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Abstract

Interleukin 33 (IL-33), an inflammatory and mechanically responsive cytokine, is an impor-

tant component of a TLR4-dependent innate immune process in mucosal epithelium.

Although TLR4 also plays a role in sensing biomechanical stretch, a pathway of stretch-

induced TLR4-dependent IL-33 biosynthesis has not been revealed. In the current study,

we show that short term (6 h) cyclic stretch (CS) of cultured murine respiratory epithelial

cells (MLE-12) increased intracellular IL-33 expression in a TLR4 dependent fashion. There

was no detectable IL-33 in conditioned media in this interval. CS, however, increased

release of the notable alarmin, HMGB1, and a neutralizing antibody (2G7) to HMGB1

completely abolished the CS mediated increase in IL-33. rHMGB1 increased IL-33 synthe-

sis and this was partially abrogated by silencing TLR4 suggesting additional receptors for

HMGB1 are involved in its regulation of IL-33. Collectively, these data reveal a HMGB1/

TLR4/IL-33 pathway in the response of respiratory epithelium to mechanical stretch.

Introduction

Mechanical ventilation, a common requisite component of intensive (to reduce work of

breathing) and perioperative (for adequate gas exchange and the delivery of volatile anesthet-

ics) care is well known to cause an iatrogenic syndrome of ventilator induced lung injury

(VILI) [1]. Physical forces (e.g. overdistension) accounting for VILI may be transduced into

biological forces (production of pro-inflammatory intracellular mediators and injurious path-

ways) via cellular mechanisms that are poorly understood. In the complex setting of intact

mice, Toll-like receptor 4 (TLR4) has been shown by several groups to be critical in the
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pathophysiology of VILI [2–5]. Stretching isolated cardiomyocytes [6] and respiratory epithe-

lium [7] potentially activated TLR4 by increasing its overall or surface expression, respectively.

Stretching primary alveolar type II cells [8] or murine lung epithelial (MLE-12) cells [7] after

activation of TLR4 with lipopolysaccharide (LPS) did not exacerbate innate immune response

or decreased production of inflammatory cytokines and procoagulant molecules, respectively.

In contrast, TLR4 was essential for formation of inflammasome and production of interleu-

kin-1β (IL-1β) in isolated stretched alveolar macrophages [9].

We sought to further investigate the contributory role of TLR4 in the context of interleu-

kin-33 (IL-33) biosynthesis in stretched cultured MLE-12 cells. Since its original discovery

[10] as the functional ligand for ST2, an IL-1 receptor family member, IL-33 has been shown

to act as an alarmin [11] and a mechanically responsive cytokine in cardiomyocytes and fibro-

blasts [12, 13]. IL-33 is expressed in the lung [10] and in pulmonary endothelium [14] and

intestinal epithelium [15]. The increase in immunoreactive IL-33 in the alveolar wall of

mechanically ventilated rats [16] suggests a role for IL-33 in VILI although isolated type II cells

in short term culture from intact mice subjected to high tidal volume mechanical ventilation

did not show an increase in IL-33 [17]. A TLR4-dependent IL-33 signaling pathway involving

ST2 signaling/Th2 pathways in allergic inflammation in mice was recently reported [18, 19].

We recently reviewed IL-33 signaling in lung injury [20] and reported that IL-33 drives acute

lung injury after systemic injury [21]. However, the link between IL-33 and TLR4 in non-

infectious, non-allergic biosensing to mechanical stretch remains unclear.

High mobility group box 1 (HMGB1) is an abundant nonhistone nuclear protein ubiqui-

tously expressed in resting cells [22]. Like IL-33, it is thought to be released from necrotic cells

to the extracellular space mediating inflammation and acting as an alarmin. A number of cell

surface receptors are critical in such activity including receptor for advanced glycation end-

products (RAGE) and TLR4. HMGB1 is a critical molecule in a number of forms of acute lung

injury including VILI as HMGB1 is increased with cyclic stretch and LPS exposure in A549

cells [23]. A cardiomyocyte HMGB1/fibroblast TLR4/IL-33 axis contributes to diabetic cardio-

myopathy in mice [24].

