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Objectives: Detection of vertical root fractures (VRFs) in their initial stages is a crucial issue,
which prevents the propagation of injury to the adjacent supporting structures. Designing
a suitable neural network-based model could be a useful method to diagnose the VRFs. The
aim of this study was to design a probabilistic neural network (PNN) to diagnose the VRFs in
intact and endodontically treated teeth of periapical and CBCT radiographs. Also, we have
compared the efficacy of these two imaging techniques in the detection of VRFs.
Methods: A total of 240 radiographs of teeth (120 radiographs of teeth with no VRFs and
120 teeth with vertical fractures, with half of the teeth in each category treated endodontically
and the remaining half intact, i.e. not endodontically treated) were used in 3 groups for
training and testing of the neural network as follows: Group 1, 180/60; Group 2, 120/120; and
Group 3, 60/180. First, Daubechies 3 wavelet was applied to acquire the image analysis
coefficients on two planes; then Gabor filters were used to extract the image characteristics,
which were used to educate the PNN. The designed neural network was able to diagnose and
classify teeth with and without VRFs. In addition, in order to determine the best training and
test sets in the network, the variance of the function of network changes was manipulated at
a range of 0–1 and the results were assessed in terms of the parameters evaluated, including
sensitivity, specificity and accuracy.
Results: In the periapical radiographs, the maximum accuracy, sensitivity and specificity
values in the three groups were 70.00, 97.78 and 67.7%, respectively. These values in the
CBCT images were 96.6, 93.3 and 100%, respectively, at the variance change range
of 0.1–0.65.
Conclusions: The designed neural network can be used as a proper model for the diagnosis of
VRFs on CBCT images of endodontically treated and intact teeth; in this context, CBCT
images are more effective than similar periapical radiographs. Limitations of this study are
the use of sound one-rooted premolar teeth without carious lesions and dental fillings and not
simulating the adjacent anatomic structures. Further in vitro work using a full-skull
simulation for CBCT and skin/bone simulation is needed.
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Introduction

Vertical root fractures (VRFs) are rare events that
mainly occur in endodontically treated teeth that have
received posts without receiving a crown and are subject
to trauma.1 In such cases, the width of the fracture
plane increases over time.2 Early diagnosis of root
fractures in their initial stages prevents the propagation
of injury to the adjacent supporting structures.3

The ability of intraoral images to detect root fractures
depends on the X-ray beam angulation and the amount
of separation of the fractured segments.4 If the X-ray
beam is parallel to the plane of the fracture, a single and
very distinct radiolucent line will be evident on the root
anatomy. However, if the X-ray beam is oblique relative
to the plane of the fracture, the fracture line will be
visible as a single indistinct line or as two lines that
converge on the mesial and distal surfaces of the root.5

In recent years, CBCT imaging technique with a high
resolution and varying sensitivity and specificity has
been widely used for the diagnosis of VRFs. This im-
aging technique allows the operator to evaluate the
fracture in different planes. However, various factors
including artefacts resulting from the root canal obtu-
ration materials, metallic posts and the absence of sep-
aration of fractured segments have made it a challenge
to diagnose such fractures with use of this imaging
technique.6–8

An artificial neural network is a pattern for process-
ing data, which is constructed using neural networks
such as the human brain.9 The key element of this
pattern is the new structure of its data-processing sys-
tem, which is composed of a large number of elements
(neurons) with strong internal connections that operate
harmoniously to solve specific problems.10 In such
networks, programming science is used to design a data
structure than can function as a neuron. Such a data
structure is referred to as a node. Then, this network is
trained by creating connections between these nodes
and application of a training algorithm to the network.
In a neural network, the nodes have two states of active
(on or 1) and inactive (off or 0) and each synapse or
connection between the nodes has a weight. Synapses
with a positive weight stimulate or activate the next in-
active node and synapses with a negative weight in-
activate or inhibit the next node (if it is active).11

Generally, there are three neuron layers in neural net-
works, including (1) the input layer, which is responsible
for receiving raw data; (2) the hidden layer, whose per-
formance is determined by inputs and the weight of their
connections with the hidden layers; and (3) the output
layer, whose performance depends on the activity of the
hidden layer and the weight of the relationship between
the hidden layer and the output layer.12

In the present study, a probabilistic neural network
(PNN) was designed to diagnose the VRFs in intact and
endodontically treated teeth of periapical and CBCT
radiographic images. First, Daubechies 3 wavelet

transform13 was applied to acquire the image coefficients
in two states. Then, Gabor filters14 were used to extract
image characteristics, which were used to train the PNN.
The neural network designed this way was able to di-
agnose and categorize teeth with and without VRFs.
Furthermore, the variable of the function of changes in the
network was manipulated at a range of 0–1 in order to
determine the best training and test sets in the network,
followed by evaluation of sensitivity, specificity and ac-
curacy as the study parameters.

