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Abstract

Purpose—To describe and demonstrate appropriate linear regression methods for analyzing 

correlated continuous eye data.

Methods—We describe several approaches to regression analysis involving both eyes, including 

mixed effects and marginal models under various covariance structures to account for inter-eye 

correlation. We demonstrate, with SAS statistical software, applications in a study comparing 

baseline refractive error between one eye with choroidal neovascularization (CNV) and the 

unaffected fellow eye, and in a study determining factors associated with visual field data in the 

elderly.

Results—When refractive error from both eyes were analyzed with standard linear regression 

without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the 

difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, 

CI −0.03 to 0.32D, P=0.10). Using a mixed effects model or a marginal model, the estimated 

difference was the same but with narrower 95% CI (0.01 to 0.28D, P=0.03). Standard regression 

for visual field data from both eyes provided biased estimates of standard error (generally 

underestimated) and smaller P-values, while analysis of the worse eye provided larger P-values 

than mixed effects models and marginal models.

Conclusion—In research involving both eyes, ignoring inter-eye correlation can lead to invalid 

inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis 

can provide less power and biased estimates of effect. Mixed effects or marginal models using the 

eye as the unit of analysis should be used to appropriately account for inter-eye correlation and 

maximize power and precision.
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INTRODUCTION

In ophthalmic research, an outcome measurement, eg, visual acuity, is often taken from both 

eyes of a person to evaluate its association with eye-specific or person-specific 

characteristics. This requires the eye to be the unit of statistical analysis. Because the 

outcomes measured from both eyes are usually positively correlated, appropriate data 

analysis requires using both-eye data and accounting for the inter-eye correlation to make a 

valid assessment of the association. In addition to the risk factor of interest, there are often 

other covariates (person-specific or eye-specific) that may affect the outcome, necessitating 

the use of multivariable regression approaches.

Correlated eye data are often analyzed using one of the following approaches1,2:

1. Using data from each eye and ignoring the inter-eye correlation. Estimators of 

regression coefficients are unbiased, but the variance of the estimates is not 

correct.

2. Using data of one eye per subject, where the eye is chosen randomly or as the 

left, or as the right eye. Estimators of regression coefficients are unbiased, but 

because half of the data is not used, the variance of the estimators is greater than 

if all of the data is used with appropriate accommodation of the correlation. 

Furthermore, power is often reduced.

3. Using data of one eye per subject, where the eye is the worse eye or better eye, 

sometimes designated as “the study eye”. In addition to the loss of precision 

noted in 2), the association between the outcome of the worse (better) eye with 

covariates may be different than for all eyes, thus producing a biased estimate of 

the overall association.

4. Performing two separate analyses, one for left eye data, another for right eye 

data. Each of the analyses has the limitations noted in 2). In addition, estimates 

may differ between the two regression analyses when there is no biological basis 

for the associations to be affected by laterality.

5. Creating a person-specific outcome value by averaging across eyes. Estimators of 

regression coefficients are unbiased and the variance estimate is similar to using 

all of the data with appropriate accommodation of the correlation; however, eye-

specific covariates cannot be accommodated.

The development of new statistical methodology and statistical software over the last 30 

years allows for the use of multivariable regression models for analyzing ocular level data 

that can adjust for the inter-eye correlation. The computational procedures for mixed effects 

modelling3 and population-average (marginal) modelling using the generalized estimating 

equations (GEE) approach4 are now available in a number of statistical software packages 

Ying et al. Page 2

Ophthalmic Epidemiol. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(eg, SAS, R, Stata, etc). In this article, we examine the use of these linear regression 

techniques and illustrate their use by analyzing correlated continuous eye data from two real 

clinical studies of eye disease.

MATERIALS AND METHODS

Mixed effects model and marginal model

Two commonly used approaches that can accommodate correlated data are the mixed effects 

or random effects model using maximum likelihood estimation3 and the marginal model 

using GEE.4 The comparisons of these two approaches and the standard linear regression 

model are summarized in Table 1.

