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Chromosome conformation and gene expression patterns differ profoundly
in human fibroblasts grown in spheroids versus monolayers
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ABSTRACT
Human cells derived for in vitro cultures are conventionally grown as adherent monolayers (2D)
which do not resemble natural 3 dimensional (3D) tissue architecture. We examined genome
structure with chromosome conformation capture (Hi-C) and gene expression with RNA-seq in
fibroblasts derived from human foreskin grown in 2D and 3D conditions. Our combined analysis of
Hi-C and RNA-seq data shows a large number of differentially expressed genes between 2D and 3D
cells, and these changes are localized in genomic regions that displayed structural changes. We also
find a trend of expression in a subset of skin-specific genes in fibroblast cells grown in 3D that
resembles those in native tissue.
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Introduction

Growing mammalian cells in vitro is an indispensable
technique for cell biology and biomedical research.
Conventionally, human cells have been derived to
grow in defined medium either in suspension or as an
adherent monolayer. For examples, lymphoblastoid
cells derived from human blood are grown in suspen-
sion while fibroblasts derived from human skin and
many cancer cell lines are grown in monolayers.
Adherent monolayer (2D) cell cultures do not resem-
ble the natural 3 dimensional (3D) structures of body
tissues, and as a result cells grown in 2D may have
considerable discordances in cellular morphology,
physiology, pathology, cell-cell interaction and com-
munication compared with natural tissues.

Increasing evidence shows that in vitro 3D culture
captures natural tissue complexity better than 2D cul-
tures.1-4 Advances in 3D culture techniques open new
avenues for in vitro modeling of human organ develop-
ment, tissuemorphogenesis, pathogenesis of diseases, cel-
lular response to drugs or other perturbations, and
screening for novel therapeutics.4,5 Modeling of organo-
genesis and development has been advanced by generat-
ing human micro-tissues in vitro.6 For example, human

pluripotent stem cells can differentiate intomidbrain-like
structure in 3D cultures consisting of neurons expressing
midbrain markers such as neuromelanin, and producing
dopamine.7 Alzheimer disease pathology has been reca-
pitulated in 3D neural culture, which demonstrated a
more matured neuronal and glial differentiation, and
increased expression of adult tau isoform protein levels
in 3D culture compared with 2D culture.3 Human cell-
based 3Dmodels in pharmaceutical research can comple-
ment animal models, which often fail to predict the effi-
cacy and toxicities of new drugs. 3D human-cell models
may also provide more effective and economical screen-
ing of new drugs than the use of animal models.8,9 Fur-
thermore, in vitro 3D modeling of native tissue provides
tools for regenerative medicine. However, understanding
the fundamental cell biology is critical in translating in
vitro discoveries into clinical applications, e.g., functional
replacement of damaged tissue.

Tissue-specific gene expression is the molecular
basis of cellular function. It is not fully established
how closely in vitro 3D tissue culture mimics native
tissue. We hypothesize that the interplay between
genome structure and function, i.e., the nucleome
(https://commonfund.nih.gov/4Dnucleome/index), is
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the key component of tissue-specific gene expression.
Genome wide chromosome conformation capture
(Hi-C)10 provides a tool to study genome structure by
allowing measurement of genomic regions that are
physically close together in cell nuclei. Analysis of Hi-
C data suggests that mammalian chromatin is parti-
tioned into 2 compartments, corresponding to tran-
scriptional active euchromatin and inactive
heterochromatin regions.10 In addition, Hi-C analysis
identified that mammalian chromosomes are orga-
nized into local chromatin interaction domains, called
topologically associating domains (TADs).11 The
nucleome of a cell type can be investigated by combin-
ing analysis of Hi-C with deep sequencing of RNA
transcripts (RNA-seq).12 We are interested in studying
how the nucleome changes between 3D- and 2D-
grown cells. We previously observed chromosome
conformation changes between human fibroblasts
grown as spheroids vs. monolayer cultures.13 Here we
extend our investigation into how genome conforma-
tion (structure) changes affect changes in genome-
wide transcription (function). We focus on the

nucleome of human fibroblasts grown in 3D and 2D
cultures for 48 hours. We find that more than 3 thou-
sand genes change expression levels greater than 2-
fold (false discovery rate, FDR � 0.05) between 2D
and 3D cultures without other perturbations. Analysis
of Hi-C data shows that these genes are localized in
genomic regions with different spatial configuration
between cells grown in 3D and 2D cultures.

