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Assessment of T-cell receptor 
repertoire and clonal expansion in 
peripheral T-cell lymphoma using 
RNA-seq data
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T-cell clonality of peripheral T-cell lymphoma (PTCL) is routinely evaluated with a PCR-based method 
using genomic DNA. However, there are limitations with this approach. The purpose of this study 
was to determine the utility of RNA-seq for assessing T-cell clonality and T-cell antigen receptor (TCR) 
repertoire of the neoplastic T-cells in 108 PTCL samples. TCR transcripts, including complementarity-
determining region 3 (CDR3) sequences, were assessed. In normal T cells, the CDR3 sequences were 
extremely diverse, without any clonotype representing more than 2% of the overall TCR population. 
Dominant clones could be identified in 65 out of 76 PTCL cases (86%) with adequate TCR transcript 
expression. In monoclonal cases, the dominant clone varied between 11% and 99% of TCRβ transcripts. 
No unique Vα or Vβ usage was observed. Small T-cell clones were often observed in T- and NK-cell 
tumors in a percentage higher than observed in reactive conditions. γ chain expression was very low 
in tumors expressing TCRαβ, but its expression level was high and clonality was detected in a TCRγδ 
expressing tumor. NK cell lymphoma (NKCL) did not express significant levels of TCR Vβ or Vγ genes. 
RNA-seq is a useful tool for detecting and characterizing clonal TCR rearrangements in PTCL.

Each mature T-cell expresses a unique T-cell antigen receptor (TCR) which is a combination of either αβ chains 
or γδ chains. Diversity of the TCR repertoire reflects the initial V(D)J recombination events as shaped by selection 
by self and foreign antigens. TCRγ rearrangement occurs before the rearrange of the α and β loci, which are asso-
ciated with αβ/γδ lineage commitment; αβ T cells account for approximately 95% of the T-cell population except 
for certain extranodal sites such as the epithelium of the gastrointestinal tract.

Next generation sequencing (NGS) is a powerful method for profiling the TCR repertoire, including sequences 
encoding the complementarity-determining region 3 (CDR3), and provides a broad view of the immune response 
alterations resulting from perturbations such as infection, vaccination, and cancer1, 2. Several different NGS plat-
forms, using genomic DNA or cDNA from T cells, have been used for sequencing the TCR. Whole transcripome 
sequencing (RNA-seq) provides adequate coverage to study the TCR repertoire and has been utilized to profile 
tissue-resident T cell repertoires3.

Peripheral T-cell lymphomas (PTCL) constitute about 10% of non-Hodgkin lymphomas and comprise a het-
erogeneous group of relatively rare and aggressive malignancies derived from mature T cells4. PTCL is charac-
terized by clonal expansion of T cells and can be further classified into many subtypes based on their distinct 
morphological, immunophenotypic, molecular, and clinical differences, including angioimmunoblastic T-cell 
lymphoma (AITL), anaplastic large cell lymphoma (ALCL), and adult T-cell leukemia/lymphoma (ATLL). 
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Pathological diagnosis remains challenging, and there is a large of group of cases that cannot be further classified 
and are grouped under PTCL, not otherwise specified (PTCL-NOS). TCR rearrangement assays improve clinical 
diagnostics by demonstrating the presence of dominant clones in PTCL, and the unique rearrangement is use-
ful in monitoring minimal residual disease5–7. Furthermore, preferential TCR usage in a T-cell lymphoma sub-
type may suggest immune perturbations and antigen selection that predispose to lymphomagenesis8. Although 
TCRαβ-expressing tumors represent 90% of T-cell malignancies, T-cell clonality is routinely evaluated with a 
PCR-based method to detect TCRγ and, less frequently, β chain rearrangement using genomic DNA.

