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From malaria to cancer: 
Computational drug repositioning 
of amodiaquine using PLIP 
interaction patterns
Sebastian Salentin1, Melissa F. Adasme1, Jörg C. Heinrich1, V. Joachim Haupt1, Simone 
Daminelli1, Yixin Zhang2 & Michael Schroeder1

Drug repositioning identifies new indications for known drugs. Here we report repositioning of the 
malaria drug amodiaquine as a potential anti-cancer agent. While most repositioning efforts emerge 
through serendipity, we have devised a computational approach, which exploits interaction patterns 
shared between compounds. As a test case, we took the anti-viral drug brivudine (BVDU), which 
also has anti-cancer activity, and defined ten interaction patterns using our tool PLIP. These patterns 
characterise BVDU’s interaction with its target s. Using PLIP we performed an in silico screen of all 
structural data currently available and identified the FDA approved malaria drug amodiaquine as 
a promising repositioning candidate. We validated our prediction by showing that amodiaquine 
suppresses chemoresistance in a multiple myeloma cancer cell line by inhibiting the chaperone 
function of the cancer target Hsp27. This work proves that PLIP interaction patterns are viable tools 
for computational repositioning and can provide search query information from a given drug and its 
target to identify structurally unrelated candidates, including drugs approved by the FDA, with a known 
safety and pharmacology profile. This approach has the potential to reduce costs and risks in drug 
development by predicting novel indications for known drugs and drug candidates.

Pharmaceutical companies spend around $ 2.6 billion in developing a drug through to market approval1. To 
minimize risk and development time, drug repositioning moves experimental or approved drugs to new indi-
cations, so that data from previously conducted safety and pharmacology studies can be leveraged. There are 
several examples of repositioning success stories, such as sildenafil (Viagra), which was originally developed for 
heart disease and was repurposed for erectile dysfunction, the sedative thalidomide, which is now approved for 
treatment of multiple myeloma and leprosy2, or the cytotoxic anti-cancer agent gemcitabine, which was originally 
developed as an anti-viral. The link between anti-viral and anti-cancer effects is also demonstrated with the small 
molecule brivudine (BVDU), which is approved for treatment of herpes and which has been investigated for use 
in pancreatic cancer3.

It appears surprising that one drug should be a cure for two diseases. One explanation is that a drug can bind 
promiscuously, i.e. to multiple different targets. In previous work, we established that drug promiscuity correlates 
with shared binding sites across the drug’s multiple targets4. Thus, structural analyses of shared binding sites and 
drug-target interactions are promising approaches to drug repositioning.

Such analyses hinge on the availability of structural data. While structural data is not as abundant as sequence 
data, it is growing steadily. The Protein Data Bank (PDB) has more than doubled in size in the last seven years. 
Today, it contains 3D structures of over 1,200 different drug targets5 and more than 60% of all PDB structures 
contain proteins complexed with biologically relevant ligands4. The growing availability of data is comple-
mented by an increasing number of tools and methods mostly focusing on binding pockets6–8 or ligands9–11. A 
third approach characterises the interaction of ligands and binding pockets. Here, we recently introduced the 
Protein-Ligand Interaction Profiler (PLIP)12, a tool for comprehensive detection of molecular contacts. In this 
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paper, we show how an analysis of a known drug-target interaction with PLIP can define interaction patterns, 
which can then be run against the PDB (Fig. 1). Since the patterns are structure-invariant, the screen against PDB 
will reveal ligands with novel scaffolds and novel targets. To document the power of this novel in silico screening 
approach, we tested it on the herpes drug BVDU. After defining the patterns through which BVDU interacts with 
its target proteins, we screened for compounds matching these patterns and then tested the hits in vitro for their 
potency in inducing cell killing in cultured cancer cells and inhibiting the function of a drug resistance target 
(anti-cancer effect).

Results
In the 1980s, BVDU was first introduced as a treatment for Herpes zoster infection. BVDU is a thymidine ana-
logue, composed of a nucleobase ring, a deoxyribose moiety, and a bromovinyl residue. In the infected cell, 
BVDU is phosphorylated by a viral thymidine kinase and then erroneously integrated into the viral genome13, 
terminating the viruses ability to replicate.

BVDU interaction patterns for PLIP screening.  For our approach to structural drug repositioning it 
is important that crystal structure data for BVDU in complex with viral and non-viral kinases14 is available in 
PDB. Figure 2 shows in detail, how BVDU interacts with these kinases: BVDU’s nucleobase ring (A) engages 
in π-stacking (B–D) and features two prominent parallel hydrogen bonds (E–G). Its deoxyribose moiety has a 
hydrophobic contact (H) and a distal hydrogen bond (I) and the bromovinyl residue forms a halogen bond (J).