Results

Differentially expressed genes between 3D and 2D
cell cultures

We analyzed the expression profiles between 3D and 2D
cultures with the edgeR software,14 and identified 3297
genes that changed expression levels greater than 2-fold
between the 2 groups (FDR � 0.05). Among these
changes, 1253 genes showed increased expression levels,
and 2044 genes showed decreased expression levels in the
3D group relative to the 2D samples (Fig. 1, Table S1).
We identified biologic themes from the lists of up- and
downregulated genes using the EASE software for gene

Figure 1. A volcano plot shows the upregulated genes (red dots) and downregulated genes (green dots) in 3D cells relative to 2D cells.
The X-axis shows log base 2-fold change (log2FC), and Y-axis indicates edgeR statistics of P values in –log base 10 scales.
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ontology (GO) annotation.15 We used a false discovery
rate (FDR) threshold � 0.05 to call for significant gene
set enrichment under any GO term.

Among the genes with increased expression levels in
the 3D samples, we identified functional gene sets that
significantly clustered under 113 GO terms (Table S2).
These functional gene sets are part of several important
biologic processes, including those for chromosome
structure/chromatin assembly; transcription or regula-
tion of transcription; apoptosis; responses to stress,
defense, inflammatory, or wound healing; responses to
unfold protein or protein stimulus; signal transduction;
and cytokine-cytokine receptor interaction. In addition,
several gene sets are identified under GO terms in the
“Cellular Component” system, including genes whose
protein products are localized in cellular sub-compart-
ments, i.e., enriched underGO terms of nucleus, chromo-
some, chromatin, nucleosome, and extracellular space
(Table S2). The preferential cellular component localiza-
tion suggests that the upregulated genes are non-
randomly distributed in cellular sub-compartments. Two
examples of the coordinated expression of these function-
ally related genes follow.

First, we looked at the 131 genes clustered under the
GO term “transcription” (Table S2). For example, more
than 21 genes encode DNA binding zinc finger transcrip-
tion factors; 11 genes (GTF2A1, GTF2B, NR1D1, NR2C2,
NR4A2, NR4A3, POLR2H, PPARA, TAF13, TAF7, TBP)
encode factors involved in transcription initiation or
transcription elongation from RNA polymerase II pro-
moters; 9 genes (AHR, ARNTL, ATF4, CRY1, CREM,
NPAS2, NR1D1, PPARA, RELB) encode transcription
factors that are known components critical for circadian
regulation of gene expression. Second, in a cluster of 111
genes under the GO term “cell differentiation” many of
them are likely to be regulated by the transcription factors
from the “transcription” cluster described above. The
“cell differentiation” related genes were expressed at
higher levels in the 3D samples relative to 2D samples
(Table S2). For instance, 14 of these genes encode cyto-
kines or growth factors and are secreted into the extracel-
lular space; 12 genes encode for proteins participating in
signaling pathways, such as the TNF, NF-kappa B signal-
ing, and cytokine-cytokine receptor pathways, likely lead-
ing to increased activity of these pathways.

We separately performed GO annotation for the
downregulated genes in 3D cells relative to 2D cells. We
identified gene clusters significantly enriched under 116
GO terms (Table S3). Themain biologic themes extracted

from the downregulated genes include cell cycle control;
cell growth regulation; and cytoskeleton organization
and biogenesis. For example, we found 102 genes signifi-
cantly clustered under the GO term of “cell cycle.” To
name a few, genes encoding cyclins (CCNA2, CCNB1,
and CCNE1) and cyclin dependent kinase 6 (CDK6) are
significantly downregulated. The expression of these
genes is cell cycle regulated, and promotes G1 progres-
sion, G1/S and G2/M phase transitions. As another
example, we found 228 genes clustered under the GO
term of “anatomic structure development” (Table S3).
Among the 228 genes, for instance, there are sub-clusters
encoding signal peptides (89 genes), secreted proteins (62
genes), glycoproteins (88 genes), or proteins for extracel-
lular matrix organization (22 genes), or extracellular
space (57 genes). In addition, from the list of downregu-
lated genes we found that GO terms in the “Cellular
Component” system enriched with genes whose protein
products were predominantly localized outside the
nucleus, and formed significant clusters for basement
membrane, cytoskeleton, extracellular matrix, intracellu-
lar membrane-bound organelles, mitochondrion, and
cytoplasm. These cellular sub-component distributions
are different from those upregulated in 3D cells.