The TCRα and β loci are too complex and cumbersome for routine DNA clonal analyses, but flow cytometry 
can also detect TCRβ gene usage and thus imply clonality9, 10. However, these approaches are also limited by the 
lack of sequence information. RNA-seq provides information about the usage of variable (V), diversity (D) if 
applicable, and joining (J) regions of the TCRα, β, γ, and δ chains and yields the unique sequence of the CDR3, 
which includes the V(D)J junctions as well as N-nucleotides added by terminal deoxynucleotidyl transferase 
(TdT). We report here the utility of RNA-seq in assessing T-cell clonality and in analyzing the TCR repertoire in 
different PTCL subtypes.

Materials and Methods
Patient specimen and data source.  We analyzed RNA-seq data from our laboratory and other sources 
(Supplementary Table S1), including 40 angioimmunoblastic T-cell lymphomas (AITL), 35 anaplastic large cell 
lymphomas (ALCL), 17 PTCL, not otherwise specified (PTCL-NOS), 15 NK cell lymphomas (NKCL), 1 γδ-T 
cell lymphoma (γδ-TCL), and 6 ALCL cell lines11–15. Informed consent was obtained from all patients for the  
RNA-seq experiments. Data from normal T cells were obtained from publicly available resources16. All exper-
iments in this study were performed in accordance with the relevant guidelines and regulations, and were 
approved by the Institutional Review Boards of the University of Nebraska Medical Center (#543–09-ep) and 
City of Hope Medical Center (#13478).

Whole transcriptome sequencing.  Whole transcriptome sequencing was performed as previously 
described11, 14.

Identification of CDR3 sequences.  MiXCR (v1.2)17 was used to extract apparent CDR3 sequences from 
RNA-seq data, but the program erroneously extracted many non-TCR reads. For example, somatically mutated 
immunoglobulin κ CDR3 regions may resemble those of TCRα. Therefore, we performed additional filtering 
steps to exclude sequences transcribed from non-TCR loci. First, reads that include apparent CDR3 sequences 
were aligned against the human reference genome (hg38) using BLAT (version 34, default settings)18. Reads 
that had a >80% match with non-TCR or different TCR regions and that did not alternatively match with the 
MiXCR-reported TCR regions according to the BLAT results were removed. Second, the CDR3 nucleotide 
sequence of each clone was also aligned against the human reference genome (hg38) using BLAT, and clone 
sequences with nearly complete matches (>90% match) were removed because CDR3 sequences are expected to 
consist of sequences from V and J genes and several random bases in between. Third, in order to avoid noise from 
unknown sequences, clones with CDR3 sequences that were recurrently found in more than eight patient cases 
were removed. The script that performs the described filtering process is available at https://github.com/littlegq/
MixcrFilter. The frequencies of the 10 most frequent CDR3 were determined in each case as illustrated.

Quantification of TCR transcripts.  RNA-seq reads were mapped to the human reference genome (hg38) 
with TopHat 2 (v2.0.10)19. Fragments per kilobase of transcript per million mapped reads (FPKM values) were 
calculated using the “cuffnorm” from Cufflinks (v2.2.1)20 program with default parameters. The TCR gene anno-
tations were obtained from the Comprehensive gene annotation from the GENCODE database21. The number 
of reads containing CDR3 sequences per million mapped reads (RPM) was used to assess the overall TCRα and 
TCRβ chain transcript levels:
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where Ci is the number of reads containing each TCRα or TCRβ gene as determined by MiXCR, N  is the number 
of total RNA-seq reads that were mapped to the human genome by TopHat 2 or a similar RNA-seq aligner.

Assessment of clonality.  We assess clonality by the absolute proportion of a clone or the relative ratio of the 
two largest clones to the third largest one. For non-clonal tissues, the percentage of T-cells sharing the same CDR3 
sequences is not expected to exceed 2% according our data. However, with limited read coverage, the observed 
fraction diverges from the true fraction of transcripts. For a unique CDR3 covered by n reads, the standard error 
SE of the observed clone proportion p can be calculated as:

=
−SE p p
n
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In practice, we observed 500–2400 CDR3-containing reads (median value: 1484) in the majority of samples. 
This number was used to estimate the error (Supplementary Figure S1A) around a range of possible thresholds, 
as measured by the ratios of SE and the corresponding threshold of minimal fraction. To balance a low error rate 
and high sensitivity, we set the threshold for the minimum size of the dominant clones (top 1 + 2) to be 10%.
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For samples with very low tumor content, which is common for AITLs, clonality could also be determined 
by the ratio of the top 2 clones to the 3rd largest one. In 89.4% of monoclonal samples as determined by the 
“10% rule”, this ratio was larger than 10, which was used as a cutoff for the dominant clones (Supplementary 
Figure S1B).