The ten interaction patterns (A–J) were derived from five different PDB structures originating from viruses, 
human, and fruitfly. Given the variety of species it can be expected that not all patterns are present in all com-
plexes. Even within the same species, there might be different use of the patterns, since not all interactions may 
be essential. Figure 3 demonstrates this point by showing presence and absence of the patterns in five PDB struc-
tures. A single π-stacking to BVDU’s aromatic ring (A), double hydrogen bonds to the base ring (E) and the distal 
hydrophobic contact (H) are present in all structures, whereas the parallel hydrogen bonds (F, G) are present in 
nearly all, and the double π-stacking patterns (B–D) only in some structures. Interestingly, the halogen bond (J) 
is not present in all viral structures. Overall, analysis with PLIP reveals some distinct features and combinations 
among the ten patterns, and we screened the PDB for these ten patterns, ranking compounds by the number of 
matches.

Figure 1.  PLIP Screening. Screening for BVDU interaction patterns reduces an initial set with 13,704 
compounds to 58 candidate compounds.
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PLIP screening of PDB for BVDU interaction patterns.  Our goal was to identify compounds which 
can form interactions in a similar manner to BVDU. We postulated that since these new compounds share inter-
action patterns with BVDU, they might also bind to the same target protein in cancer as BVDU. Screening the 
entire PDB for any ligands and targets, which interact similarly to BVDU, is not a trivial task as PDB comprises 
some 107,000 structures. After removing biologically irrelevant entries with BioLiP (see Methods), there are 
170,219 complexes between 16,460 unique targets and 13,704 unique ligands. Each of these 170,219 complexes 
was analysed for the presence of the ten BVDU patterns and the results are shown in Fig. 4. There is no complex 
which contains all ten interaction patterns, but thymidine, the parent scaffold from which BVDU is derived, is 
among six ligands that contain nine patterns. Compounds were ranked by the number of patterns and annotated 
whether or not they were approved for therapy by the FDA. There are just 951 complexes containing six or more 
patterns and these complexes contain fewer than 250 compounds including 12 approved and 46 candidate drugs 
(i.e. experimental drugs or drugs in currently tested in clinical trials).

Prioritization of repurposing candidates.  Three criteria were used to prioritize candidate compounds: 
Firstly, we sought compounds with a different scaffold to BVDU. Secondly, we used FDA-approval to prioritise 

Figure 2.  BVDU interaction patterns. Aromatic ring for π-stacking (A), double π-stacking to base ring (B), on 
opposite sites (C), in parallel (D), double hydrogen bonds to base ring (E), to the same residue (F), in parallel 
(G), distal hydrophobic contact (H), distal hydrogen bond (I) and distal halogen bond (J).

Figure 3.  BVDU interactions patterns from five target proteins. Ten patterns relating to π-stacking (A–D), 
parallel hydrogen bonds (E–G), hydrophobic contacts (H), hydrogen bond (I) and a halogen bond (J) and their 
presence in five targets from five species.
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the results, since these compounds will have been extensively researched and information on safety pharmacol-
ogy, dosing and formulation may be available. Such information can significantly increase the value of potential 
repositioning candidates. Thirdly, we sought an improvement in potency over BVDU, meaning the drug should 
show a stronger inhibition of BVDU’s target in cancer than BVDU itself.

Regarding scaffold diversity, we expected many of the top-scoring hit compounds to be nucleobases, since 
BVDU is a thymidine analogue. As mentioned above, thymidine is ranked highest with nine matching patterns 
and thus serves as a positive control. Similarly, deoxy-adenosine, -guanosine, and -cytidine contain seven BVDU 
patterns and deoxy-uridine contains six patterns. Overall, the 58 drugs with six or more patterns contain 40 such 
nucleobases. In Fig. 5 the 58 drugs are grouped according to chemical similarity and this reveals two large clusters 
(red boxes), which comprise pyrimidine and purine scaffolds. The remaining groups are much smaller in size and 
comprise scaffolds different from BVDU. These 18 novel compounds are of particular interest.

The second priorization aspect is FDA-approval: Among the 58 drugs, 12 are FDA-approved drugs which 
contain between 6 and 8 BVDU patterns (see Fig. 6 and Table 1). Half of these 12 FDA-approved drugs have a dif-
ferent scaffold to BVDU, namely the aminopteridones (folic acid, tetrahydrobiopterin, triamterene), the flavone 
quercetin as well as the singletons pyridoxal phosphate and amodiaquine.

