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Abstract

The aim of the present study was to investigate regulation of blood flow (BF) in the optic

nerve head (ONH) and a peripapillary region (PPR) during an isometric exercise-induced

increase in ocular perfusion pressure (OPP) using laser speckle flowgraphy (LSFG) in

healthy subjects. For this purpose, a total of 27 subjects was included in this study. Mean

blur rate in tissue (MT) was measured in the ONH and in a PPR as well as relative flow vol-

ume (RFV) in retinal arteries (ART) and veins (VEIN) using LSFG. All participants performed

isometric exercise for 6 minutes during which MT and mean arterial pressure were mea-

sured every minute. From these data OPP and pressure/flow curves were calculated. Iso-

metric exercise increased OPP, MTONH and MTPRR. The relative increase in OPP (78.5 ±
19.8%) was more pronounced than the increase in BF parameters (MTONH: 18.1 ± 7.7%,

MTPRR: 21.1 ± 8.3%, RFVART: 16.5 ±12.0%, RFVVEIN: 17.7 ± 12.4%) indicating for an auto-

regulatory response of the vasculature. The pressure/flow curves show that MTONH, MTPRR,

RFVART, RFVVEIN started to increase at OPP levels of 51.2 ± 2.0%, 58.1 ± 2.4%, 45.6 ±
1.9% and 45.6 ± 1.9% above baseline. These data indicate that ONHBF starts to increase

at levels of approx. 50% increase in OPP: This is slightly lower than the values we previously

reported from LDF data. Signals from the PPR may have input from both, the retina and the

choroid, but the relative contribution is unknown. In addition, retinal BF appears to increase

at slightly lower OPP values of approximately 45%. LSFG may be used to study ONH auto-

regulation in diseases such as glaucoma.
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Introduction

The human optic nerve is a structure with vascular supply from different sources.[1, 2] The

nerve fiber layer is nourished by vessels that get their supply from the central retinal artery.

The pre-laminar region gets its vascular input from the peripapillary choroid. The lamina cri-

brosa is nourished by branches from the short posterior ciliary arteries, either directly or from

the circle of Zinn-Haller. The retrolaminar region contains vessels that stem from the pial vas-

cular plexus as well as from the axial centrifugal vascular supply.

Alterations in optic nerve head (ONH) blood flow have been implicated in the pathogenesis

of glaucoma. More specifically ONH ischemia and altered ONH blood flow autoregulation

may play a role in the processes that lead to axon damage and subsequent loss of retinal gan-

glion cells.[2–5] Indeed data from a variety of studies have provided evidence for altered auto-

regulation in glaucoma.[6, 7]

Due to the complexity of optic nerve blood supply relatively little is known about regula-

tion of blood flow in this region. To date no technique is capable of measuring all aspects of

ONH autoregulation.[8] Most data on the regulation of ONH blood flow arise from studies

that use laser Doppler flowmetry (LDF).[9–18] In Japanese subjects laser speckle flowgra-

phy (LSFG) was employed for studying ONH regulation.[19] We set out to study ONH

blood flow regulation during an isometric exercise-induced increase in ocular perfusion

pressure (OPP) in healthy white subjects. Data were compared to our previously published

data using LDF.

Methods

Subjects

The protocol of this prospective study was approved by the Ethics Committee of the Medical

University of Vienna and the study was conducted at the Department of Clinical Pharmacol-

ogy of the Medical University of Vienna. All 27 participating subjects gave written informed

consent after the nature and possible consequences of the study had been explained in detail.

All subjects finished the study according to the protocol and no dropouts occurred. Study

procedures adhered to the guidelines outlined in the Declaration of Helsinki. Subjects were

recruited and completed the study between December 2015 and June 2016.

All subjects underwent a screening examination during the two weeks prior to the study

day that consisted of medical history, physical examination, and a full ophthalmologic exami-

nation including best-corrected visual acuity testing with standard Early Treatment of Diabetic

Retinopathy Study (ETDRS) charts, slit-lamp examination including indirect funduscopy and

measurement of intraocular pressure (IOP) using Goldmann applanation tonometry. In addi-

tion, systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured with

automated oscillometry and a urine pregnancy test was performed in women. According to

the study protocol the following exclusion criteria were defined: smoking, ametropia� 6 diop-

ters, contact lens wear, any ocular surgery, and opacities of the optical media (e.g. corneal

scars, LOCS-II grading� 3, vitreous opacities) potentially interfering with the measurement

procedures. In addition, any other relevant ocular disease or abnormality as well as any clini-

cally relevant illness as judged by the investigators were considered as exclusion. Further exclu-

sion criteria were systemic hypertension, pregnancy or lactation, intake of any medication in

the three weeks preceding the study as well as a blood donation in the three weeks prior to the

study. In all subjects one eye was randomly selected as the study eye. All subjects abstained

from alcohol and stimulating beverages containing xanthine derivatives (tea, coffee, cola-like

drinks) for at least 12 hours before the measurements were performed.