In the current study, we stretched (~18% elongation) isolated cultured MLE-12 cells on a

flexible membrane in cyclic (1 Hz) short term fashion and noted a TLR4 dependent increase

in intracellular IL-33 and extracellular HMGB1 at 6 h. CS-induced increase in IL-33 was abro-

gated by neutralizing antibodies to HMGB1 placing HMGB1 upstream of TLR4 mediated IL-

33 biosynthesis.

Materials and methods

Cell culture

Mouse lung epithelial cells (MLE-12) were cultured in DMEM/F-12 medium (ATCC) supple-

mented with 5 μg/ml insulin, 10 μg/ml transferrin, 30 nM sodium selenite, 10 nM hydrocorti-

sone, 10 nM beta-estradiol, 2 mM L-glutamine, 10 mM HEPES, and 10% fetal bovine serum

(Sigma-Aldrich, St. Louis, MO). Cells were cultured at 37˚C in 5% CO2 and were subcultured

continuously (2×/wk) for a maximum of 32 sub-passages. In some experiments, LPS (100 ng/

ml) was added to serum free medium (12 h). Ultrapure LPS (Escherichia coli 0111:B4) was

from List Biological Laboratories (Vandell way, CA) and is reported to be free of contaminat-

ing proteins and to selectively activate TLR4 [25]. HMGB1 neutralizing antibody, 2G7 [15, 26,

27], was kindly provided by Kevin J. Tracey (Feinstein Institute of Medical Technology) and

10μg/ml HMGB1 neutralizing antibody was put into media before stretch. Recombinant (r)

HMGB1 was from Santa Cruz. Cells were exposed before and during CS (or in control condi-

tions) to 3 μg/ml HMGB1.

HMGB1/TLR4/IL-33 axis in cyclic stretch induced lung injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0184770 September 12, 2017 2 / 16

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0184770


Cell stretching protocol

MLE-12 cells were placed on the central area (1.5 cm diameter) of fibronectin-coated silicon

membranes (Bioflex; Flexcell International, Hillsborough, NC; coated additionally with 150 M

bovine fibronectin for at least 3 h at 4˚C) of six-well plates at density of 0.35~0.4×106 cells per

well. Density of 0.2–0.25×106 cells per well was used when transfecting the cells with TLR-4

siRNA before stretching. After 24 h of adherence, medium was replaced by fresh DMEM/F-12

medium. These plates were used for experiments. Medium was replaced by serum free media

12 h before stretching.

MLE-12 cells on Bioflex plates were exposed to stretch using the FX 4000T Flexercell Ten-

sion Plus system (Flexcell International) as we recently described [28]. Stretching patterns

were defined by frequency and elongation and were either static (~18% elongation) or cyclic

(CS: 1Hz, ~18% elongation). The plates were deformed through regulated air vacuum supplied

to the bottom of the plate causing the membrane to stretch across a loading post [28]. Cells

and media were collected at specific time point. Membrane distension was calibrated and

monitored during the experiment. A subgroup of MLE-12 cells were placed in the identical

media and subcultured on stretching plates but not subjected to stretch and served as controls.

Stretching groups consisted of 3 replicate wells and experiments repeated on at least 3 separate

occasions.

Flow cytometry

Stretched and non-stretched (control) cells were rinsed in PBS, trypsinized, and centrifuged at

1,500 rpm for 5 min. The cell pellet was resuspended in 300 μl binding buffer and supple-

mented with 3 μl of FITC-annexin-V and 3 μl of propidium iodide (PI) and incubated at room

temperature for 15 min in the dark. Flow cytometric analysis was performed using a FACS-

Canto (BD Biosciences, San Jose, CA). For each sample 10,000 events were recorded and

analyzed.

TLR4 siRNA

MLE-12 cells were transfected with 50 nM TLR4-specific siRNA or nonspecific scrambled

siRNA as a control (Invitrogen, Carlsbad, CA) using Lipofectamine 2000 (Invitrogen, Carls-

bad, CA) according to the manufacturer’s protocol and then incubated at 37˚C in a 5% CO2

incubator for at least 48 h before stretching. The efficacy of knockdown was determined by

western blot.