Finally, we evaluated the potential of hit compounds to bind to BVDU’s primary target Herpes simplex thy-
midine kinase, the starting point for our pattern-based screening. Heinrich et al.3 showed that BVDU also binds 
the human heat shock protein, Hsp273, and thereby blocks its anti-apoptotic activity allowing cytotoxic agents to 
reestablish their efficacy. To assess whether candidates could bind to these targets, we employed in silico docking 
with the widely used Autodock software (see Methods for details). We docked all 58 drugs to the relevant binding 
sites in the viral thymidine kinase and the a homology model of Hsp273 and found that chrysin, olaparib, amodi-
aquine, and acenaphthenoquinone ranked better than BVDU in both cases (see Supplementary Fig. 1 for details). 
Figure 7 shows how the software docked amodiaquine to the two targets and how the docking poses satisfy the 
π-stacking patterns A–D as well as the distal hydrophobic contact pattern. However, they do not satisfy the hydro-
gen bond patterns E–G. In this respect, amodiaquine binds the BVDU targets in the same manner as one of its 
targets, histamine methyltransferase.

As a final step to test our structural repurposing approach with PLIP, we tested amodiaquine in vitro in bio-
chemical and cell biological assays.

Amodiaquine as anti-cancer drug?.  BVDU exerts its anti-cancer effect by suppressing the cancer cells’ 
ability to develop resistance to a chemotherapy. Heinrich et al.14 demonstrated this by treating a multiple mye-
loma cell line with bortezomib, a chemotherapeutic agent, at increasing doses, which creates a selective pressure 
for the cells to develop resistance. Co-treatment with bortezomib and BVDU14 inhibits cell growth effectively 
and allows bortezomib to reestablish its cytotoxic effect. They also show that BVDU achieves this effect only 

Figure 4.  BVDU patterns effectively identify repositioning candidates. There are 247 compounds with six or 
more BVDU patterns including 12 approved drugs. One such drug is amodiaquine, an anti-malaria agent. As a 
control, thymidine, a BVDU analogue, satisfies nine BVDU patterns.

http://1
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in combination with bortezomib and has no cytotoxic activity on its own. We tested amodiaquine in the same 
chemoresistance assay to document its anti-cancer potential (Fig. 8). The cancer cells were exposed to increas-
ing doses of bortezomib over three cell culture passages (see Fig. 9 for details). At the beginning of the third 
passage on day 12, 100,000 cells are exposed to the treatment regimes (bortezomib on its own and bortezomib 
with amodiaquine). After one week, resistance to bortezomib is clearly shown as cells continue to grow and have 
multiplied eightfold to 800,000. In contrast, the co-treatment with amodiaquine leads to a significant reduction 
in cell number to 80,000 (10%).

Amodiaquine inhibits Hsp27’s chaperone function.  In a biochemical assay, which elucidates how 
compounds inhibit the chaperone function of the heat shock protein Hsp27, Heinrich et al.3 showed that BVDU 
is a potent inhibitor. Straume et al.15 showed that breast cancer cells expressing Hsp27 become resistant to chemo-
therapy and that Hsp27 knockdown reestablished susceptibility. Furthermore, Bruey et al.16 showed that Hsp27 
negatively regulates apoptosis via interaction with cytochrome C. Following this line of thought, Heinrich et al.14 
devised an assay to show how BVDU impacts Hsp27’s function as a chaperone. Citrate synthase is used as a client 
protein of Hsp27 and misfolds at 43 °C, but in the presence of Hsp27 misfolding is inhibited. The chaperone activ-
ity of Hsp27 can be measured by the amount of misfolded client protein determined by capillary electrophoresis 
of precipitated protein. We tested amodiaquine in the Hsp27 chaperone assay and found that amodiaquine signif-
icantly inhibits Hsp27’s activity (see Methods for details) and that it was 43 more potent than BVDU. This activity 
is within the range of compounds tested in a previous study by Heinrich et al.14. Table 2 shows the results of the 
chaperone assay for the two tested compounds in comparison to lead compounds from the study by Heinrich et 
al.14.

Repositioning matrix.  Amodiaquine shares key interaction patterns with BVDU and also binds Hsp27. 
But to what extend is the ability to form these interaction patterns deterministic for target protein binding? Does 
amodiaquine also bind to the Herpes thymidine kinase and does BVDU bind to amodiaquine’s target histamine 
methyltransferase? In fact, do all of the 58 drugs with six or more BVDU interaction patterns bind to all of the 43 
PDB targets? It is unlikely that this holds in its entirety, but it is reasonable to assume that some of these potential 
“repositioning cases” are valid. A systematic in vitro validation of all 58 drugs against all 43 targets was not car-
ried out, however, a survey of the literature and databases supports many of these predicted interactions, and we 
grouped these drugs into 19 drug classes and the 43 targets into 23 superfamilies (see Methods). Figure 10 reveals 
whether there is evidence for target binding from crystal structures (green) or from other sources such as text 
mining, biological assays, or pathways (orange).