In summary, a case was considered to have a clonal population if the sum of transcripts from the top two 
CDR3α or CDR3β clones was at least 10 times larger than the third largest or >10% of all observed TCRα or 
β transcripts. In addition, a monoclonal case was considered biallelic if the transcripts from the second largest 
CDR3α or CDR3β clone were at least 5 times larger than the third largest.

We also explored alternative criteria based only on the normalized gene transcript levels (measured as FPKM 
in this study) as calculated by the RNA-seq analytic pipeline. Similar to the CDR3-based criteria, a case was 
considered monoclonal if the sum of FPKM of the top two Vα or Vβ genes was at least 10 times larger than the 
third highest. If there was a conflict between clonality assessment based on CDR3 versus V-usage data, the CDR3 
assessment was adopted.

Our definition of the threshold is empirical, and more extensive experience is needed to identify the best 
threshold for diagnosis.

Mutation analysis.  RNA sequencing reads were mapped against the human reference genome (hg19) using 
Tophat (v2.0.10)19 with default settings. VarScan (v2.3.6)22 was used to call the variants. Each variant was required 
to be covered by at least 10 reads, including at least 4 variant-supporting reads, and with a minimal variant fre-
quency of 5%. SNPs in dbSNP (v138) database, except those with minor allele frequency <1% (or unknown), 
were excluded.

Identification of EBV infection in PTCL using RNA-seq.  Sequences were mapped against the EBV 
genome (AJ507799.2) using Burrows-Wheeler Aligner (v0.7.5)23 and analyzed with SAMtools (v0.6.1)24. Samples 
with 100 or more EBV-derived reads were classified as EBV-positive (Supplementary Figure S2).

Results
We utilized two analytical strategies to detect the clonotypes from RNA-seq data. One was to directly quantify the 
transcripts in FPKM values to show usage of individual V genes. The other method was to identify the clonotypes 
based on the sequence of the CDR3, which contains unique V-N-(D)-N-J junctions, nontemplated nucleotide 
insertions, and base deletions. These two strategies provided generally concordant assessment of monoclonality 
(Supplementary Table S2). In a few cases, however, clonality of TCRα and TCRβ was discrepant. 21 cases showed 
two clonal transcripts for either Vα or Vβ, and two thirds of them contain one nonproductive allele (containing a 
frameshift or nonsense codon) (Supplementary Table S3), suggesting the possibility of dual receptor expression25, 26  
in some of the cases, resulting from transcription from biallelic in-frame rearrangements. Interestingly, among 
the biallelic clonal TCRα or TCRβ transcripts, the ratio between the top 2 clones (C1/C2) is significantly higher 
when the second-largest clone contains nonproductive CDR3 sequences (p = 0.0008, Welch two sample t-test; 
Figure 1), which may be due to the nonsense-mediated mRNA decay mechanism27.

Vα and Vβ transcripts were abundant in AITL and PTCL-NOS cases compared to ALCL and NKCL cases. 
Although Vγ and Vδ transcripts were rare in these entities, a single γδ-TCL case showed low expression of 

Figure 1.  Ratio of CDR3 transcript levels of the first and second largest clones (C1/C2) in monoclonal PTCL 
cases with two TCRα or TCRβ clones.
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TCR-Vα and -Vβ but clonal TCR-Vγ and -Vδ expression; this was confirmed by PCR analysis of TCRγ chain 
(Supplementary Figure S3).

