Inset; vertical
dashed segments mark the starting (red: x = 0) and ending (blue: x =±∆x) positions of the first passage events. In C–F, experimental, numerical, and
theoretical results are shown as solid symbols, open symbols, and solid curves, respectively. Numerical and theoretical results with constant D0 and varying
Dhyd diffusivity are color-coded orange and green, respectively.

where g ′(x ) is the slope of the channel’s profile g(x ), and D0 is
the particle’s diffusivity away from side walls. We also calculated
the second FPT moment,

〈T 2
FJ (±∆x |0)〉 =

∆x∫
0

2dη

g(η)D(η)

η∫
0

g(ξ)〈TFJ (±∆x |ξ)〉dξ,

[4]

where 〈TFJ (±∆x |ξ)〉 reads like in Eq. 2, except that the outer
integral runs here from ξ to ∆x . The derivation of Eqs. 2 and 4
can be found in SI Appendix.

To use Eqs. 2 to 4, one needs to know the diffusivity D0. In
an unbounded space, the diffusivity of a sphere coincides with
the Stokes–Einstein value, DSE . However, a general expression
for the diffusivity of a colloidal particle in a confined geome-
try is not available. Hence, we experimentally measured D0 by
monitoring the diffusion of the particle about the center of a
channel’s cell, where the entropic effects are minimal, and for
displacements smaller than one particle radius. Eqs. 2 and 4
were then computed explicitly for the measured value of D0

and the actual channel geometry (namely, the parameters gn ,
gw , and L). For the sake of a comparison, 2D BD simulations
were also performed for the same model parameters. Theoret-
ical and numerical results (orange symbols and curves in Fig. 2
C–F) agree closely with each other for both the wide and narrow
channels. The comparison with the experimental data, instead,
is satisfactory only in the case of the wide channel (Fig. 2 C and
E). For the narrow channel in Fig. 2 D and F, the experimen-
tal data with ∆x > 6µm are as much as 40% larger than the
predicted values. To further investigate this discrepancy, we car-
ried out experiments in channels with different width parame-
ters, gw and gn ; the discrepancy is quantified in Fig. 3 by the rel-
ative mean–FPT difference at ∆x =L/2 (bottleneck midpoints),

EFJ = [〈T (±L/2|0)〉 − 〈TFJ (±L/2|0)〉]/〈TFJ (±L/2|0)〉. For
narrow channels, the experimental values are consistently larger
than the corresponding theoretical and numerical predictions.
The discrepancy depends weakly on the amplitude of the channel
modulation, gw − gn , but increases significantly with decreasing
bottleneck half-width, gn .

Diffusivity Measurements. The theoretical and numerical predic-
tions discussed so far assume a constant particle diffusivity, D0,
throughout the channel, which is a reasonable approximation for
particle diameters much smaller than the channel width. How-
ever, this assumption is doomed to fail for small bottleneck
widths (when the FJ approach is supposed to work best), because
the proximity of no slip side walls in the neck regions is known
to increase the hydrodynamic drag on a finite-sized particle and
therefore, suppress its local diffusivity (40–43, 47, 48).

To show such a hydrodynamic effect in our device, we mea-
sured the particle diffusivity inside the channel. At any given
location, (x , y), we recorded the particle mean-squared displace-
ment in the x direction, 〈δx2(x , y)〉, for a time interval δt =
0.2 s and estimated the local diffusivity through Einstein’s law,
D(x , y) = 〈δx2(x , y)〉/(2δt). As shown in SI Appendix, the value
chosen for δt is long enough to ensure good statistics for our
measurements of D(x , y); during δt , particle displacements are
smaller than 0.5µm, so that channel corrugation does not affect
diffusivity measurements (46). Measurements of D(x , y) in the
wide and narrow channels are shown in Fig. 4 A and B. In both,
D(x , y) is largest in the open regions at the center of the unit
cells and strongly suppressed in the bottlenecks. In the spirit of
the FJ theory, we average D(x , y) along the transverse direction

Dhyd (x ) :=
1

2g(x )

g(x)∫
−g(x)

D(x , y)dy [5]
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Fig. 3. Deviation of theoretical predictions from experimental results,
EFJ (definition in the text), increases with decreasing the bottleneck half-
width, gn, and weakly depends on the modulation amplitude, gw − gn, of
the channel.

and plot Dhyd(x )/D0 as a function of x in Fig. 4C. The spatial
variabilities of Dhyd(x ) are about 10 and 40% for the wide and
narrow channels, respectively.