Figure 5.  Scaffold hopping from BVDU to amodiaquine. Pairwise chemical similarity of compounds 
(red = similar, yellow = dissimilar) arranged by chemical scaffold and clustered by chemical similarity within 
each group. The top group shows BVDU among 40 nucleobases. Amodiaquine is one of 18 compounds with a 
scaffold different from BVDU.
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From all 437 possible binding combinations of proteins and compounds (Fig. 10), 41 (9%) could be confirmed 
by structural evidence (green). For 81 (18.5%) other drug-target pairings, there is evidence for binding from text 
mining, bioassays, screening or pathway data. Taken together, both sources provide binding evidence for 28% 
of all possible combinations. By arranging the data points by the number of shared targets (for compounds) and 
the number of shared ligands (for targets), clusters were produced in the matrix, which indicate that for some 
protein and ligand ensembles, evidence is available that they may bind to each other. One small distinct cluster 
(Fig. 10, lower right corner) is formed by dUTPase-like proteins, UDP-Glycosyltransferases, HAD-like protein, 
Nudix-, and (trans)glycosidases, together with nucleosides, nucleotides and singletons are supported by both 
structural and other evidence. A large cluster is visible in the top right of the matrix with 6 compound and 7 pro-
tein groups. Interestingly, this cluster also contains the chemical group of the hit compound amodiaquine and its 

Figure 6.  Approved drugs with six or more patterns. Twelve FDA-approved drugs across very different diseases 
and targets (panel A). Six are nucleobases like BVDU, but six are novel scaffolds. The patterns for π-stacking 
(A–D) and double hydrogen bond (E–G) are present in the majority of these compounds.

Drug name Target Disease Scaffold
N 
Patterns

Adenosine Uridine 5′-nucleotidase
Myocardial perfusion scintigraphy 
and help identify coronary artery 
disease.

Nucleobases 8

Cladribine Deoxycytidine kinase Hairy cell leukemia Nucleobases 7

Folic acid Folate receptor alpha Folate deficiencies and megaloblastic 
anemia. Aminopteridones 7

Tetrahydrobiopterin Nitric oxide synthase Phenylketonuria(PKU) Aminopteridones 7

Amodiaquine Histamine N-methyltransferase Acute malaria attacks in non-
immune subjects Singletons 6

Mercaptopurine Xanthine dehydrogenase/oxidase Lymphatic Leukemia Nucleobases 6

Pentostatin Adenosine deaminase Lymphoproliferative malignancies, 
particularly hairy-cell leukemia Nucleobases 6

Pentoxifylline Chitinase Peripheral vascular diseases and 
cerebrovascular insufficiency. Nucleobases 6

Pyridoxal Phosphate D-serine dehydratase Dietary shortage or imbalance. Singletons 6

Quercetin Xanthine dehydrogenase/oxidase Dicrease capillary fragility. Flavones 6

Telbivudine Deoxycytidine kinase HepatitisB virus (HBV) Nucleobases 6

Triamterene Pteridine reductase 1 Edema associated with congestive 
heart failure. Aminopteridones 6

Table 1.  Approved drugs with six or more patterns. Listed are the drugs and their targets as well as their 
original indication and chemical class.
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target histamine methyltransferase (blue) as well as BVDU’s chemical group and the superfamily of BVDU’s target 
thymidine kinase (both marked in green font). The available evidence places the nucleosides as the compound 
group, which binds to the largest number of target superfamilies (17), while the P-loop containing nucleoside 
triphosphate hydrolases are known to bind to most (12) of the chemical classes from the set of 58 drugs.

Validation on a different scaffold: chrysin.  Out of interest, we took a closer look at the highest-ranking 
compound not in the list of FDA-approved drugs to experimentally confirm another binding prediction with 
a different chemical scaffold (Fig. 10). Evidence supporting the potential for binding of the flavone chrysin to 
Hsp27 is particularly strong: Chrysin’s interaction with rabbit glycogen phosphorylase (PDB ID 3EBO) satisfies 
the BVDU consensus patterns A (base ring), E (double hydrogen bonds), and H (distal hydrophobic contact), 
as well as the patterns B-D for π-stacking. It also was ranked best in the in silico docking experiment. Thus, we 
tested chrysin in the chemoresistance assay (see Methods) and Fig. 8 shows that, similar to amodiaquine, chrysin 
in combination with bortezomib reestablishes cytostatic activity and reduces cell growth by 50% in comparison 
to cells only with bortezomib alone. Growth of the drug-resistant cells is not completely stopped (as with amo-
diaquine), but is substantially reduced. In the Hsp27 chaperone assay, chrysin performs 69 times better than the 
reference compound BVDU (see Methods and Table 2).