ELISA and luminex

Culture media and lysates of cells were prepared in order to quantify the levels of cytokines.

Cytokine concentrations were measured using specific ELISA assays for IL-33, IL-6, (R&D

Systems, Minneapolis, MN, USA), HMGB1 (Tecan Trading AG, Switzerland). The assay pro-

cedures were performed according to manufacturer. Luminex was also used to detect cyto-

kines IL-6, IL-33 (and other cytokines not reported) by mouse Th17 Magnetic Bead Panel

(EMD Millipore Corporation, MA, USA). The same amount of protein (samples were quanti-

tated to 1 μg/μl in a total of 50 μg) were loaded for detection.

Western blot

Cell extracts were lysed on ice with radio immunoprecipitation assay-buffer (Thermo Fisher

Scientific, Rockford, IL, USA). Nuclear and cytoplasm protein fractions were isolated with

NE-PER nuclear and cytoplasmic protein extraction reagents (Thermo Fisher Scientific,

HMGB1/TLR4/IL-33 axis in cyclic stretch induced lung injury
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Rockford, IL, USA). Protein concentrations were determined by microplate BCA protein

assay kit-reducing agent compatible (Thermo Fisher Scientific, Rockford, IL, USA). For West-

ern blotting, 30 μg of protein per lane were loaded on to NuPAGETM 4–12% Bis-Tris gels

(Invitrogen, Carlsbad, CA).

Primary polyclonal antibody against mouse IL-33 was purchased from R&D Systems, (Min-

neapolis, MN, USA), Toll-like receptor 4 monoclonal antibody (mouse specific) was purchased

from Cell Signaling (Danvers, MA, USA). HMGB1 antibody was purchased from Abcam

(Cambridge, MA, USA), NF-κB p65 monoclonal antibody was purchased from Cell Signaling

(Danvers, MA, USA). The biotinylated secondary antibody was purchased from Santa Cruz

Biotechnology (Dallas, TX, USA).

The bands were detected using Plus-ECL enhanced chemiluminescence kit (PerkinElmer,

MA, USA). Membranes were stripped and reprobed for β-actin or LaminB (Sigma Aldrich,

MO, USA) that served as a loading control.

Statistical analysis

Data are mean ± SD from 3–5 separate experiments. Statistical significance was defined as

P< 0.05 and was determined by either two-way or one-way ANOVA, followed by Tukey’s

post test, using Graphpad Prism ver. 7.0 (GraphPad Software, San Diego, CA).

Results

Cyclic stretch (CS) increases IL-33 expression in a TLR-4 dependent

fashion in murine respiratory epithelium

Cell death was assessed by FACS with propidium iodide (necrosis) and annexin V (apoptosis)

in MLE-12 that were conditioned in serum free medium for 12 h and then cyclic stretched

(CS: ~18% elongation, 1 Hz) or not exposed to any stretch (con: controls). Cell viability

remained at 91–96% over the 4–8 h experimental period and there were no differences in via-

bility between CS and control suggesting that this magnitude of CS was not associated with

cell death for MLE-12 (Fig 1). CS was however pro-inflammatory to MLE-12 cells as IL-6 levels

in cell lysate or medium significantly increased at 6 h of stretch (Fig 2).

We then contrasted the effect of cyclic vs. static stretch on cellular levels of IL-33. In Fig 3

we note a significant increase in whole cell levels of IL-33 at 6 h of CS that returned to control

levels at 8 h. There were no significant changes in IL-33 in this interval in either control cells

or those with static stretch. There was no detectable IL-33 in medium under any conditions.

We further probed subcellular changes in IL-33 with CS by isolating cytoplasmic and nuclear

fractions after 6 h of CS and measuring IL-33 by immunoblot (Fig 4A) and normalizing

expression to subcellular markers (Lamin B for nucleus; beta actin for cytosol). IL-33 was

detectable in both compartments and data from 3 separate co-cultures (Fig 4B) shows that CS

significantly increased IL-33 in both compartments.

