Skip to main content
. 2017 Sep 12;7:11347. doi: 10.1038/s41598-017-11665-4

Table 6.

Mean Square Error (MSE) and Mean Absolute Error (MAE) between actual and predicted responses using 3 fold cross validation for different cancer types for multivariate case in CCLE dataset.

Cancer Types Drug Names Mean AUC of Cancer Types MRF mHARF
MSE MAE MSE MAE
CNS & Skin AZD6244 0.09 & 0.30 0.0158 0.0982 0.0142 0.0878
PD-0325901 0.13 & 0.43 0.0278 0.1309 0.0244 0.1184
PLX4720 0.05 & 0.17 0.0105 0.0797 0.0096 0.0748
Skin & Ovary 17-AAG 0.46 & 0.36 0.0173 0.1037 0.0166 0.1012
AZD0530 0.07 & 0.13 0.0046 0.0550 0.0048 0.0572
AZD6244 0.30 & 0.11 0.0152 0.1028 0.0140 0.0884

Whenever, mean differences of the AUC distributions between two cancer types are higher, mHARF is doing significantly better than MRF, but in cases where mean difference of the AUC distributions between two cancer types are close, MRF and mHARF are performing similar.