We corroborate the local diffusivity measurements with full
hydrodynamic computations. The hydrodynamic friction coeffi-
cient in the x direction γ(x , y) was computed by means of a finite
element package (COMSOL); the local diffusivity was calculated
via the fluctuation–dissipation theorem, D(x , y) = kBT/γ(x , y),
and the result is averaged over the y coordinate to obtain
Dhyd(x ). Results from finite element calculations are shown in
Fig. 4C as curves and are in excellent agreement with the experi-
mental data.

Hydrodynamic Correction. Fig. 4 depicts that particle diffusion
through narrow bottlenecks can be significantly slower than in
the wide region; moreover, the spatial modulation of the local
particle diffusivity increases with decrease in the bottleneck
width, which explains the results in Fig. 3. This spatial modula-
tion is in clear contrast with the assumption of constant diffusiv-
ity that we adopted above when implementing the FJ formalism
and the BD simulation code. To appreciate the effect of the spa-
tial dependence of the local diffusivity, we replace the constant
diffusivity, D0, with the experimental measurement, Dhyd(x ),
reported in Fig. 4C, both in the theoretical treatment and in
the numerical code. The analytical and numerical predictions are
plotted in Fig. 2 C–F as green curves and symbols, respectively.
Their agreement with the experimental data is excellent. Fur-
thermore, we used the improved BD code to also compute, other
than the first two FPT moments, the FPT distributions displayed
in Fig. 2 A and B. Again, the close comparison obtained with the
experimental data confirms the validity of our phenomenological
approach.

Discussion
The coincidence of approximate analytical predictions and simu-
lation results occurs for any choice of the local diffusivity [i.e.,
D0 or Dhyd(x )] as illustrated in Fig. 2. This means that the
FJ theory well-describes the entropic effects of particle trans-
port in weakly corrugated channels with |g ′(x )|< 1 (21). How-
ever, assuming constant particle diffusivity, as is common prac-
tice in the current literature, can lead to large discrepancies
between theoretical predictions and experimental observations.
Indeed, to correctly analyze the diffusion of finite-sized parti-

cles in narrow channels, one needs to account for the hydro-
dynamic effects as well. Because there is no general analyti-
cal solution for particle diffusivity in a corrugated confinement,
we substituted the constant diffusivity, D0, with an empirical
function from experimental measurements, Dhyd(x ). The sub-
stitution D0→Dhyd(x ) in Eq. 3 suggests a phenomenological
factorization of entropic and hydrodynamic effects, with valid-
ity that is justified a posteriori by the reported close compari-
son with the experimental data. In conclusion, we have shown
that, by making use of the measured diffusivity Dhyd(x ) in
Fig. 4C, the FJ theory can be improved to accurately pre-
dict the FPT statistics of Fig. 2; the FJ approach thus remains
a powerful analytical tool to investigate diffusion in complex
channels.

As shown in Fig. 4 A and B, the local diffusivity, D(x , y),
displays a rich 2D structure, which cannot be analytically pre-
dicted. The comparison with a more tractable geometry helps
illustrate the phenomenon of the hydrodynamic diffusivity sup-
pression advocated above. For a spherical particle of a radius r
diffusing along the axis of a relatively long cylinder (34, 49), the
particle diffusivity is approximated by

Fig. 4. (A and B) Normalized local diffusivity from experiments, D(x, y)/
D0, measured in the wide and narrow channels of Fig. 2. (C) Normal-
ized diffusivity, Dhyd(x)/D0, vs. x. Experimental data and results from
finite element calculations are represented by symbols and curves,
respectively. Experimentally measured D0 values are 0.29 and 0.27 µm2/s
for wide and narrow channels, respectively; the Stokes–Einstein equa-
tion predicts a sphere diffusivity of DSE = 0.5 µm2/s in an unbounded
space.