We then sought to determine the role of TLR4 in stretch induced increases in IL-33 in

MLE-12 cells. We first noted that MLE-12 cells express TLR4 and that targeted siRNA (but not

scrambled or control siRNA) reduced TLR4 to barely detectable levels (Fig 5A). Activation of

canonical pathway (e.g. translocation of NF-κB from cytosol to nucleus and release of pro-

inflammatory cytokine, IL-6, to medium) was observed at 6 h of CS and this increase was sen-

sitive to TLR4 ablation (Fig 5B and 5C, respectively).

To further confirm the role of TLR4 in mediating IL-33 biosynthesis, we contrasted the

effect of the prototypic TLR4 agonist, LPS, to CS mediated effects in wildtype and TLR4 null

cells. In Fig 6A we note that LPS increased cellular IL-33 in a TLR4 dependent fashion; in Fig

HMGB1/TLR4/IL-33 axis in cyclic stretch induced lung injury
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Fig 1. Cell viability during 4–8 h of cyclic stretch. MLE-12 cells were conditioned in serum free medium for 12 h and then transferred to

wells in Bioflex and underwent cyclic stretch (cyclic S) or were not stretch (con) for 4, 6 or 8 h. Viable cells were negative for Annexin-V

and propidium iodide (PI) staining (Q3), early-stage apoptotic cells were positive for Annexin-V staining, but negative for PI staining (Q4),

and late-stage apoptotic cells were positive for Annexin-V and PI staining (Q2).

https://doi.org/10.1371/journal.pone.0184770.g001
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6B we note a similar TLR4 dependent mechanism for CS mediated IL-33 biosynthesis. Whole

cellular or cytosolic levels of TLR4 were not affected by CS (Fig 6C).

Fig 2. Cyclic stretch (6 h) induced increase in biosynthesis of IL-6. IL-6 levels in MLE-12 cell lysate and cell culture media with

(cyclic S) or without stretch (con) were measured by ELISA. *P<0.05, ***P<0.001 compared with control. Each stretching group

collected from three wells in a single experiment and the bar graphs illustrate data representative of three independent experiments.

https://doi.org/10.1371/journal.pone.0184770.g002

Fig 3. Cyclic, but not static, stretch induced increase in IL-33. Mouse IL-33 (mIL-33) expression in whole cell lysate after static (static S ~18%

elongation) or cyclic stretch (cyctic S ~18% elongation, 1HZ) was detected by western blot at different time point (4h, 6h, 8h) and normalized by β-actin

(right graph). ***P<0.001 compared with control (con). Each stretching group collected three wells for a single experiment, the bar graphs illustrate data

representative of three independent experiments and western blot at the different time point was run separately.

https://doi.org/10.1371/journal.pone.0184770.g003
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Role of HMGB1 in TLR4 mediated CS induced increase in IL-33 in MLE-

12 cells

Since CS of human airway epithelium increased HMGB1 in an NF-κB fashion [23] and

HMGB1 is an endogenous ligand of TLR-4 in airway epithelia cells [29–31], we hypothesized

that HMGB1 may contribute to CS-TLR-4 mediated IL-33 biosynthesis. We noted an increase

in immunoreactive HMGB1 in media of stretched MLE-12 cells by Western blot (Fig 7A) and

ELISA (Fig 7B). Regardless of methodology to detect HMGB1, siRNA to TLR-4 blocked CS

mediated increase in HMGB1 (Fig 7C and 7D). Exposure of MLE-12 cells to rHMGB1, alone,

increased IL-33 in MLE-12 cells and CS significantly further increased IL-33 production due

to HMGB1 (Fig 8A). A neutralizing antibody (2G7) to HMGB1 completely abrogated the CS

mediated increase in IL-33 (Fig 8B). In cells treated with siRNA to TLR-4, rHMGB1 was still

capable of increasing IL-33 (suggesting non-TLR4 mediated pathways for HMGB1) but

rHMGB1 with CS did not increase IL-33 after siRNA to TLR4 in MLE-12 cells (Fig 8C).