Discussion
The results we present in this work spark discussion on three points. Firstly, how does PLIP screening for drug 
repositioning compare to other computational approaches? Secondly, could the discovery of amodiaquine’s 
anti-cancer effect have been obtained differently? Thirdly, can the PLIP approach be applied to other indications?

PLIP utilizes interaction-based screening, in contrast to ligand- and target-based approaches, which are based 
on chemical or protein structure, respectively. Ligand-focused approaches8–11, 17, 18 usually consider molecular 
structure properties or fragment composition to find similar compounds. This is successful if the goal is the dis-
covery of structurally related compounds. However, to identify novel scaffolds (ligand hopping), this method is 
not suitable. In our example, amodiaquine is structurally unrelated to BVDU and could therefore not have been 
found by these methods. Target-focused methods6, 7, 19–23 rely on either geometrical analysis or chemical analysis 

Figure 7.  Amodiaquine in complex with its target histamine methyltransferase (2AOU, left), with the in silico 
docked target thymidine kinase (1OSN, middle) and Hsp27 model (right). All contain the patterns A–D and H.

Figure 8.  Drug-resistant multiple myeloma cells continue to grow despite treatment with the cytostatic drug 
bortezomib. However, when combined with bortezomib, amodiaquine significantly reduces cell numbers. 
Chrysin achieves a similar effect.
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of the target protein. Similar to ligand hopping, these methods do not lend themselves to target hopping. As an 
example, BVDU binds a thymidine kinase and amodiaquine a methyltransferase. These targets do not share any 
similarities, however, by focussing on the drug-protein interactions, PLIP can find a relationship between BVDU/
thymidine kinase and amodiaquine/methyltransferase, since they interact in a very similar manner. This focus 
on interactions rather than on ligands or target is also implemented in other tools24, 25, however, these do not 
consider some interaction types (π-stacking and/or halogen bonds), which were necessary to define the BVDU 
patterns and finally to make the link to amodiaquine and other hit compounds.

Based on drug-target interaction patterns, PLIP identified the anti-cancer potential of the anti-malaria drug 
amodiaquine. We verified this anti-cancer effect by showing that multiple myeloma cancer cells, which have 
developed resistance to chemotherapy, become sensitized to chemotherapy again upon exposure to amodiaquine. 
One important question here is whether amodiaquine is also a cytotoxic agent or works via a specific mecha-
nism on cell resistance. The resistance assay clearly shows that amodiaquine has a specific and synergistic effect 
with the cytotoxic agent bortezomib (see Fig. 9). Without the cytotoxic agent (control runs a + b), the cells can 
grow unhindered, so a cell toxicity of amodiaquine can be excluded. When administered in combination with 

Figure 9.  Detailed results of the cell resistance assay. (a) Amodiaquine re-establishes chemosensitivity in 
resistant cancer cells. Cells are treated with increasing doses of the cytotoxic agent bortezomib and amodiaquine 
over three passages. There is a clear difference in growth behaviour between treatment with bortezomib only or 
with addition of amodiaquine. In comparison to the known binder BVDU at 30, amodiaquine is more effective 
at 1/60th of this dose. (b) The control shows that amodiaquine is not a cytotoxic agent. When administered on 
its own (without bortezomib), there is no difference in cell growth compared to untreated cells. The same holds 
true for chrysin (c,d), although the effect on cell growth is not as strong. All experiments were conducted with 
the multiple myeloma cell line RPMI-8226.

Compound Dosage
Rel. CS 
Precip.

Rel. 
Inhib.

PLIP Screening
Chrysin 10 μM 0.92 69x

Amodiaquine 10 μM 0.57 43x

Heinrich et al.

CAS 50-53-3 10 μM 1.06 80x

CAS 61-00-7 10 μM 0.99 74x

CAS 104715-80-2 10 μM 0.92 69x

CAS 1222781-87-4 10 μM 0.81 61x

CAS 161363-17-3 10 μM 0.71 53x

CAS 1222812-38-5 10 μM 0.65 49x

CAS 53-86-1 — — —

Control BVDU 750 μM 1 1x

Table 2.  Results of the chaperone assay for amodiaquine, chrysin, and lead compounds from study by 
Heinrich et al.14 in comparison to the control BVDU. Listed are the dosage used in the experiment, the relative 
precipication of the client protein citrate synthase, and the relative inhibition after correcting for the dosage. 
Amodiaquine is substantially better than BVDU in inhibition of Hsp27 chaperone activity and within the 
activity range of compounds identified by Heinrich et al.14. The same is true for chrysin.
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bortezomib, however, the growth behaviour clearly changes due to a re-establishing of chemosensitivity by amo-
diaquine. The same is true for chrysin, although the effect on cell growth is not as strong.