Validation of RNA-seq results with TaqMan assays

We tested the expression levels of 8 genes with TaqMan
assays16 for validating differential gene expression
between 2D and 3D cells identified from edgeR analysis.
We found that all the genes tested were differentially
expressed as shown in the RNA-seq result (Table 1). The
log base 2 FCs between TaqMan and RNA-seq are highly
correlated (r D 0.997, p D 3.467E-8). This analysis

Table 1. Comparison of TaqMan assay-based real-time quantita-
tive PCR and RNA-seq analyses of 8 genes differentially expressed
between 2D and 3D cells. The TaqMan P is the t test p value from
TaqMan data analysis for each gene. The log base 2-fold change
(log2FC) correlation coefficient between TaqMan and RNA-seq is
0.997 (P D 3.467E-8).

Gene
symbol

RNAseq_mean
log2FC

TaqMan_mean
log2FC

TaqMan P
(Bonferroni)

ATP5O ¡1.02 ¡0.83 1.14E-02
BDH2 ¡2.28 ¡2.80 2.88E-03
COL5A2 ¡3.58 ¡4.06 4.12E-06
DEPDC1 ¡5.09 ¡5.09 7.72E-05
FKBP8 ¡1.02 ¡1.49 3.51E-04
IL6 7.55 7.18 1.73E-05
NFIL3 2.77 2.73 4.03E-05
TFRC 1.60 1.63 5.29E-05
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confirmed the list of differentially expressed genes identi-
fied from our RNA-seq experiment.

Taken together, we show that the upregulated genes
in 3D cells compared with 2D cells whose products are
mostly transcription factors, growth factors, signaling
proteins, or proteins involved in chromosome assem-
bly. The downregulated genes are related to cell cycle
control, cytoskeleton organization and cellular struc-
ture morphogenesis, formation of extracellular matrix,
or they are signaling peptides. The coordinated
expression of a large number of genes suggests that
the nucleome is re-configured in 3D samples to adapt
to the dense growing environment in spheroids.

Previous results suggest that 3D cultures are closer
to native tissues.1-4 In our experiments we analyzed
gene expression in human foreskin fibroblasts. There-
fore, the nearest native tissue to compare is human
skin. A recent study of gene expression profiles in
human tissues by Edqvist et al. identified 106 skin-
specific genes known to be involved in skin develop-
ment and differentiation.17 Comparing the top 50
skin-specific genes available from this publication, we
found that in both 3D and 2D samples, 17 of them
were not detectable at the current sequencing depth,
30 genes were expressed at low levels (FPKM < 1)
either in 3D or 2D cells, and 3 genes were called
expressed. All 3 expressed genes (ASPRV1, KRT10,
and SERPINB7) showed increased expression levels in
3D cells relative to 2D cells. Among the 30 low level
expression genes, 20 showed higher levels in 3D cells
(Table S4). This trend of higher expression of skin-
specific genes in 3D cells suggests that 3D cultures are
closer to native tissues.

Relationship between chromosome conformation
and gene expression level changes

To gain insights into how genome structure affects
gene expression patterns observed in 3D cells, we
explored chromosome conformation changes from
Hi-C data for the respective culturing conditions.
First, we calculated the Fiedler number for each of the
differentially expressed genes.12 In the context of Hi-C
analysis, the magnitude of the Fiedler number is a
measure of the underlying stability of the topology of
the genomic region, in this case a gene with defined
linear sequence coordinates. A high Fiedler number
suggests a high conformational stability, i.e., few alter-
ations between chromatin states that may be

important for regulation of gene expression. We found
that the Fiedler number changes in 91% of the differ-
entially expressed genes, while for the entire genome,
this number changed in 86% of the genes (p�0:001).
Figure S1 shows the interaction matrices for 4 sets of
genes clustered under GO terms transcription (131
genes), cell differentiation (111 genes), anatomic
structure development (228 genes), and cell cycle (102
genes) for the 3D and 2D samples, as well as the dif-
ference between them. These plots show that the con-
nections within a set of related genes change between
3D and 2D growth. This, in combination with the
observation that the Fiedler number of these regions
changes, shows that differentially expressed genes also
undergo structural changes between 3D and 2D
culture.