The mixed effects model is a statistical model containing both fixed effects and random 

effects (thus called mixed effects model). It is useful in settings where repeated 

measurements are made on the same subjects (such as in a longitudinal study), or where 

measurements are made on clusters of related statistical units (such as both eyes of a 

subject). In contrast to the standard regression model that assumes the intercept and the 

effect of each covariate on an outcome are the same across all subjects, mixed effects models 

assume that the effect of some factors are the same for all subjects (ie, the fixed effects) 

while the effect of other covariates may vary with different subjects (ie, the random effects). 

The mixed effects model explicitly accounts for the correlations between paired eyes of 

subjects by adding a random effect (such as a random intercept, assuming that the intercept 

is the same for both eyes of a subject, but different across different subjects) in addition to 

the fixed effects of interest that may be either person- or eye-specific. In the mixed effects 

model, the subject-specific random effect accounts for the inter-eye correlation, and the 

model provides the conditional mean of the outcome given covariates and random effects. 

An important assumption is that the distribution of the random effects is assumed to be 

normal. In addition, the interpretation of the covariate effects is conditional on the random 

effects. Thus, in an ophthalmic setting, one can estimate the expected change in outcome 

between both eyes of a subject given corresponding changes in covariate levels between 

eyes. The mixed effects model requires correct specifications for both fixed effects and 

random effects. In SAS, the mixed effects model is executed using PROC MIXED through a 

RANDOM statement.

The marginal model using the GEE approach provides the estimate of changes in the 

population mean corresponding to changes in covariates. Although GEE was initially 

developed to analyze correlated data from longitudinal repeated measures,4 it has been 

extended to other types of correlated data, including observations from paired eyes.5 

Different from the mixed effects model, the GEE approach does not require distributional 

assumptions because estimation of the marginal model depends only on correctly specifying 

the linear function relating the mean outcome (or a transformation of the mean outcome 

referred to as the link function) to the covariates. In the GEE approach, a correlation 

function for the subunits within a cluster needs to be selected and a robust estimator of the 

variance of the regression coefficients, the “sandwich” estimator, is employed. In contrast to 

the mixed model which has a subject-specific interpretation, GEE is a marginal model 

approach, as it does not incorporate any random effects into the model. The marginal model 
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takes account of the inter-eye correlation by estimating the covariance among all the 

residuals from a single subject, assuming the residuals from a subject are correlated, while 

the standard linear regression model assumes the residuals are independent with constant 

variance. The marginal model is usually executed in SAS using PROC GENMOD, or PROC 

MIXED using a REPEATED statement. In the latter case, PROC MIXED uses a likelihood-

based approach assuming a normally distributed outcome variable, but allows for correlation 

among subunits within a cluster, without applying random effects. In the former case, 

normality is not assumed and a quasi-likelihood approach is employed that also takes 

account of correlation between subunits.

To model correlated data using the mixed effects models or marginal model, a covariance 

structure or working correlation must be specified. The observations may be correlated with 

each other in several different ways. The pattern of correlation is known as the correlation 

structure or covariance structure. For cross-sectional correlated eye data (ie, with the inter-

eye correlation from both eyes of a subject but not repeated measures over time), the most 

commonly used covariance structures are unstructured covariance, compound symmetry, and 

working independence covariance matrix, as shown below.

1.

Unstructured 

where the variance in one eye, , and the contralateral eye, , may differ, and 

 is their covariance. This covariance structure involves 3 parameters (ie, , 

 and ).

2.

Compound Symmetry 

where  is the covariance between both eyes, and the variance of measurements 

in both eyes of a subject is the same and equal to . Of note, this covariance 

structure involves two parameters (ie,  and ).

The above two covariance structures have a different number of parameters to 

estimate from the data. Compound symmetry is appropriate when the variances 

from both eyes are equal, and their inter-eye correlations are the same for an 

outcome measure from paired eyes. The variances are generally expected to be 

the same if both eyes are unaffected by disease or both are affected similarly and 

treated similarly. If no such assumption can be imposed, the unstructured 

covariance can be used, but fitting a model with an unstructured covariance 

structure may require a larger dataset than other approaches. The variances may 

be different when one eye is diseased and the other is not because the disease 

process may cause more variability in the outcome than in the normal state. 

Similarly, variances may be different if one eye (eg, the right eye) is always 

tested first and there are fatigue effects associated with the testing.
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3.