Unlike normal tonsillar T-cell populations, multiple small CDR3 clones in addition to the presumed neoplas-
tic ones were often observed in tumors and were particularly prominent if a limited number of normal infiltrating 
T-cells were present. When the neoplastic TCR was not expressed or few tumor cells were present, such clones 
could appear as the largest clones accounting for a large fraction of the total and be falsely considered as the neo-
plastic clone. To avoid such a situation, we tried to derive a threshold for TCR transcript levels below which the 
assessment was considered unreliable. There was low expression of Vα and Vβ in NKCL and γδ-TCL, likely from 
infiltrating non-neoplastic T cells. Thus, we used NKCL and γδ-TCL samples to set the threshold for selecting 
cases with sufficient TCRα and TCRβ expression for subsequent analysis. Cases with lower expression of TCRα 
and TCRβ than NKCL (RPM: TRA < 15.82 or TRB < 12.21) were excluded (three PTCL-NOS, five ALCL cell 
lines, and 13 ALCL cases; Figure 2).

Dominant clones with unique CDR3 sequences were identified in most AITL (36/40) (Figure 3) and 
PTCL-NOS (11/14) cases (Figure 4). The abundance of the clonal transcript varied in monoclonal cases (between 
11.5% and 95.6% of TCRβ CDR3 transcripts), probably due to the variable fraction of tumor cells and variable 
TCR transcript levels in neoplastic and non-neoplastic T cells. We have data on the frequent mutations (IDH2, 
TET2, DNMT3A, and RHOA) in AITL28–31. Most monoclonal AITL cases (31/36) harbored at least one such 
mutation, whereas most polyclonal cases (3/4) were negative (Figure 3), which suggests a significant association 
between TCR clonality and AITL-associated mutations (p = 0.02, Fisher’s exact test). Failure to detect a clonal 
transcript could be due to loss of TCR transcription or to low tumor content. Notably, 5 AITL cases showed a 
dominant clone based on TCRα but not TCRβ transcripts (Figure 3). This suggests that the frequent loss of TCR 
and surface CD3 expression in AITL32 can often be explained by loss of TCR gene expression in the malignant 
clone.

We also compared the Vβ gene usage in malignant clones with the Vβ usage in several normal tonsillar T-cell 
populations. Preferential usage of particular Vα and Vβ is similar among naïve T cells, TFH cells, and TEFF cells. 
In tumor samples, we only consider the clonal V genes being used by tumor cells. Vβ genes often used by the 
tumor clones were also frequently used by normal T-cells (Figure 5 and Supplementary Figure S4). For example, 
TRBV20–1, one of the most commonly used genes, was also frequently used in the dominant clones in AITL. 
TRBV9, TRBV12–4, and TRBV19, each of which was found in the dominant clones of two PTCL-NOS cases, are 
also commonly used in normal T-cells. Thus, we did not detect distinct preferential usage of a Vβ gene in AITL 
or PTCL-NOS. AITL frequently harbors Epstein-Barr virus (EBV) infection of B cells in the microenvironment. 
EBV-derived transcripts could be readily detected in many AITLs (24/40). Although CD8+ T cells responding to 
dominant EBV epitopes preferentially express certain TCR-Vβ genes33, 34, we did not observe a high frequency of 
these Vβ transcripts in infected cases.

ALCL comprises a heterogeneous group of CD30+ PTCLs with systemic or primary cutaneous presentation. 
ALCLs lack surface expression of a TCR and the TCR-associated CD3 complex35. Little is known regarding the 