Methods and materials

Preparation of teeth and the imaging protocol
The teeth under study consisted of extracted sound one-
rooted premolars with no carious lesions. The teeth were
rinsed and cleaned with brushes and stored in formalin.
Then, they were evaluated under a microscope at320 for
the presence or absence of any fractures. After selection

Figure 1 The stages of the application of Daubechies 3 wavelet
transform to the input image.

Figure 2 The structure of the probabilistic neural network: a, the
output vector in radial basis; b, the amount of bias; c, the output
vector in the competitive layer; d, the input vector in the competitive
layer; k, the number of classes (with fracture and without fracture);M,
the weight matrix in the competitive layer; n, the input vector in radial
basis; p vector, the input variable; Q, the training vector; R, the
number of variables; W, the weight matrix.
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of 240 teeth, half of them (n5 120) underwent end-
odontic procedures and the remaining 120 teeth were left
intact. The tooth crowns were removed at 2mm apical to
the Cementoenamel Junction. The root canals were
prepared with the ProTaper® (Dentsply Maillefer, Bal-
laigues, Switzerland) rotary system up to #F5 and
obturated with ProTaper #F5 gutta percha points. The
teeth were fixed in an acrylic resin box using 1-mm-thick
wax. 60 endodontically treated teeth and 60 intact teeth
were connected to a universal testing machine at a 60°
angle and received a force until they fractured. Then, the
teeth were retrieved from the wax and re-evaluated under
microscope at 320 to make sure of the presence of
fracture. All the 240 teeth were assigned to 3 groups as
follows: Group 1, 180/60 (60 training data and 180 test
data); Group 2, 120/120 (120 training data and 120 test
data); and Group 3, 60/180 (180 training data and 60 test
data) for the education and testing of the neural network.

Kodak 2200 Intraoral X-ray system was used in this
study. The system uses a high-frequency generator
Alternating Current. The X-ray beams were irradiated
using a round collimator at 60 kVp and 7mA for 0.08 s.
The film–focus distance was 24 cm and the film–object
distance was 1 cm.

An RVG sensor was used for periapical imaging
(Kodak RVG 5100 with 14-lp mm21 image resolution),
with the faciolingual aspect parallel to the sensor, and
the images were saved in the Joint Photographic Experts
Group format.

To obtain CBCT images, a conical X-ray beam was
used with a 19203 1536-pixel flat-panel detector, with
360° rotation. The examination with NewTom VGi
(QR SRL Company, Verona, Italy) was performed at
4.71 mA and 110 kVp with scan time of 3.6 s. The slice
thickness was 1 mm. The primary and secondary
reconstructions were performed with NNT viewer
v. 2.2.1 (Quantitive Radiology, Verona, Italy).

Feature extraction from the radiographs using
wavelet transform
In the present study, Daubechies 3 wavelet transform13

was first applied to extract the important data in the
images, especially at image margins. Figure 1 demon-
strates the procedures used to apply the wavelet to the
input image. In this figure, H and L are the high- and
low-pass filters, respectively, and HH means the appli-
cation of high-pass filter at both vertical and horizontal
dimensions to the image. Application of Daubechies
3 wavelet resulted in the acquisition of image analysis
coefficients on two states.

In the second step, the wavelet coefficients were used
to extract the specificity vector using the Gabor filters.14

These filters can be used to optimize the display of
a signal in the time and frequency fields simultaneously.
The Gabor filters used for processing of images are two-
dimensional and each filter has a definitive frequency
and direction. To acquire the feature vector, first the
disintegration coefficients resulting from Daubechies
3 wavelet were divided into eight different directions
and then, eight Gabor filters, with the same frequency
and each in one direction, were applied to it. Finally, for
each pixel of the image, the direction in which the
output application of the Gabor filter had the highest
value was selected as the indicator of that point of the
image on the specificity vector and this vector was used
for training the neural network. More details of the
Gabor filters are provided in Appendix A.