We show that amodiaquine inhibits the chaperone function of the heat shock protein Hsp27, which plays 
a key role in the chemoresistance of some tumor types15. These findings are supported by Qiao et al.26, who 
treated cultured malignant melanoma cells with amodiaquine and found that it sensitized them to starvation- and 
chemotherapeutic-induced death. They also showed that heat shock proteins, Hsp70 and Hsp90, play an impor-
tant role in this process, similar to Hsp27 in our studies.

Unlike most repositioned drugs, Qiao et al.26 used a rational approach to identify amodiaquine. The authors 
argued that autophagy and lysosomal degredation play an important role in cancer27, 28 and that, as many 
anti-malaria drugs are lysosomotropic, they set out to screen anti-malarial agents for their anti-cancer behaviour. 
Their approach to drug repositioning is nonetheless serendipitous, since the hypothesis was not generated sys-
tematically. However, it also shows how techniques such as text-mining, reasoning, mechanism of action insights, 
and database integration will play an important role in the systematization of drug repositioning.

In contrast to Qiao et al.26, PLIP’s identification of amodiaqine was based on an algorithmic processing of data 
on its target, methyltransferase, which shares its binding site interactions with BVDU’s targets Hsp27 and thymi-
dine kinase. We obtained proof that amodiaquine inhibits Hsp27 function, but binding to thymidine kinase and 
any anti-viral activities were not tested. However, there is evidence that amodiaquine inhibits virus replication 
of flaviviridae including dengue virus29 and there is also evidence that it interferes with thymidine production30. 
Such circumstantial evidence supports future experiments to test amodiaquine’s anti-herpetic activity.

PLIP’s ranking of compounds by the number of matching interaction patterns was crucial and very efficient: 
13,000 compounds in the PDB are reduced to just 247 compounds containing at least six BVDU patterns, includ-
ing a mere 12 FDA-approved drugs, one being amodiaquine. This drug shows a double π-stacking sandwich, 
which is highly specific (0.5% of interactions in PDB), a hydrophobic contact and a halogen bond, but is missing 
the parallel hydrogen bonds. However, the latter is a consensus interaction pattern among the five structures 
(Fig. 3), which means that a search for this consensus would not have included amodiaquine. Thus, we believe, 
that a ranking by number of patterns is more advantageous than filtering by a defined set of patterns. Ranking by 
number of patterns becomes even more powerful if combined with a chemical similarity analysis to exclude struc-
turally obvious hits and focus on compounds with novel scaffolds. In our study, 58 hit compounds (Fig. 4) contain 
40 nucleobases, which are chemically similar and hence not novel, leaving only 18 compounds with a good match 
in interaction patterns, but highly dissimilar to BVDU and hence, are novel scaffolds.

In our previous work (Heinrich et al.14) we identified novel Hsp27 inhibitors by target hopping from thy-
midine kinase to Hsp27. We argued that if one thymidine kinase binder (BVDU) inhibits Hsp27, then so may 
others, and identified 249 thymidine kinase binders, that were reduced to 29 with better in silico binding affinity 
than BVDU. Six of these 29 were validated in vitro in the same chemoresistance and chaperone function assays 
used here for amodiaquine. Both approaches largely complement each other, since in our earlier work, we did not 
require structural data to identify the 249 compounds. Hence, there is only a small overlap of 10 compounds with 
our candidates. However, the success of our work14 means that all of the 43 targets we identified with PLIP can 
serve as a starting point to collect binders, which could then be ranked and experimentally validated.

Next to amodiaquine from our FDA-approved hit candidates, we selected chrysin, a natural compound, as 
a second candidate for validation, since the interaction pattern score from the PLIP screen was high. Result 

Figure 10.  Evidence for binding of 58 drugs to 43 targets (grouped by scaffold type and superfamily). Green 
indicates structural evidence, orange other evidence. For 28% of pairs there is binding evidence.
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from the in vitro chemoresistance and chaperone assays were good, although not as potent as amodiaquine. 
Chrysin has shown beneficial effects in cancer cell lines31–34 and additionally, a moderate antiviral activity was 
demonstrated against H. simplex, V. zoster, and human Enterovirus 7135–39. These findings are consistent with the 
hypothesis that chrysin binds Hsp27 and the herpes thymidine kinase.