ONH blood flow regulation
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Procedures and interventions

All measurements were performed after a resting period of at least 20 minutes during which

subjects remained in a sitting position. Stability of systemic blood pressure and pulse rate was

verified by repeated measurements before the actual study procedures were started.

Before isometric exercise was started a baseline measurement using LSFG was performed

and systemic blood pressure, pulse rate (PR) and IOP were recorded while subjects were com-

fortably sitting in a chair. Thereafter, isometric exercise was started and maintained for 6 min-

utes. This period of isometric exercise consisted of squatting in a position where the upper

and the lower legs formed almost a right angle. When the squatting period was started the

chair was carefully removed and the subjects were asked to remain in their position, which

ensures that the position between the head of the subject and the LSFG instrument does not

change. This type of exercise is associated with a pronounced increase in mean arterial blood

pressure. Measurement of ONH blood flow, systemic blood pressure and pulse rate was per-

formed every minute throughout these experiments.

Measurements

Systemic blood pressure and pulse rate: Systolic, diastolic and mean arterial pressures (SBP,

DBP, MAP) were measured on the upper arm using an automated oscillometric device. PR

was automatically recorded from a finger pulse-oxymetric device.

Intraocular pressure and ocular perfusion pressure: IOP was measured with a Goldmann

applanation tonometer mounted on a slit lamp. Oxybuprocainhydrochloride was used for

local anesthesia. OPP in the sitting position was calculated as OPP = 2/3�MAP-IOP [20, 21]

accounting for the hydrostatic pressure difference between the eye and the upper arm when

subjects are seated. In addition, IOP was assumed to equal pressure in ocular veins.

Laser Speckle Flowgraphy: In the present study, a commercially available LSFG system

(LSFG-NAVI; Softcare Co., Ltd., Fukuoka, Japan) was used. The principles of LSFG were

described in detail in recent review papers. [22, 23] Briefly, the LSFG system used in the pres-

ent study consists of a fundus camera equipped with a single-mode diode laser emitting light

at a wavelength of 830 nm and a digital charge-coupled device (CCD) camera with 750 x 360

pixels. The primary outcome parameter as obtained with LSFG is mean blur rate (MBR),

which is a measure of relative blood flow velocity and is expressed in arbitrary units (AU). It is

calculated based on the speckle pattern produced by interference of the laser light scattered by

erythrocytes moving in the ocular blood vessels. A total of 118 images are continuously

acquired at a frame rate of 30 Hz. As such the total measurements time is approximately 4 sec-

onds. Data are analyzed by in-built software (LSFG Analyzer, Version 3.1.58; Softcare Co.,

Ltd.) that synchronizes and averages the captured MBR images obtained during the different

cardiac cycles. The outcome is a composite map showing the distribution of blood flow at the

posterior pole of the eye. The ONH area is manually delineated by positioning an ellipsoid rub-

ber band at the ONH margin (see Fig 1). To optimize this procedure we used a black-white

photo provided by LSFG software to precisely delineate the ONH margin for comparison. In

addition, blood flow in a peripapillary region (PPR) area was studied. For this purpose a sec-

ond outer elliptical band was obtained increasing the length of both axes of the first ellipse by

50%. After subtraction of the ONH area this resulted in donut-shaped area representing a PPR

of interest supplied by retinal vessels in the inner retina and by choroidal vessel in the peri-

papillary choroid.

Areas of larger vessels and tissue areas containing microvessels are automatically detected

using the LSFG software applying a pre-defined threshold for MBR (vessel extraction func-

tion). Thus, MBR can be either determined separately for microvascular areas (MT, “MBR of

ONH blood flow regulation
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tissue area”) or for larger vessel (MV, “MBR of vascular area”). In the present study only MT

data were analyzed (MTONH, MTPPR). For measurements in retinal vessels an approach to

quantify blood flow was used.[24, 25] A rectangular band was centered on the retinal vessel of

interest. The system is capable of automatically delineating the artery and the vein (Fig 2). The

MBR values in the retinal arteries and veins are automatically corrected by the background sig-

nal arising from the underlying choroid. The vessel diameter determined by LSFG is given in

pixels and used for calculation of relative flow volume (RFV).

