Skip to main content
. 2017 Sep 8;11:59. doi: 10.3389/fninf.2017.00059

Table 4.

Mean classification performance of multimodal features.

Classifier Extreme learning machine SVM-L SVM-RBF LDA RF
Feature type Train Acc Test Acc p-value Sn Sp F1-Score PPV NPV Test Acc Test Acc Test Acc Test Acc
Hybrid WC 0.9954 0.9929 0.0001 1.000 0.9857 0.9933 1.000 0.9875 0.7780 0.763 0.6810 0.7080
Simple WC 0.9977 0.9804 0.0001 0.9732 0.9875 0.9790 0.9778 0.9875 0.7500 0.750 0.6880 0.7010
Simple concatenation 0.9931 0.9724 0.0001 0.9607 0.9857 0.9723 0.9625 0.9875 0.7710 0.750 0.6880 0.7500
Cortical WC 0.9899 0.9367 0.0001 0.9429 0.9321 0.9359 0.9500 0.9375 0.5960 0.611 0.5830 0.5490
Subcortical WC 0.9931 0.9248 0.0001 0.9571 0.8857 0.9296 0.9639 0.9128 0.6670 0.667 0.6250 0.6040
Cortical concatenation 0.9938 0.9381 0.0001 0.9303 0.9464 0.9367 0.9403 0.9528 0.6320 0.638 0.6110 0.6110
Subcortical concatenation 0.9908 0.9314 0.0001 0.9196 0.9446 0.9309 0.9260 0.9514 0.6390 0.681 0.6180 0.6460
Functional concatenation 0.9961 0.9452 0.0001 0.9304 0.9625 0.9426 0.9375 0.9607 0.6740 0.729 0.6880 0.6740
Structural concatenation 0.9907 0.9319 0.0001 0.9304 0.9357 0.9308 0.9389 0.9417 0.6460 0.625 0.6600 0.6460

Sn, Sensitivity; Sp, Specificity; SVM-L, linear support vector machine; SVM-RBF, support vector machine with radial basis function kernel, LDA, linear discriminant analysis; WC, Weighted Concatenation; Acc, Accuracy; PPV, positive predictive value; NPV, Negative predictive value; RF, Random Forest.