Designing the probabilistic neural network to train the
extracted features
The PNN consists of three layers (Figure 2); when an
input vector is applied to the network, the first layer
calculates the distance between the input vector and the
training inputs, providing a vector, the elements of
which determine the distance between the input and the
training data. This layer consists of a radial basis layer,
whose conversion function (Radbas) is a Gaussian
function f ðxÞ5e2 x2=s2

, in which s is the function var-
iance. The output of this layer (Figure 2) is a bell-shaped
function, in which the extension of the function is con-
trolled by the s parameter. The output of Radbas function
is considered an input for the second layer, which is
a competitive layer. In this layer, the maximum value of
probabilities is selected from the probability vector and an
output of 1 is created for it and an output of 0 is created for
all the other probabilities. As a result, this layer is divided
into two groups of teeth with and without fractures.

Training and testing of the neural network was car-
ried out with the use of the specificity vector acquired
from the Gabor filters for both teeth with and without
root fractures, and endodontically and not endodonti-
cally treated teeth, with the use of periapical and CBCT
radiographic images. Test and training data were clas-
sified into three groups based on Table 1. Each group
consisted of teeth with and without root fractures. In
addition, in order to determine the best training and test
sets in the network, the Gaussian function variance s
was manipulated at 0–1 range and the results were
evaluated in terms of evaluation parameters such as
sensitivity specificity and accuracy. The model used for

Table 1 Different tooth groups for training and testing of the neural network

Tested groups

Train Test

TotalFx endo Fx non-endo Non-fx endo Non-fx non-endo Fx endo Fx non-endo Non-fx endo Non-fx non-endo
Group 1 45 45 45 45 15 15 15 15 240
Group 2 30 30 30 30 30 30 30 30 240
Group 3 15 15 15 15 45 45 45 45 240

Fx, fractured.
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the diagnosis of root fractures in teeth was designed in
the graphic milieu of the MATLAB® software program
(MathWorks®, Natick, MA) as shown in Figure 3. The
designed software was able to load the periapical and
CBCT images separately, it made it possible for the
operator to change the sigma parameter manually from
0 to 1 and it made it possible to observe the output
result. The output report was presented to the operator

in the form of a message, which might have consisted
of the normality of the root (Figure 3a) or of VRF
(Figure 3b). It should be mentioned that the raw peri-
apical and CBCT radiographies have been compressed
in this study in order to detect the edges of the images,
including fractures, more clearly. The dimension of the
periapical and CBCT radiographies before/after com-
pression are 1603 120/163 12, respectively.

Figure 3 The software package designed for the diagnosis of vertical fracture of the root on periapical and CBCT radiographic images: (a)
normal root and (b) root with fracture.
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Statistical analysis
The performance of the designed neural network was
evaluated with the use of diagnostic parameters (sensi-
tivity and specificity). Sensitivity indicates the perfor-
mance of the neural network in the diagnosis of
fractures. Specificity shows the performance of the
network in correct determination of the number of teeth
without fracture. Accuracy is defined as the ratio of
correct diagnosis over the whole data as shown below:

Accuracy5
TP1TN

TP1TN1FP1FN
: ð1Þ

In Equation (1), each parameter, FP, FN, TP and
TN, could be defined as follows:

FP (false positive): number of teeth without fractures
diagnosed as fracture mistakenly through the algorithm

FN (false negative): number of teeth with fractures,
which were not considered as a fracture by the
algorithm

TP (true positive): number of teeth with fractures that
were considered as fracture using the algorithm

Table 2 Accuracy, sensitivity and specificity values of the test data in Group 1 (training data5 180, test data5 60) for periapical (PA)/CBCT
radiographs

Variance of function

Fx (n5 30) Non-fx (n5 30) Accuracy (%) Sensitivity (%) Specificity (%)