The reproducibility of the system has been reported previously. In healthy subjects of West-

ern European descent we reported coefficients of variation between 5.72 and 6.11%.[26] This

Fig 1. Laser speckle flowgraphy (LSFG) sample measurement of optic nerve head (ONH) and peripapillary region

(PPR) mean blur rate in different regions. (a). An inner elliptical band was manually fitted to ONH borders; the obtained

area represents the ONH area (b). The correct identification of the borders was optimized by comparing the LSFG image

with a fundus photograph. A second outer elliptical band was obtained by increasing the length of both axes of the first

ellipse by 50%. The donut-shaped area, obtained after subtraction of ONH area, represents the PPR area (c). For analysis

signals from large vessels were not taken into account. In the present case the band was almost circular, but this was not

the case in subjects.

https://doi.org/10.1371/journal.pone.0184772.g001

Fig 2. Laser speckle flowgraphy (LSFG) sample measurement in a retinal vessel. Retinal flow volume (RFV) and vessel

diameter of a retinal artery segment are evaluated at rest (a) and during isometric exercise (b).

https://doi.org/10.1371/journal.pone.0184772.g002
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is in good agreement with previous data in Japanese subjects reporting values between 3 and

11%.[27–30] Reproducibility of RFV was 5.9% and 5,6% in Japanese and white subjects,

respectively.

Data analysis

For data description %-changes from baseline were calculated. A one-way ANOVA model was

used to study the time effect of MT and OPP during squatting. In addition, pressure-flow rela-

tionships were calculated as described in more details previously.[31–33] Briefly, the relative

OPP data were sorted according to ascending values. Given that 27 healthy subjects partici-

pated and 6 values were obtained in each subject during isometric exercise this results in a

total of 162 OPP/MT values. Data were pooled into 9 groups in the pressure/flow relationship

each consisting of 18 individual values. A statistically significant deviation from baseline MT

was defined when the 95% confidence interval did not overlap with the baseline value any

more. A p-value < 0.05 was considered the level of significance. Statistical analysis was carried

out using CSS Statistica for Windows1 (Statsoft Inc., Version 6.0, Tulsa, California).

Results

27 subjects aged between 18 and 34 years participated in the present study. The baseline data

of the participating subjects are presented in Table 1. Isometric exercise-induced changes in

MT and OPP are shown in Fig 3. The increase in MTONH, MTPPR and OPP was highly signifi-

cant (p< 0.001 each). The % change in MTONH, and MTPPR was, however, small as compared

to the % change in OPP, which is indicative for blood flow autoregulation. After 6 minutes the

relative increase in OPP was 78.5 ± 19.8%, whereas it was only 18.1 ± 7.7% and 21.1 ± 8.3% for

MTONH and MTPPR, respectively. The squatting-induced increase in MTONH and MTPPR was,

however, comparable. The change in RFV during isometric exercise is presented in Fig 4.

After 6 minutes the relative increase was 16.5 ±12.0% in arteries and 17.7 ± 12.4% in veins. No

gender differences were observed in the time course of ocular hemodynamic parameters dur-

ing isometric exercise (MTONH: p = 0.542, MTPPR,: p = 0.617, RFVART: p = 0.788, RFVVEIN,

p = 0.424). The magnitude of blood flow change in response to the OPP increase had no asso-

ciation with baseline OPP (MTONH: p = 0.471, MTPPR,: p = 0.441, RFVART: p = 0.743, RFVVEIN,

p = 0.663)

Pressure-flow relationship as calculated from OPP and MT data are presented in Fig 5. For

MTONH a significant increase was seen when OPP levels reached a value of 51.2 ± 2.0% above

baseline. For MTPPR the OPP level at which an increase was seen was slightly higher (58.1 ± 2.4%)

and this effect was statistically different between the two measurement sites (p = 0.017). Pressure-

Table 1. Baseline characteristics of the healthy subjects (n = 27).

Sex (male/female) 11/16

Age (years) 24.6 ± 5.0

Mean arterial pressure (mmHg) 86.7 ± 8.3

Pulse rate (beats/min) 66.0 ± 11.7

Intraocular pressure (mmHg) 15.0 ± 2.4

Ocular perfusion pressure (mmHg) 42.8 ± 6.4

Mean blur rate tissue areaONH (a.u.) 13.7 ± 1.8

Mean blur rate tissue areaPPR (a.u.) 12.8 ± 1.9

Retina Flow VolumeART (a.u.) 295.6 ± 61.2

Retina Flow VolumeVEIN (a.u.) 387.3 ± 75.2

https://doi.org/10.1371/journal.pone.0184772.t001

ONH blood flow regulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0184772 September 12, 2017 5 / 17

https://doi.org/10.1371/journal.pone.0184772.t001
https://doi.org/10.1371/journal.pone.0184772