Figure 2.  Reads containing CDR3 sequences per million mapped reads (RPM) of each sample. The black bars 
represent the cutoffs of TCRα (A) and TCRβ (B) transcripts in tumors.
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Figure 3.  Clonal configuration of TCR transcripts in AITL. (A) Contribution of CDR3α and CDR3β sequences 
to the TCR repertoire in 10 normal T cell sets and 40 AITL samples. Each bar represents an individual 
clonotype, with red to violet showing the first to tenth ranked predominant clonotypes. Grey represents the 
rest of the identified clonotypes in the sample. Data are not shown for TCR chains with transcript levels below 
the threshold. Examples of monoclonal cases, AITL-22 (panel B) and AITL-32 (panel C), and a polyclonal 
case, AITL-1 (panel D) with ranked CDR3-containing reads (counts), V gene usage (FPKM), and spectrum of 
rearranged γ chains by PCR. (E) Frequency of monoclonal cases of AITL.
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expression of TCR mRNAs in ALCL. Expression of Vα or Vβ transcripts varied among ALCL samples and cell 
lines but was generally low (Figure 6B), and 13 cases were excluded because of low transcript level. We could 
detect clonal CDR3 transcripts in 18 of 22 ALCL cases with transcript levels above threshold (Figure 6A). To con-
firm that ALCL tumor cells can indeed express Vα or Vβ transcripts, we examined the expression of Vα and Vβ 
in ALCL cell lines. TCR mRNA was only detected in L82, an ALK-positive line that showed only clonal Vβ CDR3 
expression. 9/18 cases also showed expression of only CDR3α or CDR3β. Thus, TCR transcription was frequently 
abnormal in ALCL but cannot fully explain the lack of cell-surface expression of the TCR.

Discussion
The clonal rearrangement of TCR genes is useful in supporting the diagnosis of a T-cell lymphoma. The cur-
rent clinical approach consists of PCR amplification and fragment analysis of the VJ junction region (CDR3) 
of the rearranged TCRG and, sometimes, the VDJ region of the TCRB locus. Analysis of the size of these ampli-
fied regions in normal polyclonal T-lymphocytes reveals numerous peaks with a Gaussian distribution of their 
lengths, whereas in tumors, the PCR products are present as a single major peak (monoallelic) or as two peaks 
(biallelic arrangement). T-cells follow a pattern of T-cell receptor rearrangement, with TCRD rearranged first, 
followed by TCRG and incomplete rearrangement of TCRB (Dβ-Jβ)36, 37. All mature T-cells have TCRG rearrange-
ment; thus, it is a good clonal marker for all T-cell lymphomas derived from mature T-cells. However, TCRG tran-
scripts are present only in γδ T-cells. In AITL and PTCL-NOS, clonal rearrangements of TCR genes are reported 
to be detected in about 80% of cases38.

In the current study, we evaluated the clonal expansion and TCR repertoire at the nucleotide level in 108 
PTCLs (40 AITLs, 35 ALCLs, 17 PTCL-NOS, 15 NKCLs, and one γδ-TCL). V gene transcripts and CDR3 
sequences were extracted from RNA-seq data to assess clonality. The assessment results that were based on V 
gene usage and CDR3 sequences were mostly concordant (Supplementary Table S2). However, there were still a 
few cases which were assessed to be monoclonal based on CDR3 sequences but polyclonal based on V-usage. This 
could result from reads that were falsely or ambiguously mapped to parts of V genes. For CDR3 sequences, we fil-
tered out these reads based on global alignment results using BLAT, but they might still be counted in the V-usage 
results. Therefore, the CDR3 sequences should serve as a more reliable basis for clonality assessment, whereas 
the V-usage method could be used for a quick assessment based on a normalized table of gene transcript levels. 
Both methods were based on general RNA-seq technology, with limited read coverage on the TCR genes. Thus, 
only major clones (>0.1%) were expected to be detected in samples with active TCR transcription. Therefore, 
RNA-seq data could be used for clonality analysis for tumor samples, but for other purposes which require more 
complete TCR repertoire profiles, techniques enabling target deep sequencing should be considered1–3.

Monoclonal CDR3 sequences were found in 66 PTCL samples, accounting for 86% out of a total of 77 samples 
with sufficient TCR expression. This result agrees with a recent study, which explored the TCR clonality of AITLs 
and PTCL-NOS, and found that 91% were clonal39. The slightly higher proportion of clonal samples may be 
because tumor cells were enriched by antibodies before sequencing.