We also wanted to explore more generally on how
changes in structure are related to changes in expres-
sion. It is known that the genome is partitioned into
transcriptional active or inactive regions,10 and further
organized into TADs.11 We found 2,487 TADs in the
3D sample and 3,018 TADs in the 2D sample
(Table S5, also see supplemental method). Three quar-
ters of the TAD boundaries defined in the 3D samples
were also present in the 2D samples. Interestingly, the
TADs on chromosomes 18 were the most consistent
between the samples while the TADs on chromosome
19 changed the most between 3D and 2D culture (also
3, 6, 11, and 21). It has previously been shown that
chromosome 18 had increased intra-chromosomal
interactions while the chromosomes whose TADs
changed the most, including 19, had decreased intra-
chromosomal interactions.13 Additionally, chromo-
some 19 has the highest gene density while chromo-
some 18 has the lowest, which further suggests that
gene expression and chromosomal structure are
tightly coupled. Fig. 2 shows the gene expression and
Fiedler vectors for chromosomes 18 and 19, as well as
a portion of the Hi-C matrix with the TAD boundaries
overlaid and the strong interactions within the region
in both 3D and 2D growth conditions. The small
number of bins whose Fiedler vector flips sign in chro-
mosome 18 compared with the large number that
change in chromosome 19 indicates that the very gene
poor chromosome does not change structure nearly as
much as the very gene rich chromosome in 3D cells
relative to 2D cells. This is consistent with the interac-
tion plots (Fig. 2D and H) in which chromosome
19 had far fewer connections that did not change
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Figure 2. (For figure legend, see page 388).

NUCLEUS 387



between samples than chromosome 18 (14 and 125,
respectively).

In summary, we present here a comprehensive
comparison of both genome structure, as measured
using Hi-C, and function as established by RNA-seq.
Our results show massive changes between 3D and 2D
cultured isogenic cells in both structure and function
and we conclude that 3D cultures more faithfully reca-
pitulate patterns observed in primary tissues.

Discussion

We report here a larger number of genes that are dif-
ferentially expressed between 3D and 2D cells due to a
simple change in the growth condition on a flat sur-
face compared with spheroids. Among the 1253 genes
that increase expression levels in 3D cells, gene ontol-
ogy annotation shows clusters of genes significantly
enriched under GO terms related to transcription,
chromosome assembly, and signaling pathways. There
are also 2044 downregulated genes whose protein
products are primarily localized in the cytoplasm,
extracellular matrix, extracellular space, and are
related to cell cycle and cellular signaling. We vali-
dated a subset of 8 genes using the TaqMan method.16

Our gene expression data show increased expres-
sion of genes (e.g., CDKN1C, CCNT1, and CCNT2)
inhibiting G1 progression, G1/S and G2/M transition
in the cell cycle, or decreased expression of genes (e.g.,
CCNA2, CCNB1, CCNE1, and CDK6) promoting pro-
liferation. This suggests the 3D cells may have reduced
proliferation rates compared with 2D cells. It is cur-
rently undetermined whether cells grown in 3D are
quiescent or senescent. However, the increased expres-
sion of 111 genes related to cell differentiation sug-
gests fibroblasts grown in 3D may transition toward a
more differentiated state compared with the more
proliferating state in 2D. A comparison to the top 50
skin-specific genes from previously published work17

showed a trend of higher expression of skin-specific
genes (23 out of 50) in 3D cells relative to 2D cells.
For the remaining 27 genes, 17 were not detected in

our samples, and 10 showed lower expression levels in
the 3D samples. This discrepancy might be explained
due to the relatively short period of tissue culture
(48 h). At this early stage the 3D spheroid is immature
and not even developed into skin structure. Neverthe-
less, the fact that more skin-specific genes show higher
expression levels in the 3D samples suggests that 3D
cultures might be closer to native tissues.

We also compared these changes in gene expression
to changes in the structure of the genome as measured
by Hi-C. We found that differentially expressed genes
were significantly more likely to have changes in their
structural stability, as measured by Fiedler number,
than expected from a random change. Of the differen-
tially expressed genes 71% showed decreases and 18%
showed increases in Fiedler number from 2D to 3D.
This indicates that the genes that change functionally,
i.e., expression levels, also have corresponding changes
in their chromatin organization.