Working independence covariance matrix . This covariance structure 

only involves one parameter .

Although the “working independence” covariance appears to ignore the 

correlation between eyes by specifying a correlation of 0, the GEE approach uses 

a robust variance estimator that provides asymptotically unbiased variance 

estimators for the regression coefficients. In GEE, with the working 

independence covariance structure, the regression coefficients are the same as for 

the standard linear regression model, but standard errors (SEs) are adjusted for 

the correlated data. With the compound symmetry correlation structure, both the 

regression coefficients and SEs differ from the standard linear regression model. 

When there is little knowledge available to choose between the unstructured and 

compound symmetry correlation structures, the working independence 

covariance matrix may be the best choice.

While the choice of covariance structure should be based on the biological or clinical 

context, in the cross-sectional paired eyes setting, we expect the choice of covariance 

structure will have minimal impact on the statistical inference as demonstrated in the 

following examples.

We demonstrate the application of the mixed effects model and marginal models to analyze 

cross-sectional correlated eye data from two clinical studies as described below. The 

institutional review board associated with each clinical center approved the study protocol 

and informed consent was obtained from each patient, and each study adhered to the tenets 

of the Declaration of Helsinki.

All statistical analysis were performed in SAS 9.4 (SAS Institute Inc, Cary, NC, USA), and 

the SAS codes are included in the Appendix.

Example 1: Analysis of refractive error data from a clinical trial

We first demonstrate the linear regression models by analyzing baseline refractive error data 

from the Comparison of Age-related Macular Degeneration Treatments Trials (CATT).6 

CATT was a multi-center randomized clinical trial to assess the efficacy and safety of 

ranibizumab and bevacizumab when administered monthly or as needed. The study enrolled 

1,185 participants aged ≥50 years, untreated active choroidal neovascularization (CNV) in 

the study eye due to AMD (the fellow eye could have or not have CNV), and visual acuity 

between 20/25 and 20/320. In CATT, refractive error was measured by subjective refraction, 

and spherical equivalent in diopters (D) was calculated as the sphere plus half of the 

cylinder.

We hypothesized that the morphological changes in the retina from active CNV would 

impact refractive error by changing the axial length of the eye. To test this hypothesis, we 

compared the baseline spherical equivalent between study eyes with active CNV and their 

fellow eyes among patients without CNV in the fellow eye at baseline. To eliminate the 
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effect of lens status on refractive error, we restricted this comparison to 355 patients who 

had pseudophakic eyes.

Example 2: Analysis from visual field data from a cross-sectional study

Data were from 394 eyes of 197 patients aged 65 years or older who were seen for glaucoma 

treatment or were evaluated for a possible diagnosis of glaucoma in the Glaucoma 

Consultation Service of the Massachusetts Eye and Ear Infirmary. All patients had perimetry 

via an Octopus perimeter (Haag-Streit AG, Koeniz, Switzerland[AU: confirm?]) in each 

eye.7–8 The percentage of normal visual field in an eye was calculated as the average 

threshold in the central 30° standardized by the normal value for a 65-year-old person. 

Distance visual acuity was assessed with the use of spectacles with and without pinhole, and 

the better of the two measures was taken as the Snellen visual acuity in an eye. Visual acuity 

was then transformed to a measure of percent impairment. Other measures assessed at the 

glaucoma examination included lens status in each eye and history of systemic hypertension. 

We are interested in determining the factors associated with visual field data, including 

person-specific factors (age, sex, and hypertension status) and eye-specific factors (lens 

status and visual acuity).

RESULTS

Comparison of refractive error in study eyes with CNV and fellow eyes without CNV in the 
CATT

Among 1,185 CATT participants randomized, 355 participants had active CNV only in the 

study eye and were pseudophakic in both eyes at baseline. The distributions of baseline 

refractive error in study eyes with CNV and their fellow eyes without CNV are shown in 

Figure 1.

Because of the paired design (study eye with CNV, fellow eye without CNV) and the fact 

that the distribution of baseline refractive error is approximately normally distributed, the 

simplest analysis is to use a paired t-test to assess the mean difference in refractive error 

between study eyes and fellow eyes.