Discussion

In the current study, we stretched (~18% elongation) isolated cultured murine respiratory epi-

thelial cells (MLE-12) on a flexible membrane in cyclic short term (4–8 h) fashion and noted a

TLR4 dependent increase in intracellular IL-33 (Fig 6B) and extracellular HMGB1 (Fig 7). CS-

induced increase in IL-33 was abrogated by neutralizing antibodies to HMGB1 (Fig 8) placing

HMGB1 upstream of TLR4 mediated IL-33 biosynthesis but downstream of the undetermined

stimulus by which stretch activates TLR4, itself. In this regard, HMGB1 is an autocrine factor

acting on TLR4 in a positive feedback mode to cyclic stretch.

CS and TLR4

We initially confirmed the report of Sebag et al [7] and showed that MLE-12 cells express

TLR4 protein. siRNA to TLR4 decreased resting levels by more than 80% (Fig 5A). Stimulation

of MLE-12 with LPS led to a TLR4 dependent increase in IL-33 (Fig 6B). CS increased IL-6

(Fig 2) in a TLR4 dependent fashion (Fig 5C) also consistent with a role for a functional TLR4

in MLE-12 [32, 33] as has been shown for LPS activated TLR4 and IL-6 secretion in human

bronchial epithelial cells [34]. CS also caused nuclear translocation of NF-κB that was TLR4

Fig 4. Cyclic stretch induced increase in cytosolic and nuclear levels of IL-33. Nuclear and cytoplasm protein fractions of MLE-12 cells with

(cyclic S) or without (con) 6h stretch were isolated, and mIL-33 in nucleus and cytoplasm were measured by Western blot (A) or ELISA (B). Lamin

B and β-actin (A) served as a loading control for nucleus and cytoplasmic protein, respectively. **P<0.01, ***P<0.001 compared with control

(con). Each stretching group collected from three wells for a single experiment, the bar graphs illustrate data representative of three independent

experiments.

https://doi.org/10.1371/journal.pone.0184770.g004
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Fig 5. Cyclic stretch activates TLR4-dependent signaling (NF-κB translocation) and pro-inflammatory state (IL-6 release into medium). (A)

MLE-12 cells were transfected with 50nM TLR-4 specific siRNA or negative control siRNA using Lipofectamine 2000 for 48 h. TLR-4 expression in control

group (con), negative control siRNA group (con siRNA) and TLR-4 specific siRNA group (TLR4 siRNA) were detected by western blot and normalized by

β-actin (upper graph). (B) Stretch induced NF-κB nucleus translocation were TLR-4 dependent. Total and nuclear NF-κB were measured by Western blot

and its nucleus/total NF-κB ratio was analyzed after 6h cyclic stretch in transfected cells. (C) IL-6 secretion in transfected cell media after 6h cyclic stretch

was measured by ELISA and was TLR-4 dependent. Each group collected from three wells in a single experiment and the data were presented as

mean ± SD from three separate experiments. **P<0.01, ***P<0.001 when compared between groups denoted by horizontal lines.

https://doi.org/10.1371/journal.pone.0184770.g005
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Fig 6. Activation of TLR4 by LPS or cyclic stretch increases intracellular IL-33. MLE-12 cells were

transfected with 50 nM of TLR4-specific siRNA (TLR4siRNA) or nonspecific siRNA control (consiRNA) using

Lipofectamine 2000 for 48h before stretch. (A) Transfected MLE-12 cells were further treated with 100 ng/ml

LPS or control solution for 24h and IL-33 production were measured in cell lysate by ELISA. (B) IL-33

production after 6h cyclic stretch in transfected cells treated with or without TLR4-specific siRNA. (C) Total

TLR4 expression in whole cell lysate and cytoplasm in MLE-12 cells with (cyclic S) or without (con) stretching

HMGB1/TLR4/IL-33 axis in cyclic stretch induced lung injury
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dependent (Fig 5B). CS did not affect overall expression of TLR4 (as has been noted in

stretched cardiomyocytes [6]) in our study (Fig 6C) similar to that noted by Kuhn et al [8] in

primary cultures of rat alveolar type II cells but presumably caused increased surface expres-

sion of TLR4 as noted in MLE-12 cells by Sebag et al [7]; we did not combine LPS with stretch

that led to decreased TLR4 surface expression and a reduction in release of keratinocyte deri-

ved cytokine (KC) and procoagulant tissue factor [7]. We did not pursue requisite roles for

mCD14 in MLE-12 cells although others have noted mRNA for CD14 via in situ hybridization

in mouse bronchiolar epithelium [35] and in primary bovine [36] and human [37] tracheo-

bronchial epithelial cells. Transformed human bronchial epithelial cells (BEAS-2B) also

express low amounts of CD14 on their surface but this is less clear in a number of other cul-

tured human respiratory epithelial cells [38].