PA CBCT PA CBCT PA CBCT PA CBCT PA CBCT
0.05 21 22 20 30 68.33 86.66 70.00 73.33 67.74 100
0.1 21 28 20 30 68.33 96.66 70.00 93.33 67.74 100
0.15 21 28 20 30 68.33 96.66 70.00 93.33 67.74 100
0.2 20 28 17 30 61.67 96.66 66.67 93.33 60.61 100
0.25 20 28 17 30 61.67 96.66 66.67 93.33 60.61 100
0.3 22 28 17 30 65.00 96.66 73.33 93.33 62.86 100
0.35 22 28 16 30 63.33 96.66 73.33 93.33 61.11 100
0.4 24 28 15 30 65.00 96.66 80.00 93.33 61.54 100
0.45 24 28 14 30 63.33 96.66 80.00 93.33 60.00 100
0.5 24 28 14 30 63.33 96.66 80.00 93.33 60.00 100
0.55 25 28 14 30 65.00 96.66 83.33 93.33 60.98 100
0.6 27 28 14 30 68.33 96.66 90.00 93.33 62.79 100
0.65 27 28 14 30 68.33 96.66 90.00 93.33 62.79 100
0.7 28 26 14 30 70.00 93.33 93.33 86.66 63.64 100
0.75 28 26 11 30 65.00 93.33 93.33 86.66 59.57 100
0.8 28 26 10 30 63.33 93.33 93.33 86.66 58.33 100
0.85 28 24 10 30 63.33 90.00 93.33 80.00 58.33 100
0.9 28 23 10 30 63.33 88.33 93.33 76.66 58.33 100
0.95 28 20 8 30 60.00 88.33 93.33 66.66 56.00 100
1 28 20 7 30 58.33 88.33 93.33 66.66 54.90 100

Fx, fractured.

Table 3 Accuracy, sensitivity and specificity values of the test data in Group 2 (training data5 120, test data5 120) for periapical (PA)/CBCT
radiographs

Variance of function

Fx (n5 60) Non-fx (n5 60) Accuracy (%) Sensitivity (%) Specificity (%)

PA CBCT PA CBCT PA CBCT PA CBCT PA CBCT
0.05 35 44 39 60 61.67 86.67 58.33 73.33 62.50 100
0.1 35 54 38 60 60.83 95.00 58.33 90.00 61.40 100
0.15 35 54 38 60 60.83 95.00 58.33 90.00 61.40 100
0.2 35 54 39 60 61.67 95.00 58.33 90.00 62.50 100
0.25 37 54 41 60 65.00 95.00 61.67 90.00 66.07 100
0.3 36 54 37 60 60.83 95.00 60.00 90.00 61.02 100
0.35 40 54 36 60 63.33 95.00 66.67 90.00 62.50 100
0.4 44 54 33 60 64.17 95.00 73.33 90.00 61.97 100
0.45 49 54 29 60 65.00 95.00 81.67 90.00 61.25 100
0.5 49 54 27 60 63.33 95.00 81.67 90.00 59.76 100
0.55 50 54 26 60 63.33 95.00 83.33 90.00 59.52 100
0.6 52 52 25 60 64.17 93.33 86.67 86.67 59.77 100
0.65 53 52 24 60 64.17 93.33 83.33 86.67 59.55 100
0.7 55 52 21 60 63.33 93.33 91.67 86.67 58.51 100
0.75 55 51 17 60 60.00 92.50 91.67 85.00 56.12 100
0.8 56 51 14 60 58.33 92.50 93.33 85.00 54.90 100
0.85 57 49 13 60 58.33 90.83 95.00 81.67 54.81 100
0.9 57 47 11 60 56.67 89.17 95.00 78.33 53.77 100
0.95 58 45 10 60 56.67 87.50 96.67 75.00 53.70 100
1 58 45 8 60 55.00 87.50 96.67 75.00 52.73 100

Fx, fractured.
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TN (true negative): number of teeth without frac-
tures, which were diagnosed correctly as non-fractured
by the algorithm.

Results

Tables 2–4 present the sensitivity, specificity and accu-
racy values acquired from the suggested algorithm for
the test data and for the three groups of data separately
for each change in the sigma parameter from 0.05 to 1.
The sigma parameter is the same parameter defined in
the Gaussian function [the Radbas function
f ðxÞ5e2 x2=s2

] in the PNN. Change in the sigma pa-
rameter in Radbas function leads to change in the slope
of the separation boundary of two classes (sound/
fracture teeth). By reducing the distance between the
weights vector and the inputs, the output of Radbas
function is increased. Therefore, the sigma parameter
could have a significant impact on correct identifica-
tion of the data, which is close to the separation
boundary of two classes. Choosing high/low amounts of
sigma parameter leads to generalization/overfitting
issues, respectively.10

In Group 1, the maximum accuracy value for peri-
apical radiographs was 70% at s5 0.7; however, this

value for CBCT images was 96.66% at s5 0.1–0.65.
Therefore, CBCT images were 1.38 times more accurate
than periapical radiographs. The maximum sensitivity
value for periapical radiographs in this group was
93.33% at s5 0.7–1; this value for CBCT images was
similar to that for periapical images (93.33%), but at
s5 0.1–0.65. In addition, the highest specificity value
at low sigma values for periapical radiographs was
67.74% at s5 0.05–0.15 and this value was 100% for
CBCT images at all the sigma levels.