The mean baseline refractive error was 0.12D (standard deviation, SD 1.17D) in study eyes 

with CNV, and −0.03D (SD 1.21D) in the fellow eyes without CNV. The inter-class 

correlation coefficient between the study eyes and fellow eyes was 0.43 (95% confidence 

interval, CI, 0.35–0.52), so the statistical analysis needs to account for the inter-eye 

correlation in baseline refractive error.

The mean difference between study eyes and fellow eyes was 0.15 (95% CI 0.02–0.28), and 

the paired t-test provided a P-value of 0.02. An equivalent analysis is to calculate the 

refractive error difference between paired study eye and fellow eye for each participant, then 

perform a one sample t-test on the differences (which had a symmetric distribution as shown 

in Figure 2) to test whether the mean difference was statistically different from 0 or not.

To adjust for demographic covariates (age, sex, and smoking status) and ocular covariates 

(geographic atrophy, and glaucoma), we used multivariable linear regression models. The 
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estimates of the difference in baseline refractive error from various analysis approaches 

between study eyes with CNV and fellow eyes without CNV are shown in Table 2. Without 

adjustment for any covariates, the paired t-test, mixed effects model and marginal models 

essentially provide the same statistically significant results (P=0.02), suggesting that 

refractive error is on average about 0.15D higher in study eyes with CNV compared to their 

fellow eyes without CNV. However, the standard regression analysis and the 2-group 

independent t-test that do not account for the inter-eye correlation provide results that are not 

statistically significant (P=0.09).

The covariance matrix estimates from PROC MIXED using a REPEATED statement (see 

SAS code in Appendix) are as following:

Unstructured covariance = 

Compound symmetry covariance = 

The unstructured (using type=UN) and compound symmetry (using type=CS) provided 

identical off-diagonal covariance estimates (0.613), however, their diagonal variance 

estimates are similar but not identical.

In the regression model-based comparison of refractive error between study eyes with CNV 

vs fellow eyes without CNV with adjustment for covariates, the point estimates from the 

various models are the same, but the SE and their 95% CIs are not identical (Table 2). In this 

paired design, the standard linear regression analysis without accounting for inter-eye 

correlation provides a wider 95% CI than other analytic approaches that account for inter-

eye correlation. The mixed model and marginal models provide identical results with respect 

to the estimated mean difference, 95% CI, and P-value.

The estimates for the baseline subject-specific (age, sex, smoking status) and eye-specific 

covariates including presence of geographic atrophy (yes/no) and glaucoma (yes/no), are 

shown in Table 3. The different regression models provide very similar point estimates for 

all of the regression coefficients, yet the SEs are different for some covariates, leading to 

different P-values. The covariate P-values are usually smaller in the standard linear 

regression models than other models that account for the inter-eye correlation. Particularly 

for the effect of glaucoma on refractive error, the standard regression model provides a P-

value of 0.08, while the P-value from the other regression models that account for the inter-

eye correlation are larger, 0.31 to 0.32 from the GEE models, 0.14 from marginal model 

using PROC MIXED with REPEATED and 0.16 from the mixed effects model using a 

RANDOM intercept.

As demonstrated in Table 3, in evaluating the association of covariates with an eye-specific 

outcome, ignoring the inter-eye correlation has an impact on the statistical inference (SE and 

P-value). The direction (increase or decrease in SE or P-value) of this impact depends on the 

inter-eye correlation of the covariate. For both geographic atrophy and glaucoma, there is a 

positive correlation between both eyes (both had an inter-eye correlation coefficient of 0.37), 
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and ignoring the inter-eye correlation makes the SE and P-value too small. Group status 

(study eye vs fellow eye) has a negative inter-eye correlation coefficient of −1.0 (due to the 

paired design) and ignoring the inter-eye correlation makes the SE and P-value too large.

The fit of the model can be assessed by a residual plot from the mixed model as shown in 

Figure 3. These plots indicate that the residuals show no specific pattern (ie, random) and are 

approximately normally distributed, indicating reasonable fit to the data by the model.