At least one clonal transcript was observed in most of the cases of PTCL with sufficient expression of TCR 
transcript levels. We have not observed any preferential Vβ usage in the tumors examined, which would suggest 

Figure 4.  Clonal configuration of TCR transcripts in PTCL-NOS. See the legend of Figure 3 for details.
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the role of antigen-driven lymphomagenesis. Interestingly, in a few cases, there was in-frame expression of two 
clonal TCRα and TCRβ transcripts suggesting that two TCR molecules could be expressed by the tumor cells as 
observed in some cases of PTCL.

While concordant TCR-Vα and TCR-Vβ clonal expression was often observed in AITL and PTCL-NOS, one 
of these was missing in some of the cases. This is particularly prominent in ALCL with 9 of 18 cases showing 
expression of only CDR3α or CDR3β. It is unclear why surface TCR expression is absent in other ALCL cases 
with TCR mRNA expression. For surface expression, TCR heterodimers must be noncovalently bound to all 
CD3 subunits40, 41. In particular, lack of CD3γ severely reduces TCR surface expression40. The very low expres-
sion of CD3 subunits and in particular CD3γ in ALCL (Figure 6C) potentially may explain the abnormal TCR 
expression. The mechanisms behind the abnormalities in TCR expression require further investigation. Absent or 
decreased surface TCR and CD3 protein expression was found in the majority of AITL cases32. Our data suggest 
that in some cases, this may result from loss of expression of one or both of the α and β TCR subunits; in other 
cases, it may be due to low expression of CD3 subunits (Figure 6C), as postulated for ALCL. The frequent partial 
or complete loss of surface TCR expression in AITL is surprising, given the importance of TCR signaling in T-cell 
survival. Activating mutations affecting genes involved in TCR signaling are frequent in AITL11, 42. These activat-
ing mutations presumably allow signaling for survival and proliferation in the absence of tonic TCR signaling.

Figure 5.  Usage of TCR-Vβ in normal TFH cells (A), dominant AITL clones (B), and dominant PTCL-NOS 
clones (C).
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BCR and TCR rearrangement can also be investigated by NGS using genomic DNA. This is generally per-
formed after PCR amplification of the CDR3 of the locus of interest43, 44. However, the massive number of PCR 
reactions that are needed and the difficulty of ensuring unbiased amplification make such an analysis difficult to 
replicate in academic molecular diagnostic laboratories. RNA-seq is far easier to perform but will miss rearrange-
ments in TCR loci that are not expressed. However, this is a very useful approach in determining the TCRα and 
TCRβ repertoire in non-neoplastic infiltrates in the tumor microenvironment or in inflammatory settings.

Figure 6.  Some ALCL cases showed clonal TCR expression at the mRNA level. (A) Contribution of CDR3α 
and CDR3β sequences to the TCR repertoire in 10 normal T cell sets, 22 ALCL samples, and one ALCL cell 
line. (B) Expression of α, β, γ, and δ chains of TCR in primary cells, cell lines, and different subtypes of PTCL 
samples. (C) Expression of γ, δ, ε, and ζ chains of CD3 in primary cells, cell lines, and different subtypes of 
PTCL samples. Samples that do not express TCR transcripts (below the cut-off according to Figure 2) were 
excluded.
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We have demonstrated that RNA-seq is a useful approach in determining clonality in PTCL. Some cases do 
not show clonal transcript expression due to either low tumor content or abnormal biology, which is much more 
frequent in ALCL. The sequencing approach allows the study of the TCR repertoire of the tumor cells and infil-
trating normal T-cells and potentially, the monitoring of minimal residual disease.

Data availability.  The RNA-seq data used in this study can be accessed via the accession numbers given by 
the original publications as listed in Supplementary Table S1, or via Sequence Read Archive (https://www.ncbi.
nlm.nih.gov/sra) with accession number SRP099016.
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