In our analysis of Hi-C data to infer chromosome
conformation, we use the Fiedler vector for chromatin
compartment partition and TAD identification.12,18

This method performs equally well compared with
other methods.10,11,19 In general, we observed TAD
boundaries changing and Fiedler vector sign switching
between 3D and 2D cells genome-wide. These obser-
vations suggest that chromosome conformation is
reconfigured in 3D cells when 2D cells were used as
the baseline. Interestingly, the most gene dense chro-
mosome, chromosome 19, has one of the greatest
changes in structure while the least gene dense chro-
mosome, chromosome 18, has the least change in
structure between 2D and 3D culture. This may be
due to the fact that chromosome 19 is gene rich and
transcriptionally active, therefore significant changes
in structure are required for the changes in gene
expression between 3D and 2D growth. Chromosome
18 is gene poor, and transcriptionally inactive, thus
might not need to undergo as many structural
changes.

We notice that TADs identified by our method do
not exactly match those from other studies.11,19; see

Figure 2. (see previous page) Differences in structure and function across chromosomes. The gene expression (top bar plot,1Mb resolu-
tion), Fiedler vector (middle bar plot, 1 Mb resolution), and a portion of the Hi-C matrix with TAD boundaries overlaid (heat map,
100 kb resolution) for chromosome 18 in (A) 2D culture, (B) 3D culture, and (C) the difference between the cultures. (D) Strong interac-
tions within the portion of chromosome 18 shown in A-C in the 2D sample (red), 3D sample (yellow), and both samples (blue). The
gene expression (1Mb resolution), Fiedler vector (1 Mb resolution), and a portion of the Hi-C matrix with TAD boundaries overlaid
(100 kb resolution) for chromosome 19 in (E) for 2D culture (F) 3D culture, and (G) the difference between cultures. (H) Strong interac-
tions within the portion of chromosome 19 shown in E-G in the 2D sample (red), 3D sample (yellow), and both samples (blue).
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detailed comparison in our previous publication by
Chen et al.18 However, the majority of TADs are
approximately within the same genomic regions given
a boundary between TADs in sizes from 40 kb to
400 kb.11 It is possible that a TAD found by another
method might decompose into several TADs obtained
by our method. This is not surprising, since we take
into account the connectivity of Hi-C while finding
TADs. To be specific, if one TAD defined by other
methods does not meet our connectivity criterion
(namely, greater than λ0),

18 it would further split into
TADs of reduced size in our approach. We feel that
our method is reasonable since one can adjust the
parameter λ0 to find TADs of proper size,18 and a high
connectivity indicates a large modularity of a commu-
nity structure in Hi-C.20

A Hi-C matrix naturally associates a graph to the
genome, where nodes are defined by binned loci in the
genome, and the edge weight between a pair of loci is
proportional to their contact frequency. Consequently,
a topological domain (or a community structure) is a
compact region that can often be visually distin-
guished as a diagonal block in the Hi-C matrix.18 We
emphasize that our proposed topological domains are
strongly connected graph components having strong
intra-connections and weak inter-connections, which
could be sub-regions of the commonly-used TADs.

We are aware of the fact that no standard criteria
are applicable to the selection of significant genes
from genome-scale expression analyses. We believe
that the use of FC � 2 plus FDR � 0.05 is a reasonable
control to compensate for false positives. This may
include “a lot of genes changing.” We applied this
threshold with the intent to minimize not considering
genes that could be truly differentially expressed even
though the magnitude of FC is not high.

In summary, we find a large number of differen-
tially expressed genes between cells grown in 3D and
2D. Genes that show significantly increased expression
levels in 3D cells are responsible for the regulation of
transcription, for chromatin assembly, and for the
production of cytokines and growth factors. Those
that are significantly decreased in 3D cells are
enriched in cell cycle control, proliferation, cytoskele-
ton organization and cellular morphogenesis. We
observed that genes that changed expression levels
were co-localized in genomic regions with structural
changes as seen in sign switching in the Fiedler vectors
and in changing of TAD boundaries between 3D and

2D cells. In addition, our data add evidence to previ-
ous observations that 3D cultures recapitulate the
environment of native tissues more faithfully than 2D
cultures.