were measured by Western blot and normalized by β-actin. ***P<0.001 when compared between groups

denoted by horizontal lines.

https://doi.org/10.1371/journal.pone.0184770.g006

Fig 7. Cyclic stretch increases HMGB1 expression in a TLR4-dependent fashion. (A) Cell culture media with or without cyclic stretch were

concentrated and HMGB1 contents were detected by Western blot. (B) HMGB1 in cell culture media with or without stretch was directly measured by

ELISA. (C) Media of the cells which transfected with nonspecific siRNA control (consiRNA) or TLR-4-specific siRNA (TLR4 siRNA) with or without stretch

(con vs. cyclic S) were concentrated and HMGB1 contents were measured by Western blot. (D) HMGB1 in media of the transfected cells following 6h

cyclic stretch (cyclic S) was measured by ELISA. **P<0.01, ***P<0.001 compared with control. Each stretching group collected from three wells and

represented a single experiment, the bar graphs illustrate data representative of three independent experiments.

https://doi.org/10.1371/journal.pone.0184770.g007
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TLRs are pattern recognition receptors whose roles have expanded to include recognition

of pathogen-associated molecular patterns in pathogens (such as LPS and TLR4) and endoge-

nous ligands (see HMGB1 below) thereby contributing to both sterile injuries and non-infec-

tious pathophysiology [39]. Mechanical stress is an important example of the latter and TLR4

plays a critical role in cardiac hypertrophy due to aortic banding and pressure overload [40]

and VILI [2–5]. The ability to mimic mechanical stress by stretching isolated cells on a flexible

membrane provides a useful experimental paradigm to minimize the multitude of factors that

may converge on TLR4 in the intact animal. As such, the most compelling studies to date

revealed an important role for TLR4 in CS stretch mediated sensitization of cardiac myocytes

to TNF-α [6] and activation of the inflammasome in isolated alveolar macrophages [9].

Although highly relevant to the current study, Sebag et al [7] focused primarily on combined

stretch with LPS exposure and associated down regulation of TLR4 with loss of LPS respon-

siveness. By focusing on CS and the alarmins, IL-33 and HMGB1, an additional pathway to CS

and TLR4 was identified.

CS and IL-33

Since its original discovery [10] as the functional ligand for ST2, an IL-1 receptor family mem-

ber, IL-33 has been shown to act as a cytokine, transcriptional repressor, alarmin [11, 22] and

a mechanically responsive cytokine in cardiomyocytes and fibroblasts [12, 13]. In addition to

being expressed in some cells, such as macrophages and dendritic cells, IL-33 is also highly

expressed in residential cells including epithelium of the upper [41] and lower [14] airways. In

the lung, it has important roles in innate immunity and allergic lung inflammation [18],

COPD [42], fibrosis [43] and acute lung injury [44, 45]. The current study was motivated in

part on recent observations of an increase in immunoreactive IL-33 in the alveolar wall of

mechanically ventilated rats [16]. It is of note that isolated type II cells from intact mice sub-

jected to high tidal volume mechanical ventilation did not reveal an increase in IL-33 [17] sug-

gesting the increase is perhaps restricted to type I cells in the alveolus or the response of IL-33

to stretch in situ is altered in the isolation and short term culture of type II cells. Although a

TLR4-dependent IL-33 signaling pathway in allergic inflammation in mice was recently

reported [18, 19], the link between IL-33 and TLR4 in non-infectious, non-allergic biosensing

to mechanical stretch remains unclear.

In the current study, TLR4 is requisite for CS to increase levels of IL-33 in MLE-12 (Fig 6B).