Risk factors for visual field loss in a cross-sectional study

Linear regression models were applied to evaluate how each factor (age, sex, hypertension, 

lens status and visual acuity) was independently associated with visual field data. However, 

the visual field data from both eyes of a patient are moderately correlated with an inter-class 

correlation coefficient of 0.56 (95% CI 0.46–0.65), justifying the need to account for the 

inter-eye correlation.

For comparison, we first fitted the standard linear regression model that ignores the inter-eye 

correlation for data from both eyes, and for data from the worse eye (ie, the eye with the 

worse visual field). We then fit the mixed effects model using a RANDOM intercept, 

marginal models using both GEE and PROC MIXED with REPEATED statement. We fitted 

the mixed effects model using both an unstructured covariance and a compound symmetry 

covariance. Their covariance estimates are extremely similar as shown below.

Unstructured covariance = 

Compound symmetry = 

The results for the independent effect of each covariate on visual field data are summarized 

in Table 4. Results show that while the standard linear regression model without accounting 

for the inter-eye correlation provided valid point estimates of the regression coefficients, 

their SE estimates were biased (generally underestimated), thus the P-value was smaller than 

those from the appropriate models that account for the inter-eye correlation. For example, 

the P-value for the age effect is 0.008 from the standard regression model, and 0.02 from 

mixed effects model or marginal models.

The worse eye analyses provide somewhat different results in terms of regression 

coefficient, SE and associated P-value (Table 4) as compared to other approaches of 

analyzing data of both eyes. The regression coefficient can be either larger or smaller than 

other approaches, while the SE and P-values tended to be larger than other approaches, in 

part due to the reduced number of observations. For example, the age effect from the worse 

eye analysis was not significant (P=0.07), while P-values from other approaches were all 

statistically significant (Table 4).

To compare these various analysis approaches when the sample size is small, we took a 

random sample of 40 patients (80 eyes) from the visual field study and performed the same 

analysis as described previously. The visual field data from both eyes of a patient are 
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moderately correlated with an inter-class correlation coefficient of 0.50 (95% CI 0.22–0.70). 

The estimates of the covariance matrix using an unstructured and a compound symmetry 

covariance model differed, particularly for the variance terms. The variability in the right eye 

was greater than in the left eye in the unstructured model:

Unstructured covariance = 

Compound symmetry = 

With a smaller sample size, the differences in results from various modeling approaches and 

under different covariance structures became more substantial (Table 5). For example, the 

results for the aphakic effect across different model approaches are very different, with 

regression coefficients ranging from −7.72 (SE 5.12; P=0.14) in the marginal model using 

PROC MIXED with REPEATED statement to −14.5 (SE 6.3; P=0.03) in the standard linear 

regression model of both eyes data without accounting for inter-eye correlation. 

Interestingly, GEE under different covariance structures also provides different results with 

P-value 0.04 under working independence as compared to P-value 0.14 under compound 

symmetry, likely due to the very different estimates of right eye and left eye variances as 

shown above. In this case, the analyses using an unstructured or working independence 

covariance structure are more appropriate.

DISCUSSION

In this paper, we introduced and demonstrated the mixed effects models and marginal 

models for analyzing continuous correlated two-eyes data from cross-sectional studies. We 

have seen that ignoring the correlation between eyes of the same subject can lead to 

inaccurate estimates of SEs of coefficients, confidence intervals, and P-values, and the 

analysis of one eye (eg, worse eye) only data may produce biased or inefficient estimates of 

the association. In clinical trials, when the eyes are in different treatment groups and the 

correlation is ignored, the SEs for the treatment effect and P-values are generally too large. 

In observational studies, when the eyes are in the same group or category, or in clinical trials 

where both eyes receive the same treatment, the SEs and P-values are generally too small. 

Changing from an analytic approach that ignores the correlation to one that appropriately 

accommodates the correlation can have a substantial impact on inference. The impact on 

inference between the choice of mixed effects models and GEE models to accommodate the 

correlation tends to be small, especially in the large samples used as examples here. When 

the sample size becomes small, the choice of analysis models and covariance structure can 

have substantial impact on the regression coefficients, SE and P-values as shown in the 

example of 40 randomly selected subjects.

