Skip to main content
. 2017 Sep 8;11:59. doi: 10.3389/fninf.2017.00059

Table 5.

Mean classification results of each measure of the data from each modality.

Classifier Extreme learning machine SVM-L SVM-RBF LDA RF
Feature type Train Acc Test Acc p-value Sn Sp F1-Score PPV NPV Test Acc Test Acc Test Acc Test Acc
Thickness 0.9908 0.9114 0.0001 0.9339 0.8929 0.9120 0.9403 0.9024 0.5630 0.598 0.5900 0.6250
Thickness STD 1.000 0.9048 0.0001 0.9000 0.9089 0.8993 0.9175 0.9099 0.6040 0.614 0.5900 0.5070
Surface Area 0.9900 0.8813 0.0001 0.8339 0.9304 0.8736 0.8575 0.9339 0.5420 0.500 0.4720 0.5690
Volume 0.9930 0.9063 0.0001 0.8786 0.9321 0.9010 0.8975 0.9375 0.4580 0.576 0.5140 0.4240
Curvature 0.9961 0.9238 0.0001 0.9339 0.9143 0.9259 0.9403 0.9300 0.5830 0.601 0.5830 0.5560
WM Volume 0.9954 0.8956 0.0001 0.8643 0.9286 0.8916 0.8820 0.9367 0.4720 0.542 0.5070 0.4930
Cortical GCOR 0.9891 0.9057 0.0001 0.9304 0.8839 0.9051 0.9385 0.8913 0.5490 0.591 0.5970 0.6250
SC Volume 0.9745 0.8989 0.0001 0.9018 0.8946 0.8958 0.9157 0.9014 0.7010 0.597 0.6180 0.6250
SC Intensity 0.9930 0.8990 0.0001 0.8589 0.9339 0.8906 0.8864 0.9389 0.6740 0.625 0.6180 0.6320
SC GCOR 0.9884 0.9124 0.0001 0.8750 0.9482 0.9048 0.9008 0.9528 0.5280 0.583 0.5970 0.5760
Overall Volume 0.9861 0.9105 0.0001 0.9161 0.9036 0.9100 0.9228 0.9103 0.6320 0.631 0.5490 0.5630
Group ICA 0.9915 0.9295 0.0001 0.9000 0.9571 0.9269 0.9139 0.9639 0.7150 0.743 0.6940 0.6390

Sn, Sensitivity; Sp, Specificity; SVM-L, linear support vector machine; SVM-RBF, support vector machine with radial basis function kernel, LDA, linear discriminant analysis; WC, Weighted Concatenation; Acc, Accuracy; PPV, positive predictive value; NPV, Negative predictive value; GCOR, global average functional connectivity; ICA, independent component analysis; WM, white matter; STD, standard deviation; SC, subcortical; RF, random forest.