However, chrysin also has anti-allergic and anti-inflammatory activity33 and contains a catechol group with 
promiscuous binding behaviour40. Many potential targets have been proposed34 and there is also structural evi-
dence that its binding can be very different from the patterns discussed above. For example, chrysin binds to the 
transport protein transthyretin (PDB ID 4DES) with low affinity41 using almost exclusively hydrophobic contacts 
and just one hydrogen bond to a lysine at the entrance of the binding site. The in vitro effects of chrysin require 
very high micromolar concentrations42–44, so while chrysin is an interesting compound, whose binding behaviour 
supports our structural approach to drug repositioning, in contrast to amodiaquine, chrysin’s pharmacological 
profile does not support further development as an anti-cancer lead substance.

To estimate how widely applicable PLIP screening is, consider the Repurposed Drug Database45 as a reference. 
This lists 233 repositioned drugs and for 56 of these (24%), there is structural data for the ligand and one thera-
peutic target. This means that for 24% of the repurposed drugs, there is similar coverage of structural data as there 
was for our case using BVDU patterns. Similarly, there is structural data for more than 25% of FDA-approved 
drugs (400 out of ca. 160046). Hence, while there is far less structural data than, e.g. sequence data, there is none-
theless a substantial amount, which is sufficient for structural approaches, such as PLIP, to be a viable tool beyond 
examples presented in this paper.

Concluding, we could show that our structure-based screening approach with PLIP interaction patterns iden-
tifies novel repositioning candidates for the cancer target Hsp27. Not only did we identify candidates structurally 
unrelated to the query drug BVDU (scaffold hopping), but also demonstrated that they show the desired inhib-
itory activity on the target protein Hsp27 and suppress chemoresistance. Especially the FDA-approved malaria 
drug amodiaquine, which emerged as the top hit from our screen and was subsequently validated, proves the 
potential of our approach for drug repositioning.

Methods
Interaction patterns.  107,663 structures were downloaded from the Protein Data Bank (PDB)47 FTP 
Archive on Apr 2015. Each structure was analysed with PLIP v1.1.112 using standard settings, resulting in 408,877 
complexes. These were filtered using BioLiP, a database for discrimination between biologically relevant ligand 
and artifacts48, to keep 170,219 complexes.

To construct BVDU interaction patterns, the PDB structures 2W0S, 2JAW, 1OSN, 2VQS, 1KI8 (which contain 
BVDU) were analysed with PLIP, resulting in fourteen complexes overall. The structure 4XSC was not available at 
that time (released date Dec 2016), but his absence does not imply any significant change in the analysis. Pattern 
definitions include one or two specific non-covalent interactions and their relative orientation (angle or distance 
ranges). The ten pattern are shown in Fig. 2 and their definitions listed in Table 3.

The 170,219 complexes were screened for the presence of the ten patterns and if a ligand was represented by 
several complexes, the complex with the most BVDU patterns was selected. Figure 4 shows the distribution of 
pattern numbers for these complexes. Of these complexes, 247 have six or more patterns and 58 of these are drugs, 
classified as experimental, clinical, or approved drugs based on the Therapeutic Target Database (TTD)49.

Chemical similarity.  To prioritize the 58 compounds they were manually assigned to scaffold types and 
their pairwise chemical similarity was computed using the PubChem Score Matrix Service (pubchem.ncbi.nlm.
nih.gov/score_matrix) with standard settings. Chemicals were downloaded from PubChem in SDF format. A 
heatmap of the pairwise scores was generated with the Heatplus package v2.16.0 in R 3.2.5. Compounds on the 
axes were grouped by scaffold and within each scaffold by hierarchical clustering on average distances.

Pattern Geometric Constraints

A Base pattern: aromatic ring 
in ligand

B Double π-stacking to base ring

C Double π-stacking to base ring 
on opposite sites

D Double π-stacking to base ring 
in parallel type

E Double hydrogen bonds to 
base ring

F Double hydrogen bonds to 
shared residue

G Double hydrogen bonds in 
paralell angle is 180° ± 18°

H Distal hydrophobic contact dist. to ring 4.0 Å < x < 6.5 Å

I Distal hydrogen bond dist. to ring 5.4 Å < x < 6.1 Å

J Distal halogen bond dist. to ring 7.8 Å < x < 9.2 Å

Table 3.  Definitions of patterns A–J. The base pattern A is required in every complex. For the patterns G to J, 
additional geometric constraints for their definition were necessary and have been derived from the observed 
geometries in BVDU(−MP) complexes.