When specifying a mixed model in SAS, the inter-eye correlation is accounted for by the 

RANDOM statement. In general, use of a REPEATED statement in PROC MIXED is a type 

of marginal model; however, the estimates of the variance-covariance matrix for the 

parameter estimates are calculated differently from that of a GEE model, because they are 

based on a multivariate normal likelihood. Conversely, the use of the RANDOM statement 
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in PROC MIXED is a true mixed effects model. In linear mixed effects models for a 

normally distributed continuous outcome using a subject-specific random effect, the 

parameter estimates will be the same as for GEE models with a compound symmetry 

working correlation structure.9

The mixed effects model and GEE model have different interpretations and one model can 

be more appropriate than another depending on the study question. The interpretation of the 

linear mixed effects models may be more germane, especially in clinical trials for treatment 

group comparisons within same subject; what is the change expected within an individual 

when a different treatment is applied? In contrast, the marginal model used in the GEE 

approach provides an estimate of the difference in the population mean when a different 

treatment is applied. In observational studies, where the interest is on how a subject-specific 

covariate (such as age) is associated with an eye-specific outcome, the interpretation of the 

covariate effects from mixed effects model is conditional on the subject-specific random 

effect, eg, are changes in glaucoma status between fellow eyes correlated with corresponding 

changes in refractive error? With marginal models, a different question is addressed; on 

average, do eyes with glaucoma have a higher (or lower) refractive error than eyes without 

glaucoma? In observational studies, the marginal model is generally more relevant. 

However, the difference is subtle and in practice the estimated effect may be similar. Not 

having to worry too much about the exact specification of the correlation matrix and robust 

variance estimation with the GEE approach is very appealing; however, these advantages 

hold only for large samples and may produce estimates of variance that are either too large 

or too small with moderate or small (≈<40) sized samples.

In summary, data from both eyes of a subject are correlated. The standard regression models 

that ignore inter-eye correlation can lead to incorrect conclusions. The mixed model and 

marginal model are the two major appropriate approaches for analyzing correlated eye data. 

Both the mixed effects model and marginal model required the specification of covariance or 

correlation structure. In marginal model using GEE, even when the structure of the 

correlation matrix is mis-specified, it still provides asymptotically unbiased estimates of the 

regression coefficients and variance. While in mixed effects models, mis-specification of the 

covariance structure for the random effects may lead to biased estimates of regression 

coefficients. Different from the mixed effects model which has a subject-specific 

interpretation, GEE is a marginal model approach, as it does not incorporate any random 

effects into the model. The major limitation of the mixed model is the dependency of 

unbiased parameter estimates on the correct model specification of both fixed effects and 

random effects, while valid estimation from GEE is dependent on a large enough sample 

size. A detailed comparison of mixed models and the GEE approach can be found in papers 

by Hubbard et al9 and Gardiner et al.10 In our two examples of analyzing cross-sectional 

continuous correlated eye data with large sample size, the mixed effects models and 

marginal models provided similar results, and various specification of covariance/correlation 

structure provided almost the same results, this is likely due to the similarity of various 

covariance structures in the cross-sectional eye data (ie, only with two measures per subject). 

When the number of measurements from a subject becomes larger (such as in a longitudinal 

eye study), we expect their differences will be more substantial.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Boxplot for refractive error in study eyes with choroidal neovascularization (CNV) and 

fellow eyes without CNV in the Comparison of Age-related Macular Degeneration 

Treatments Trials
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Figure 2. 
Boxplot for the difference in baseline refractive error between study eyes with choroidal 

neovascularization (CNV) and fellow eyes without CNV in the Comparison of Age-related 

Macular Degeneration Treatments Trials
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Figure 3. 
Residual plots for baseline refractive error between eyes with choroidal neovascularization 

(CNV) and fellow eyes without CNV from the multivariable mixed model in the 

Comparison of Age-related Macular Degeneration Treatments Trials
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Table 1

Comparisons of standard linear regression models, Mixed effects models and marginal models using 

generalized estimating equations (GEE)

One-eye analysis Two-eyes analysis

Characteristics of models Standard linear 
regression models

Standard linear 
regression models

Mixed effects models Marginal models 
using GEE

Assumption Measure from an eye 
of a subject is 
independent of 
measure from other 
subjects