In Group 2, the maximum accuracy value for peri-
apical radiographs was 65% at s5 0.45; this value for
CBCT images was 95% at s5 0.1–0.55, indicating 1.46
times higher accuracy with CBCT images compared
with periapical images. The highest sensitivity value for
periapical radiographs in this group was 96.67% at s5
0.95–1; this value for CBCT images was 90% at s5
0.1–0.55. In addition, the maximum specificity value for
periapical radiographs was 66.07% at s5 0.25; this
value for CBCT images was 100% at all the sigma
values (similar to specificity values in Group 1).

In Group 3, the maximum accuracy value for peri-
apical radiographs was 63.89% at s5 0.55; however,
this value for CBCT images was 93.89% at s5 0.35%
and 93.33% at s5 0.1–0.3 and s5 0.4–0.75. The
maximum sensitivity value for periapical radiographs in
this group was 97.78% at s5 0.95 and s5 1. This

Table 4 Accuracy, sensitivity and specificity values of the test data in Group 3 (training data5 60, test data5 180) for periapical (PA)/CBCT
radiographs

Variance of function

Fx (n5 90) Non-fx (n5 90) Accuracy (%) Sensitivity (%) Specificity (%)

PA CBCT PA CBCT PA CBCT PA CBCT PA CBCT
0.05 56 60 44 90 55.56 83.33 62.22 66.67 54.90 100
0.1 56 78 43 90 55.00 93.33 62.22 86.67 54.37 100
0.15 56 78 43 90 55.00 93.33 62.22 86.67 54.37 100
0.2 57 78 45 90 56.67 93.33 63.33 86.67 55.88 100
0.25 59 78 45 90 57.78 93.33 65.56 86.67 56.73 100
0.3 59 78 41 90 55.56 93.33 65.56 86.67 54.63 100
0.35 63 79 40 89 57.22 93.89 70.00 87.78 55.75 100
0.4 66 79 40 89 58.89 93.33 73.33 87.78 56.90 100
0.45 68 79 35 89 57.22 93.33 75.56 87.78 55.28 98.75
0.5 72 79 33 89 58.33 93.33 80.00 87.78 55.81 98.75
0.55 80 79 35 89 63.89 93.33 88.89 87.78 59.26 98.75
0.6 81 79 29 89 61.11 93.33 90.00 87.78 57.04 98.75
0.65 82 79 27 89 60.56 93.33 91.11 87.78 56.55 98.75
0.7 83 79 25 89 60.00 93.33 92.22 87.78 56.08 98.75
0.75 84 79 21 89 58.33 93.33 93.33 87.78 54.90 98.75
0.8 85 78 18 89 57.22 92.78 94.44 86.67 54.14 98.73
0.85 85 77 15 89 55.56 92.22 94.44 85.56 53.13 98.72
0.9 87 77 13 89 55.56 92.22 96.67 85.56 53.05 98.72
0.95 88 77 12 89 55.56 92.22 97.78 85.56 53.01 98.72
1 88 76 8 89 53.33 91.67 97.78 84.44 51.76 98.70

Fx, fractured.

Table 5 The best performance of the designed neural network in each group of periapical (PA) radiographs

PA graphics Variance of function Specificity (%) Sensitivity (%) Accuracy (%)
Group 1 0.05–0.15 63.64 93.33 70.00
Group 2 0.25 66.07 61.67 65.00

0.45 61.25 81.67 65.00
Group 3 0.55 59.26 88.89 63.89
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value for CBCT images was 87.78% at s5 0.35–0.75.
In addition, the maximum specificity value for peri-
apical radiographs was 59.26% at s5 0.55; this value
for CBCT images was 100% at s5 0.05–0.35.