Yang et al. PNAS | September 5, 2017 | vol. 114 | no. 36 | 9567



Dcyl ≈ DSE

[
1− 2.104

( r

R

)
+ 2.089

( r

R

)3
]
, [6]

where R denotes the cylinder radius. According to Eq. 6, par-
ticle diffusivity in confined geometries is generally smaller than
in an unbounded space. In our channels, the maximum diffusiv-
ity D0 is about 60% of the Stokes–Einstein predicted value, DSE
(Fig. 4). Diffusivity also tends to decrease as the confinement
grows tighter (i.e., for larger r/R); this qualitatively explains why
diffusivity is smaller in the necking regions of our channel. In
certain applications, such as the entropic splitters (33), one has
recourse to tight confinement to generate high entropic barri-
ers; we expect hydrodynamically suppressed diffusion to play an
important role in these situations and possibly boost the separa-
tion efficiency.

In this work, we focused on the nonadvective diffusion of a
single particle, although technological applications often involve
many suspended particles driven by external fields (12, 35–
38). Particle transport is certainly complicated by excluded vol-
ume and hydrodynamic interactions between nearby particles in
dense suspensions. Moreover, external driving may prevent the
system from equilibrating in the transverse directions and pro-
duce even more complex transport patterns (20); it can also
cause additional hydrodynamic effects (36, 37, 50). The experi-
mental setup and the data analysis methods presented here pro-
vide a promising framework for future systematic investigations
of these important and challenging problems.

Materials and Methods
Channel Fabrication and Imaging Procedure. Microchannels were fabricated
with a two-photon direct laser writing system (µFAB3D from Teem Pho-
tonics). This system uses a microscope objective lens (Zeiss Fluar 100×, N.A.
1.3) to focus pulsed laser (Nd:YAG microchip laser with 532-nm wavelength,
750-ps pulse width, and 40-kHz repetition rate) into a droplet of photore-
sist resin that is mounted on a piezo-nanopositioning stage (Physik Instru-
mente model P-563.3CL). We used a polymer resin ORMOCOMP (Micro
Resist Technology GmbH) with a photoinitiator [1,3,5-Tris(2-(9-ethylcabazyl-

3)ethylene)benzene]. Photopolymerization occurs and solidifies the resin at
the focal point; the piezo stage scans the resin relative to the focal point
along a preassigned trajectory [f(x) in Fig. 1A, Inset] to fabricate the desired
structure. After the scanning is finished, the remaining liquid resin was
removed by washing the structure with 4-methyl-2-pentanone and then ace-
tone for 5 min. Then, channels were thoroughly cleaned with distilled water
to prevent particles from sticking to the channel boundaries.

Fluorescently labeled Polystyrene particles were purchased from Invit-
rogen (catalog no. F13080). Particle motion was recorded through a 60×
oil objective (N.A. 1.3) in an inverted fluorescent microscope (Nikon Ti-E).
With the help of an autofocus function (Nikon Perfect Focus), we imaged
the diffusion of a colloidal particle in the channel for up to 20 h at room
temperature (27 ◦C).

BD Simulation. The motion of a colloid particle is governed by a 2D over-
damped Langevin equation in simulations. The particle diffusivity varies
spatially when the diffusivity function Dhyd(x) is used; for thermodynamic
consistency, we adopted the transport (also known as kinetic or isothermal)
convention (51–54) to compute the stochastic integral (51, 55). The channel
boundary was represented by a string of fixed particles, which interact with
the colloidal particle via a short-range repulsive force. Particle trajectories
from simulation were analyzed in the same way as their experimental coun-
terpart to extract the effective volume of the channel’s unit cell and the
FPTs. SI Appendix has more details.

Finite Element Calculation. We solved the Stokes equations in a typical setup
shown in SI Appendix, Fig. S2A. No slip boundary conditions were imposed
on the side walls, floor, and ceiling, and open boundary conditions were
imposed at the channel openings. The geometry of the side wall was set to
reproduce the inner channel boundary measured in the experiments (Fig.
1A, Inset). A sphere was driven with a constant speed, vx , in the x direction;
at different points, (x, y) is on a horizontal plane. We measured the drag
force, fx , and computed the hydrodynamic drag coefficient, γ(x, y) = fx/vx .
SI Appendix has more details.

ACKNOWLEDGMENTS. We thank Mingcheng Yang and Xiaqing Shi for use-
ful discussions. We acknowledge the financial support of National Natural
Science Foundation of China Grants 11422427 and 11505128 and Program
for Professor of Special Appointment at Shanghai Institutions of Higher
Learning Grant SHDP201301.

1. Hänggi P, Marchesoni F (2009) Artificial brownian motors: Controlling transport on
the nanoscale. Rev Mod Phys 81:387–442.