Fig 3. Ocular perfusion pressure (OPP) and mean blur rate (MBR) in tissue area of optic nerve head (MTONH) and peripapillary region

(MTPPR) during isometric exercise. Data are expressed as % change from baseline. Data are presented as means ± SD (n = 27).

https://doi.org/10.1371/journal.pone.0184772.g003
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flow relationship for RFV is presented in Fig 6. For both retinal arteries and retinal veins a signifi-

cant increase was seen when OPP levels reached a value of 45.6 ± 1.9% above baseline. Of note

the graphs presented in Fig 5 and Fig 6 show relative changes over baseline. To depict pressure/

flow graphs in humans based on absolute values is not possible, because different subjects start at

different baseline blood pressure values.

Discussion

In the present study we observed that blood flow is autoregulated during isometric exercise

both in the ONH and PPR as well as in the retina. Values for upper limit of autoregulation as

obtained in the ONH with LSFG are slightly lower than with those obtained using LDF in

healthy subjects.[11, 13, 15–17] Using the same protocol for isometric exercise (6 minutes of

squatting) previous LDF data indicate that ONH blood flow is effectively autoregulated until

OPP increases by approximately 60%, whereas in the present study values of approx. 50% were

found.

The principle of LSFG is to image the speckle pattern with an exposure time longer than the

shortest speckle fluctuation time.[34] With the LSFG machine used in this study the blur of

the speckle, reflecting a reduction in the local speckle contrast, is quantified. As such the tech-

nique shares many similarities with LDF, but is capable of producing a two-dimensional

map without scanning of the laser beam. Goodman has shown [35] that a relationship exists

between the variance of a time-averaged moving speckle pattern and the temporal fluctuation

statistics. Whereas LSFG measures the former LDF measures the latter by quantifying autoco-

variance. If the density of red blood cells is low, the first moment of the power spectrum scales

linearly with velocity and concentration (a parameters termed Volume in LDF research).

Based on the theory of Bonner and Nossal[36] this concept can be generalized also for tissues

containing higher concentrations of red blood cells given that some assumptions are fulfilled.

This forms the basis for blood perfusion measurements in arbitrary units using Doppler tech-

nology.[37, 38] With LSFG it is not entirely clear whether velocity or flow is measured.[34]

The loss of contrast in a speckle pattern will obviously depend on the relation between static

and moving scatterers in the sampling volume.[39, 40] Moreover, the velocity distribution will

have an impact on the contrast in the speckle pattern. In vivo a combination between Gaussian

velocity distribution and Lorentzian distribution may be the most appropriate to describe this

dependence.[41] As such it is clear that MT is neither directly related to velocity nor to flow,

but the association may depend on the velocity distribution as well as the fraction of moving

particles.

Whereas most papers dealing with LSFG in the eye claim that the velocity is measured com-

parison has been done mainly with technology that measures perfusion. Indeed, LSFG has

been validated for measurement of ONH blood flow using hydrogen clearance[27, 42, 43] or

fluorescence microspheres[44] as reference method. It is also not fully established from which

depth the LSFG signal in the ONH or the PRR arises.[45] It has been shown that the signal

from retinal locations exepct the fovea contains retinal as well as choroidal contributions.[22,

23] In this respect it is important to mention that the results obtained during isometric exercise

in the PPR showed some similarities to those obtained from the foveal region using LDF

where only the subfoveal choroidal vessels contribute to the signal.[9, 46, 47] Very few studies

have looked into the proportion of signal arising from retina and choroid, but a LDF study

using 100% oxygen breathing as stimulus indicates that the signal arises primarily from the

Fig 4. Relative flow volume (RFV) in arteries (RFVART) and veins (RFVART) during isometric exercise. Data are expressed as % change from

baseline. Data are presented as means ± SD (n = 27).

https://doi.org/10.1371/journal.pone.0184772.g004
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choroid.[48] The present study may indicate that this also holds true for LSFG. Non-human

primate data indicate that LDF in the ONH measures preferentially the superficial layers sup-

plied from the central retina artery.[45] On the other hand the large choroidal contribution to

the signal obtained from the peripheral retina indicates that deeper structures may contribute

to the LSFG signal in the ONH as well. It can also not fully be excluded that MTONH and/or

MTPPR show a zero-setoff although we deem this unlikely based on the measurement principle.

All these effects may explain to a certain degree the small differences as observed between

LSFG and LDF values during isometric exercise.