Tables 5 and 6 summarize the best performance of the
algorithm in each group along with the best function
variance of the network for periapical and CBCT
radiographs. Two important parameters, accuracy and
size of the network, are the most important parameters
that should be considered when a classifier is designed
based on the neural network. In a neural network, the
classification error could be reduced by changing the
architecture of the network. In the designed PNN, the
classification error is reduced by changing the variance
of function (sigma parameter). The reason for spacing
the variance of function in 20 steps is that we want to
find the best ranges of sigma in which the highest
amounts of accuracy, sensitivity and specificity are
achieved (Tables 5 and 6).

In order to compare the performance of the designed
PNN with other state-of-the-art approaches, we have ap-
plied the multilayer perceptron (MLP) network and the
parameters of accuracy, sensitivity and specificity are cal-
culated as shown in Tables 7 and 8 for periapical and
CBCT radiographs, respectively. We should mention that
the Gabor filter is applied to the image in eight directions.
So, the number of extracted features is 8704, which is
a large number. The large number of features leads to the
MLP network failing to classify the data correctly. To
overcome this problem, we have applied the principle
component analysis method.15 By this modification, the
number of extracted features is dropped to 240 in each
radiograph. The aforementioned issue is not present in the
PNN owing to employment of competitive layer. As can
be seen in Tables 7 and 8, even after reducing the number
of features, the accuracy, sensitivity and specificity
parameters of PNN are higher than that of MLP network
in all three groups. However, in terms of time, the MLP
algorithm is faster than PNN. The training procedure of
MLP network took around 2.14 s, while this is around
3.46 s for PNN.

Discussion

Detection of VRF is a vital clinical problem with sub-
sequent destruction of the adjacent bone. Hence, cases
of VRF necessitate extraction of the tooth. With other
causes of periradicular chronic inflammatory processes
or periradicular cystic lesions, apical root resection
suffices. Thus, pre-operative detection of a fracture
influences therapeutic strategies.

A PNN was designed in the present study to diagnose
the VRFs of periapical and CBCT images in end-
odontically treated and intact premolars that had no
caries. Both types of radiographs are divided into three
categories; Group 1: the training data are more than the
test data, Group 2: training and test data are equal and
Group 3: the amount of test data are higher than the
amount of training data. The designed neural network
had some advantages compared with other neural net-
works, including (1) its easy design; (2) accurate classi-
fication of training data; and (3) its resistance to noise.
Such advantages have made it possible for these neural
networks to have many other applications such as
classification and regression.16,17

It was illustrated that CBCT has a higher sensitivity
(88%) and specificity (75%) in comparison with other
imaging methods in the detection of the VRFs.18 Fur-
thermore, clinical results prove that CBCT scans are
more accurate in the detection of 0.2- and 0.4-mm
VRFs (70 and 90%, respectively) compared with digital
radiography (43.3 and 60%, respectively).19 While the
reported sensitivity and specificity for conventional
intraoral radiography were 38 and 87%, respectively,
sensitivity and specificity of 48 and 89% were achieved
through digital radiography.20

The neural network was able to make more accurate
diagnoses of fractures at high sigma values in periapical
radiographs. In this context, in all the three groups,
a sensitivity value of over 93% was achieved at the
sigma values .0.8, indicating the fact that the designed
neural network was able to reach high sensitivity with
any amount of training data. However, the correct di-
agnosis of sound teeth occurred at low sigma levels. The
advantage of greater training data, in addition to higher

Table 6 The best performance of the designed neural network in each group of CBCT radiographs

CBCT graphics Variance of function Specificity (%) Sensitivity (%) Accuracy (%)
Group 1 0.1–0.65 100 93.33 96.66
Group 2 1.1–0.55 100 90.00 95.00
Group 3 1.1–0.3 100 86.67 93.33

0.4–0.75 98.75 87.78 93.33

Table 7 Accuracy, sensitivity and specificity quantities of the test data for periapical (PA) radiographs by applying multilayer perceptron neural
network

PA graphics Fx Non-fx Accuracy (%) Sensitivity (%) Specificity (%)
Group 1 16/30 16/30 53.33 53.33 53.33
Group 2 27/60 33/60 50.00 45.00 50.00
Group 3 53/90 33/90 48.89 58.89 49.07

Fx, fractured.