2. Burada PS, Hänggi P, Marchesoni F, Schmid G, Talkner P (2009) Diffusion in confined
geometries. ChemPhysChem 10:45–54.

3. Berkowitz B, Cortis A, Dentz M, Scher H (2006) Modeling non-fickian transport
in geological formations as a continuous time random walk. Rev Geophys 44:
RG2003.

4. Kärger J, Ruthven DM (1992) Diffusion in Zeolites and Other Microporous Solids (John
Wiley, New York).

5. Zhou HX, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: Bio-
chemical, biophysical, and potential physiological consequences. Annu Rev Biophys
37:375–397.

6. Bressloff PC, Newby JM (2013) Stochastic models of intracellular transport. Rev Mod
Phys 85:135–196.

7. Benichou O, Voituriez R (2014) From first-passage times of random walks in confine-
ment to geometry-controlled kinetics. Phys Rep 539:225–284.

8. Hofling F, Franosch T (2013) Anomalous transport in the crowded world of biological
cells. Rep Prog Phys 76:046602.

9. Deen WM (1987) Hindered transport of large molecules in liquid-filled pores. AIChE J
33:1409–1425.

10. Hille B (2001) Ion Channels of Excitable Membranes (Sinauer, Sunderland, MA).
11. Kettner C, Reimann P, Hänggi P, Müller F (2000) Drift ratchet. Phys Rev E 61:

312–323.
12. Matthias S, Müller F (2003) Asymmetric pores in a silicon membrane acting as mas-

sively parallel brownian ratchets. Nature 424:53–57.
13. Wanunu M, et al. (2010) Rapid electronic detection of probe-specific micrornas using

thin nanopore sensors. Nat Nanotechnol 5:807–814.
14. Jacobs M (1967) Diffusion Processes (Springer, New York).
15. Zwanzig R (1992) Diffusion past an entropy barrier. J Phys Chem 96:3926–3930.
16. Reguera D, Rubi JM (2001) Kinetic equations for diffusion in the presence of entropic

barriers. Phys Rev E 64:061106.
17. Kalinay P, Percus JK (2006) Corrections to the Fick-Jacobs equation. Phys Rev E

74:041203.
18. Reguera D, et al. (2006) Entropic transport: Kinetics, scaling, and control mechanisms.

Phys Rev Lett 96:130603.
19. Berezhkovskii AM, Pustovoit MA, Bezrukov SM (2007) Diffusion in a tube of varying

cross section: Numerical study of reduction to effective one-dimensional description.
J Chem Phys 126:134706.

20. Burada PS, Schmid G, Reguera D, Rubi JM, Hänggi P (2007) Biased diffusion in con-
fined media: Test of the Fick-Jacobs approximation and validity criteria. Phys Rev E
75:051111.

21. Berezhkovskii AM, Dagdug L, Bezrukov SM (2015) Range of applicability of modified
Fick-Jacobs equation in two dimensions. J Chem Phys 143:164102.

22. Ai BQ, Liu LG (2006) Current in a three-dimensional periodic tube with unbiased
forces. Phys Rev E 74:051114.

23. Dagdug L, Berezhkovskii AM, Makhnovskii YA, Zitserman VY, Bezrukov SM (2011)
Communication: Turnover behavior of effective mobility in a tube with periodic
entropy potential. J Chem Phys 134:101102.

24. Borromeo M, Marchesoni F (2010) Particle transport in a two-dimensional septate
channel. Chem Phys 375:536–539.

25. Bradley RM (2009) Diffusion in a two-dimensional channel with curved midline and
varying width: Reduction to an effective one-dimensional description. Phys Rev E
80:061142.

26. Dagdug L, Pineda I (2012) Projection of two-dimensional diffusion in a curved midline
and narrow varying width channel onto the longitudinal dimension. J Chem Phys
137:024107.

27. Bauer M, Godec A, Metzler R (2014) Diffusion of finite-size particles in two-
dimensional channels with random wall configurations. Phys Chem Chem Phys
16:6118–6128.

28. Burada PS, et al. (2008) Entropic stochastic resonance. Phys Rev Lett 101:130602.
29. Ding H, Jiang HJ, Hou ZH (2015) Entropic stochastic resonance without external force

in oscillatory confined space. J Chem Phys 142:194109.
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