Measures from both 
eyes of a subject are 
independent, and also 
independent of 
measures from other 
subjects

Measures from both eyes 
of a subject are correlated, 
but independent of 
measures from other 
subjects

Measures from both 
eyes of a subject are 
correlated, but 
independent of 
measures from other 
subjects

Approach for accounting for 
inter-eye correlation

Not needed, as inter-
eye correlation does 
not exist

None By using random effects By using “working 
correlation” for 
residuals of standard 
linear model

Estimation method Least squares Least squares Maximum Likelihood GEE

Estimate for mean response Least squares means Least squares means Conditional on the 
random effects, the eye-
specific outcomes are 
independent

Marginal, conditional 
only on covariates 
and not on other 
responses or random 
effects

Estimate of within-subject 
correlation

Not needed None Estimated together with 
the fixed effects

Separate from the 
estimate of marginal 
mean response

Regression coefficient estimate Estimates change in 
mean value of an 
outcome 
corresponding to 
change in the covariate 
while holding constant 
other covariates

Estimates change in 
mean value of an 
outcome 
corresponding to 
change in the covariate 
while holding constant 
other covariates

Estimates change in 
expected mean value of 
outcome for an individual 
eye corresponding to 
change in the eye-specific 
covariates while holding 
constant other eye-specific 
covariates

Estimates change in 
mean value of all 
individuals 
corresponding to 
change in the 
covariate while 
holding constant 
other covariates

Interpretation of regression 
coefficient

Change in mean ocular 
outcome for a unit 
change of a covariate 
across all subjects

Change in mean ocular 
outcome for a unit 
change of a covariate 
across all subjects

Change in expected mean 
ocular outcome for a unit 
change in a covariate of a 
subject while keeping 
random effect fixed

Change in mean 
ocular outcome for a 
unit change in a 
covariate across all 
subjects

Missing data Can handle data 
missing completely at 
random

Can handle unbalanced 
data and data missing 
completely at random

Can handle unbalanced 
data and missing at 
random

Can handle 
unbalanced data and 
missing completely at 
random

Advantage Simplicity Simplicity Flexibility Robustness to the 
mis-specification of 
covariance structure

Disadvantage Loss of statistical 
power

Invalid inference Easy to mis-specify the 
model (either random 
effect or fixed effect or 
covariance structure), lead 
to biased inference

May lose efficiency if 
covariance structure 
mis-specified or 
sample size too small

SAS procedure PROC REG PROC 
GLM

PROC REG PROC 
GLM

RANDOM statement of 
PROC MIXED

PROC GENMOD

Stata procedure REGRESS REGRESS XTMIXED XTGEE
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Table 2

Comparison of baseline refractive error between study eyes with active choroidal neovascularization (CNV) 

and fellow eyes without CNV in the Comparison of Age-related Macular Degeneration Treatments Trials

Analysis approaches The mean difference between study eyes with CNV and 
fellow eyes without CNV (95% CI), in diopters

P-value

Unadjusted analysis

 Independent-sample t-test 0.15 (−0.03, 0.33) 0.09

 Standard linear regression model 0.15 (−0.03, 0.33) 0.09

 Paired t-test 0.15 (0.02, 0.28) 0.02

 Mixed model, compound symmetry or unstructured 0.15 (0.02, 0.28) 0.02

 Marginal model, PROC MIXED using REPEATED, unstructured 0.15 (0.02, 0.28) 0.02

 Marginal model, GEE, working independent 0.15 (0.02, 0.28) 0.02

Covariates-adjusted analysis§

 Standard linear regression 0.15 (−0.03, 0.32) 0.10

 Mixed model, compound symmetry or unstructured 0.15 (0.01, 0.28) 0.03

 Marginal model, PROC MIXED using REPEATED, unstructured 0.15 (0.01, 0.28) 0.03

 Marginal model, GEE, working independence 0.15 (0.01, 0.28) 0.03

 Marginal model, GEE, compound symmetry 0.15 (0.01, 0.28) 0.03

§
Adjusted for age, sex, current smoking status, geographic atrophy and glaucoma.

CI, confidence interval; GEE generalized estimating equation
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