Table 4.
Mean classification performance of multimodal features.
Classifier | Extreme learning machine | SVM-L | SVM-RBF | LDA | RF | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Feature type | Train Acc | Test Acc | p-value | Sn | Sp | F1-Score | PPV | NPV | Test Acc | Test Acc | Test Acc | Test Acc |
Hybrid WC | 0.9954 | 0.9929 | 0.0001 | 1.000 | 0.9857 | 0.9933 | 1.000 | 0.9875 | 0.7780 | 0.763 | 0.6810 | 0.7080 |
Simple WC | 0.9977 | 0.9804 | 0.0001 | 0.9732 | 0.9875 | 0.9790 | 0.9778 | 0.9875 | 0.7500 | 0.750 | 0.6880 | 0.7010 |
Simple concatenation | 0.9931 | 0.9724 | 0.0001 | 0.9607 | 0.9857 | 0.9723 | 0.9625 | 0.9875 | 0.7710 | 0.750 | 0.6880 | 0.7500 |
Cortical WC | 0.9899 | 0.9367 | 0.0001 | 0.9429 | 0.9321 | 0.9359 | 0.9500 | 0.9375 | 0.5960 | 0.611 | 0.5830 | 0.5490 |
Subcortical WC | 0.9931 | 0.9248 | 0.0001 | 0.9571 | 0.8857 | 0.9296 | 0.9639 | 0.9128 | 0.6670 | 0.667 | 0.6250 | 0.6040 |
Cortical concatenation | 0.9938 | 0.9381 | 0.0001 | 0.9303 | 0.9464 | 0.9367 | 0.9403 | 0.9528 | 0.6320 | 0.638 | 0.6110 | 0.6110 |
Subcortical concatenation | 0.9908 | 0.9314 | 0.0001 | 0.9196 | 0.9446 | 0.9309 | 0.9260 | 0.9514 | 0.6390 | 0.681 | 0.6180 | 0.6460 |
Functional concatenation | 0.9961 | 0.9452 | 0.0001 | 0.9304 | 0.9625 | 0.9426 | 0.9375 | 0.9607 | 0.6740 | 0.729 | 0.6880 | 0.6740 |
Structural concatenation | 0.9907 | 0.9319 | 0.0001 | 0.9304 | 0.9357 | 0.9308 | 0.9389 | 0.9417 | 0.6460 | 0.625 | 0.6600 | 0.6460 |
Sn, Sensitivity; Sp, Specificity; SVM-L, linear support vector machine; SVM-RBF, support vector machine with radial basis function kernel, LDA, linear discriminant analysis; WC, Weighted Concatenation; Acc, Accuracy; PPV, positive predictive value; NPV, Negative predictive value; RF, Random Forest.