This was reinforced by the observation that LPS, the prototypical ligand for TLR4, also

increased IL-33 and this was ablated in TLR4 siRNA treated cells (Fig 6A). Short term CS was

not associated with secretion of IL-33 from MLE-12 cells, perhaps because there was no

necrotic cell death (Fig 1) or because there were fundamental differences from that reported in

fibroblasts [12, 13]. We did note an increase in both cytoplasmic and nuclear IL-33 after CS

(Fig 4) but without performing more elegant biochemical studies of cellular localization [13],

the directionality of nucleocytoplasmic translocation and other aspects of potential secretion

were not apparent. Since we used short term CS that was not associated with cell death (Fig 1),

Fig 8. HMGB1 increases IL-33 expression and acts as an autocrine factor in enhancing IL-33 expression in a partial TLR-4

dependent fashion during cyclic stretch. (A) MLE-12 cells were treated with 3 μg/ml HMGB1 or control solution before 6h cyclic

stretch and IL-33 production was measured by ELISA. (B) MLE-12 cells were treated with 10 μg/ml HMGB1 neutralizing antibody (2G7)

or control solution before 6h cyclic stretch and IL-33 production was detected by Western blot. β-actin served as loading control. (C)

MLE-12 cells transfecting with non-specific control siRNA or TLR-4-specific siRNA were treated with 3 μg/ml HMGB1 or control solution

before stretch. IL-33 production in each group was measured with ELISA. **P<0.01, ***P<0.001 when compared between groups

denoted by horizontal lines. Each stretching group collected at least from three wells and represented a single experiment, the bar

graphs illustrate data representative of three independent experiments.

https://doi.org/10.1371/journal.pone.0184770.g008
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it is possible that more intense or longer lasting CS may have led to necrosis and release of IL-

33 to the extracellular space [46] as was noted by Yang et al [16] in which IL-33 was detected

in bronchoalveolar lavage and plasma of intact mice with VILI or in the circulation of patients

with ARDS or animals with experimental acute lung injury [45].

CS and HMGB1/TLR4/IL-33 axis

We detected significant increases in HMGB1 in media conditioned from MLE-12 cells after

cyclic stretch (Fig 7A and 7B) reminiscent of previous observations in A549 cells [23]. Secre-

tion of HMGB1 was TLR4 dependent (Fig 7C) and was not passive as noted by lack of suffi-

cient necrosis in CS (Fig 1) to account for this. HMGB1 is a member of HMG protein family

and an abundant nonhistone nuclear protein that may be post-translationally modified and

released from cells in response to a variety of stimuli [22]. Once released, HMGB1 mediates

a number of biological functions including inflammation by binding to a number of surface

receptors including TLR4 and receptor for advanced glycation end-products (RAGE).

These pathways appear particularly important for the role of HMGB1 in sterile injury

including mechanical injury [23]. We noted that siRNA to TLR4 partially antagonized (Fig

8C) rHMGB1-induced increased in IL-33 (Fig 8A) consistent with multiple receptors to

transduce its effect. More importantly for the current study, neutralizing antibodies (2G7)

to HMGB1 abolished the effect of CS on IL-33 biosynthesis (Fig 8B and 8C) suggesting that

HMGB1 is upstream of CS induced TLR4 dependent increases in IL-33. A concept of an

HMGB1/TLR4/IL-33 axis has been tested in other pathophysiological systems. Fu et al [47]

showed that the release of HMGB1 is correlated with up-regulation of IL-33 in murine

model of acute lung injury. An HMGB1-RAGE- and TLR4-dependent increase in experi-

mental airway sensitization and inflammation [48] after house dust mite or cockroach sen-

sitization was noted in mice. The most formal of an HMGB1/TLR4/IL-33 axis was recently

[24] shown in diabetic cardiomyopathy in mice where high glucose mediated cardiomyo-

cyte HMGB1 release interacts with TLR4 on cardiac fibroblasts and results in decrease in

IL-33. Our results show that this potential paracrine/autocrine function of HMGB1 in

response to stretch results in a TLR4-mediated increase in IL-33. Presumably the direction-

ality (positive feedback in MLE-12 cells) of the effects are cell and tissue specific. As small

molecules and neutralizing antibodies are available to antagonize each member of this

HMGB1/TLR4/IL-33 pathway, it may be possible to purposefully manipulate components

of stretch-induced changes in respiratory epithelium.
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