Measurement of RFV to quantify blood flow in the retinal vasculature based on LSFG is a

relatively new approach.[24] Previous studies have proven adequate reproducibility but some

problems with validity of the technique have been reported.[24, 25] Whereas comparison with

both laser Doppler velocimetry (LDV) and Doppler OCT revealed significant correlations a

significant zero-setoff was observed. This may be a significant problem when studying absolute

blood flow values, but less a problem when retinal blood flow changes in a relatively small

range. In the present study we observed relatively consistent results between retinal arteries

and veins supporting this assumption, Interestingly studies reporting isometric exercise-

induced changes in retinal blood flow are sparse. A study using the blue-field entoptic tech-

nique observed that white blood cell flux increased at OPP levels between 35% and 42% above

baseline.[49] This is in good agreement with laser Doppler velocimetry studies reporting an

increase in retinal blood flow at OPP values of 40% above baseline.[20]

Only few studies have so far used LSFG to study autoregulation of ocular blood flow during

a change in blood pressure in humans. In response to changes in posture differences between

choroidal and ONH blood flow were reported.[29] During both isometric and dynamic exer-

cise changes in MT in a PPR were reported, but no direct relation to the increase in blood pres-

sure increase was established.[50–52] During exhaustive dynamic exercise blood flow may

decline due to hypocapnia, because in both retina and choroid the level of perfusion is strongly

dependent on pCO2 levels.[53–58] The technique was also used to study dynamic autoregula-

tion after inducing systemic hypotension by the tigh-cuff technique.[59] Generally it needs to

be considered that in the choroid the blood flow response to changes in blood pressure may

strongly depend on the way blood pressure is modified, because of the rich neuronal innerva-

tion of blood vessels and the sympathetic and parasympathetic input.[60–62]

LSFG was previously employed to study autoregulation in several animal studies. ONH

blood flow autoregulation was investigated in rabbits[63, 64] during an artificial increase in

IOP. In non-human primates static[65–67] and dynamic autoregulation [68, 69] were studied.

ONH blood flow regulation was shown to decline in parallel with neural degeneration induced

by ocular hypertension due to an unknown mechanism.[70] As compared to human studies

such experiments have the advantage that blood pressure can be more easily controlled, but

have the disadvantage that anesthesia may alter the autoregulatory response to an unknown

degree.

The data of the present study may also be relevant for validation of blood flow measure-

ments based on either Doppler optical coherence tomography (OCT) or OCT angiography. In

larger vessels techniques have been developed to study retinal blood flow based on either dou-

ble circular scans around the ONH,[71, 72] multi-beam approaches,[73–78] 3-D datasets[79]

or enface OCT images[80] and some of these approaches have also been validated against

Fig 5. Pressure-flow relationship using the categorized ocular perfusion pressure (OPP)—mean blur rate in tissue area data of

optic nerve head (MTONH, upper panel) and peripapillary region (MTPPR, lower panel) during isometric exercise. Relative data

were sorted into 9 groups consisting of 18 individual values according to ascending OPP values. The means and the 95% confidence

intervals are shown (n = 27). Asterisks indicate significant increase from baseline blood flow values.

https://doi.org/10.1371/journal.pone.0184772.g005
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invasive microsphere technology.[81] In the microvasculature some attempts have been made

to extract quantitative data from OCT angiograms,[82, 83] but none of these techniques is ade-

quately validated. In order to relate the complex OCT signal to blood flow or blood velocity in

the microvasculature, all the issues mentioned above for LSFG must be taken into account. In

addition, light scattering has to be considered for short-coherence light as used for OCT

applications.

Some limitations of the present study need to be considered. Human validation experi-

ments using LSFG were so far only done in Japanese populations. As such experience with the

system in subjects of European descent is very limited to date.[25, 84] Inter-race difference in

the LSFG signal may, however, well be expected because of differences in fundus pigmentation.

Another limitation is related to the fact that MT and MAP were only measured every minute

in the present experiments. In an elegant recent experiment Chiquet and co-workers[18] were

capable of continuously measuring blood flow and blood pressure, but this is technically not

possible with the commercial LSFG device. Finally, IOP was only measured at baseline and not

during isometric exercise. We have, however, previously shown that this limitation is small

when OPP is calculated.[85]

In conclusion we present data on the response of MT signal in the ONH and PPR during

isometric exercise using LSFG. Data in the ONH resemble what has previously been shown

using LDF, although values obtained for upper limit of autoregulation are slightly lower. In the

PPR both retinal and choroidal circulation may contribute to the signal, but the relative ratio is

unknown. LSFG is a clinically applicable tool to study ONH autoregulation in humans.
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