http://pubchem.ncbi.nlm.nih.gov/score_matrix
http://pubchem.ncbi.nlm.nih.gov/score_matrix
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Docking.  Docking was performed with AutoDock 4.2 rigid body docking on the known BVDU binding site in 
1OSN and in the model of Hsp27, as described by Heinrich et al.3. Structures were prepared with AutoDockTools 
v1.5.4 to assign atom types and partial charges. The docking area was defined in the respective binding pockets 
by a box of 60 × 60 × 60 Å for 1OSN and 50 × 60 × 50 Å for Hsp27 with 0.375 Å spacing. Lamarckian genetic 
algorithm with 150 randomly placed entities, 27,000 generations, 5,000,000 energy evaluations, a mutation rate 
of 0.02, elitism value 1, and a cross-over rate of 0.80 was used for the docking process, with a total of thirty runs 
per compound. The local search was performed using the Soils and Wets algorithm with 300 iterations per search. 
After the docking, pose clusters were generated using Root Mean Square Deviation (RMSD) values.

Chemoresistance assay.  BVDU was a gift from Rudolf Fahrig, RESprotect GmbH, Dresden (Germany). 
Amodiaquine and chrysin were bought from Sigma-Aldrich. A multiple myeloma cell line (RPMI-8226) was 
obtained from the DSMZ (German Collection of Microorganisms and Cell Cultures). The cells were cultivated 
in RPMI 1640 medium, supplemented with 10% (v/v) fetal bovine serum in a humidified atmosphere at 37 °C 
and 5% CO2. Cells in logarithmic growth phase were reseeded at a density of 100,000 cells per mL and incubated 
with the chemotherapeutic agent bortezomib (Velcade) together with the test compounds. Bortezomib was omit-
ted for the control run. Cells were passaged regularly to prevent densities of more than 1,000,000 cells per mL. 
Bortezomib was added at an initial dose of 0.1 ng/mL, followed by increasing doses of 0.2 ng/mL (second passage) 
and 0.3 ng/mL (3rd passage). As a positive control, cells were incubated with bortezomib and 30 μM BVDU. For 
all tested compounds, non-toxic doses were previously determined.

Hsp27 chaperone function assay.  Hsp27 is a chaperone for many client proteins including citrate 
synthase (CS). CS misfolds at temperatures above 43 °C, but in the presence of Hsp27, misfolding is reduced. 
Inhibitors binding to Hsp27 impair its chaperone function, leading to accumulation of denatured CS and the 
amount of misfolded protein can thus serve as a measure of Hsp27 inhibition. BVDU, controls, or test compounds 
were incubated in 40 mmol L-HEPES buffer with 1.44 μM CS and 481 nM Hsp27 at 43 °C and pH 7.4. Samples 
were taken after 30, 60 and 90 min and aggregated CS quantified using capillary electrophoresis. The relative 
inhibitory values were calculated by measuring the amount of misfolded CS and subtracting the value of the blank 
(DMSO buffer) and all values were normalized to the value for BVDU and the concentration of test compounds 
used.

Repositioning matrix.  We constructed a “repositioning matrix” of the 58 compounds, satisfying six or 
more patterns, and their 43 targets. For each possible compound-target pair we reviewed the databases STITCH, 
Chembl, and PDB for binding evidence. STITCH v5.050 was accessed in Feb 2017, ChEMBL51 in Aug. 2016 and 
PDB47 in Apr. 2015. STITCH target IDs were mapped through the file full_uniprot_2_string.04_2015.tsv.gz. 
ChEMBL compounds were mapped by PubChem, ChEMBL targets by name.

Since the data points in the repositioning matrix are very scattered, we aggregated data by mapping target 
domains to their respective superfamilies using SCOPe52 (accessed in Oct 2016). This reduced the 43 targets to 
23 superfamilies. The 58 compounds were mapped to MeSH chemicals and drugs categories, as available from 
PubChem (accessed in Oct 2016), which reduced 58 compounds to 19 classes.

Data availability.  All primary data used for the analysis stems from public sources, which are described 
in the methods section of the paper. If required, identifiers are provided in the corresponding sections. PDB 
identifiers for the screening set as well as detailed information on hit compounds and their PubChem 
Compound Identifiers (CIDs) are provided as Supplementary Information. Source data for Fig. 5 is provided 
as Supplementary Information. All other relevant data are available from the corresponding author on request.

Code availability.  The Protein-Ligand Interaction Profiler (PLIP) as the key software for the study is publicly 
available at github.com/ssalentin/plip under the open source Apache 2 license.
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