Table 5.
Mean classification results of each measure of the data from each modality.
Classifier | Extreme learning machine | SVM-L | SVM-RBF | LDA | RF | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Feature type | Train Acc | Test Acc | p-value | Sn | Sp | F1-Score | PPV | NPV | Test Acc | Test Acc | Test Acc | Test Acc |
Thickness | 0.9908 | 0.9114 | 0.0001 | 0.9339 | 0.8929 | 0.9120 | 0.9403 | 0.9024 | 0.5630 | 0.598 | 0.5900 | 0.6250 |
Thickness STD | 1.000 | 0.9048 | 0.0001 | 0.9000 | 0.9089 | 0.8993 | 0.9175 | 0.9099 | 0.6040 | 0.614 | 0.5900 | 0.5070 |
Surface Area | 0.9900 | 0.8813 | 0.0001 | 0.8339 | 0.9304 | 0.8736 | 0.8575 | 0.9339 | 0.5420 | 0.500 | 0.4720 | 0.5690 |
Volume | 0.9930 | 0.9063 | 0.0001 | 0.8786 | 0.9321 | 0.9010 | 0.8975 | 0.9375 | 0.4580 | 0.576 | 0.5140 | 0.4240 |
Curvature | 0.9961 | 0.9238 | 0.0001 | 0.9339 | 0.9143 | 0.9259 | 0.9403 | 0.9300 | 0.5830 | 0.601 | 0.5830 | 0.5560 |
WM Volume | 0.9954 | 0.8956 | 0.0001 | 0.8643 | 0.9286 | 0.8916 | 0.8820 | 0.9367 | 0.4720 | 0.542 | 0.5070 | 0.4930 |
Cortical GCOR | 0.9891 | 0.9057 | 0.0001 | 0.9304 | 0.8839 | 0.9051 | 0.9385 | 0.8913 | 0.5490 | 0.591 | 0.5970 | 0.6250 |
SC Volume | 0.9745 | 0.8989 | 0.0001 | 0.9018 | 0.8946 | 0.8958 | 0.9157 | 0.9014 | 0.7010 | 0.597 | 0.6180 | 0.6250 |
SC Intensity | 0.9930 | 0.8990 | 0.0001 | 0.8589 | 0.9339 | 0.8906 | 0.8864 | 0.9389 | 0.6740 | 0.625 | 0.6180 | 0.6320 |
SC GCOR | 0.9884 | 0.9124 | 0.0001 | 0.8750 | 0.9482 | 0.9048 | 0.9008 | 0.9528 | 0.5280 | 0.583 | 0.5970 | 0.5760 |
Overall Volume | 0.9861 | 0.9105 | 0.0001 | 0.9161 | 0.9036 | 0.9100 | 0.9228 | 0.9103 | 0.6320 | 0.631 | 0.5490 | 0.5630 |
Group ICA | 0.9915 | 0.9295 | 0.0001 | 0.9000 | 0.9571 | 0.9269 | 0.9139 | 0.9639 | 0.7150 | 0.743 | 0.6940 | 0.6390 |
Sn, Sensitivity; Sp, Specificity; SVM-L, linear support vector machine; SVM-RBF, support vector machine with radial basis function kernel, LDA, linear discriminant analysis; WC, Weighted Concatenation; Acc, Accuracy; PPV, positive predictive value; NPV, Negative predictive value; GCOR, global average functional connectivity; ICA, independent component analysis; WM, white matter; STD, standard deviation; SC, subcortical; RF, random forest.