birpublications.org/dmfr Dentomaxillofac Radiol, 46, 20160107

Detection of vertical root fractures in intact and endodontically treated premolar teeth
Johari et al 7 of 9

http://birpublications.org/dmfr


accuracy in all the three groups, was the persistence of
diagnosis at an interval of changes in the variance of the
network function. In this context, since there were more
training data in Group 1, the variance of the results
(sensitivity, specificity and accuracy of diagnosis) was
almost consistent at different intervals; however, in
Groups 2 and 3, the results were different with changes
in the variance.
In CBCT images, the maximum persistence in terms

of changes in sigma was observed in Group 1, which
had greater training data. An important consideration
in these radiographs is the difference in CBCT imaging
technique compared with periapical radiographic tech-
nique, which resulted in 100% accuracy in detecting
sound teeth by the designed neural network. Therefore,
the greater the test data, the higher the accuracy, owing
to the diagnosis of more sound teeth. In this context, in
Group 2, the accuracy was 95%, with an accuracy of
93.33% in Group 3. In addition, the designed PNN was
successful in detecting radiographs with tooth fractures,
with a minimum sensitivity of 66.67% in the three
groups. The CBCT images were more persistent than
the periapical radiographs. In this context, in Group 3,
except for s5 0.05, the range of changes in sensitivity
at different sigma values was 84.44–87.78%. However,
the range of changes in sensitivity in periapical radio-
graphs under the same conditions was 62.22–97.78%.
This relative persistence in CBCT images was evident in
the two other groups too.
In periapical radiographs, two factors, (1) the beam

angle and (2) the distance between fractured parts,
might limit the diagnosis of fracture.21,22 If the angle of
the beam is not perpendicular to the fracture path and
the parts are separated minimally, the diagnosis of the
fracture becomes very difficult. In many periapical
radiographs, fractures with minor displacements that
are not in the path of the X-ray beams might remain
undetected. It can be diagnosed only based on clinical
symptoms and effects on the surrounding tissues such as the
formation of radiolucency in the tissues surrounding the root.

Despite the better performance of CBCT imaging
rather than other digital radiographies such as peri-
apical radiography, this technique still suffers from
some important problems. In CBCT radiographs, the
thinness of the fracture line, image artefacts and lack of
skill on the part of the observer might lead to failure in
the diagnosis of these fractures. Artefacts resulting from
metallic restorative materials and the inherent artefacts
of the CBCT unit might result in the obliteration of fine
fracture lines. The present study was performed in lab-
oratory conditions; so, clinical symptoms and effects on
the surrounding environment are absent. The fractured
parts should be separated so much so that they can be
captured in radiographs.21,22

One of the limitations of the present study was the use
of one-rooted premolar teeth. It is suggested that other
teeth, such as incisors and multirooted, be used in future
studies. Also, it is better to first eliminate the artefact
signals (i.e. using the filter back-projection algorithm to
reconstruct the volume data) from the image and then
evaluate the radiographies with the designed neural
network.

Conclusion

An efficient neural network-based model has been pre-
sented to diagnose the VRF in endodontically treated
and intact teeth. Statistical results confirmed that the
performance of the neural network in CBCT images is
more effective than that in similar periapical radio-
graphs. One of the major advantages of the proposed
model is that it might be a useful tool for clinical
applications owing to its stability in the special range of
variance of functions. However, for accurate de-
termination of success of this neural network, further
in vitro work using a full-skull simulation for CBCT and
skin/bone simulation is needed.

Our goal in future research is to study multirooted teeth
for the detection of VRFs utilizing the neural network.
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Appendix A

In the Gabor filter, the input image Iðx; yÞ; ðx; yÞ2 V (in
which V is a subset of the image plane) is convolved
with the two-dimensional Gabor filter of
gðx; yÞ; ðx; yÞ2V as follows and the Gabor specificity
function rðx; yÞ is acquired as follows:

rðx; yÞ5∬
V

Iðj;hÞgðx2 j; y2hÞdj  dh: A1

In Equation (A1), the family of Gabor filters used is
as follows:

gl;u;wðx; yÞ5e2
x9
2
1 y2y9

2

2s2 3 cos 
�
2px9

l
1w

�
; A2

in which

�
x9

y9

�
5

�
cos  u sin  u
2 sin  u cos  u

�
 

�
x
y

�
: A3

The Gaussian function width in Equation (A2) was
s5 0.56l at l5 0.5. As shown in Equation (A2), the
Gabor filter is created through integration of a Gauss-
ian function and a sine or cosine function, which results
in an optimal integration of data in the two times and
frequency fields, since the sine function is completely
assigned to the frequency field.
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