Materials and methods

Hi-C and RNA-seq data collection

We grew human foreskin fibroblasts (BJ, ATCC num-
ber CRL-2522) in 150mm dishes (2D) and in hanging
drops in a 96-well PERFECTA3D plate (3D) (3D Bio-
matrix, Ann Arbor, MI). After 48-h of growth, we
sampled the cells for Hi-C and RNA-seq analyses. Hi-
C libraries were constructed from 20 million cells for
each culturing condition as described by Chen et al.13

Briefly, we used the HindIII restriction enzyme (RE)
for chromatin digestion. RE created DNA fragment
ends were marked with biotin-dCTP (Cat# 19518–
018, Life Technologies) and re-ligated. After reverse
cross-linking, the DNA is fragmented for paired-end
sequencing on the Illumina HiSeq2500 platform.
Meanwhile, 3 biologic replicates were collected from
2D and 3D culture conditions for RNA-seq analysis as
described by Chen et al..12

RNA-seq data analysis

We used Tophat21(version 2.0.9) and Bowtie22 (ver-
sion 2.1.0.0) to align the RNA-seq reads to the refer-
ence transcriptome (HG19). The average number of
sequence reads generated from each sample is
35.6 million, and the average read genome alignment
rate is 83.51%. We generated quantification counts
from RNA-seq reads for a set of 23599 unique tran-
scripts of RefSeq definition by NCBI (https://www.
ncbi.nlm.nih.gov/refseq). FKPM values (fragments per
kilobase of transcript per million mapped reads) were
calculated for each gene. We used an average FKPM
value � 1 in either the 2D or the 3D group to call a
gene as expressed, which identifies a set of 13907 genes
for subsequent analysis. We used the edgeR software
package14 to identify differentially expressed genes
between 2D and 3D cells. A gene is called differentially
expressed given an absolute FC � 2 with false discov-
ery rate (FDR) � 0.05. We performed functional
annotation of significant genes identified using the
EASE (Expression Analysis Systematic Explorer) soft-
ware package.15
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Validation of differentially expressed genes
identified with edgeR

We performed real-time quantitative polymerase
chain reaction (RT-qPCR) using the TaqMan
method16 to verify a subset of differentially expressed
genes. Eight TaqMan assays were purchased from
Thermo Fisher (Cat # 4331182). All TaqMan assays
were performed using a 2-step procedure according to
the supplier’s manual (Part Number 4454239 Rev. A).
First, we performed single-stranded cDNA synthesis
from total RNA with the SuperScript� III First-Strand
Synthesis System (cat # 18080051, Thermo Fisher).
Second, we performed TaqMan RT–qPCR assays
according to the manufacturer’s recommended condi-
tions (ABI) on a 7900HT Fast Real-Time PCR System
(ABI). We used SDS2.2.1 software (ABI) for quantifi-
cation analysis in conjunction with the 2-DDCt

method23 using GAPDH as the reference control for
normalization. The same biologic replicates for 2D
and 3D RNA-seq analysis were used for TaqMan
assays. The mean log base 2-fold change (log2FC) was
derived from 3 TaqMan replicates for each biologic
sample in each group. For significance testing, we per-
formed 2-tailed unpaired t test and adjusted the p val-
ues using Bonferroni correction.

Hi-C analysis

Initial processing and normalization were performed as
described by Chen et al.12 Genome-wide TADs were
defined using the iterative methods of maximizing the
Fiedler number of Hi-C matrices as described by Chen
et al. (2016).18 A boundary was considered unchanged if
it moved by less than 2 bins to account for uncertainty in
the boundaries based on previous work that allowed vari-
ation in the boundary size.11 At gene level analysis, an
adjacencymatrix for a gene was generated by the method
described by Chen et al. (2015), and the Fiedler number
corresponding to each gene matrix was derived. The Fie-
dler number is a graph theory based measure of how well
connected a graph is, with a more connected graph lead-
ing to a higher Fiedler number. Interaction matrices for
the gene sets were extracted from the genome wide 1 Mb
resolution Hi-C map by picking the rows and columns
with the relevant differentially expressed genes in them.
In line with Hi-C 1Mb resolution maps, RNA-seq data
are combined into the corresponding 1Mb regions along
a chromosome, and the gene expression level of each bin
is the sum of FPKM values for all the genes in a bin.

Strong Hi-C interactions are those above the 95th per-
centile of all interactions on that chromosome.
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