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ABSTRACT
Genomic variation is a source of functional diversity that is typically studied in genic and non-coding
regulatory regions. However, the extent of variation within noncoding portions of the human
genome, particularly highly repetitive regions, and the functional consequences are not well
understood. Satellite DNA, including a satellite DNA found at human centromeres, comprises up to
10% of the genome, but is difficult to study because its repetitive nature hinders contiguous
sequence assemblies. We recently described variation within a satellite DNA that affects centromere
function. On human chromosome 17 (HSA17), we showed that size and sequence polymorphisms
within primary array D17Z1 are associated with chromosome aneuploidy and defective centromere
architecture. However, HSA17 can counteract this instability by assembling the centromere at a
second, “backup” array lacking variation. Here, we discuss our findings in a broader context of
human centromere assembly, and highlight areas of future study to uncover links between
genomic and epigenetic features of human centromeres.
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The centromere is the chromosomal locus that is
important in chromosome pairing and essential for
chromosome segregation during cell division. It is the
site of kinetochore formation, the multi-protein struc-
ture that attaches chromosomes to spindle microtu-
bules for segregation during cell division. Despite this
essential role in chromosome inheritance, the features
of centromeres vary among organisms. Centromeres
range in size from small point centromeres (»125bp)
in budding yeasts to large regional centromeres
(100kb–5Mb) in humans and plants.1 Despite these
genomic disparities, the proteins of eukaryotic centro-
meres are related, emphasizing the functional impor-
tance of the locus. Centromeres are defined by
specialized nucleosomes containing the histone H3
variant CENP-A. CENP-A nucleosomes are inter-
spersed with canonical H3 nucleosomes to create a
unique type of chromatin that differentiates the cen-
tromere from the rest of the chromosome.2,3 Centro-
meric (CEN) chromatin also serves as the foundation
of the kinetochore, interacting with CENP-C and
other members of the constitutive centromere-associ-
ated network (CCAN) to assemble the protein net-
work between the DNA and the microtubules.4

Assembly of CEN chromatin occurs on DNA
sequences that differ among organisms and even within
the same individual, suggesting general sequence inde-
pendence for recruitment of CENP-A and other cen-
tromere proteins. The lack of sequence similarities at
eukaryotic centromeres has encouraged the current
view of centromere identity as an epigenetically defined
process, with little contribution from the underlying
genomic sequences. However, de novo engineered cen-
tromeres (i.e. human artificial chromosomes, HACs)
have only been generated from specific sequences, and
centromeres in most organisms are consistently main-
tained at the same genomic location, raising the possi-
bility of sequence-dependent aspects of centromere
specification.5-7 Few groups have studied large regional
centromeres from a genomic perspective, primarily
because centromeres are located within extensive and
complex genomic regions enriched for repetitive DNA
and retrotransposons.8,9 The centromeres of plants
(maize, rice, potato, Arabidopsis thaliana) are among
the most well-defined regional centromeres, and in
fact, several recent studies have produced nearly com-
plete assemblies of a few maize centromeres.10-13 These
impressive advances notwithstanding, we have focused
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this commentary on human centromeres and our
recent studies exploring links between a satellite geno-
mic structure and centromere function.

Human centromeres are located at regions of A-T
rich a satellite, a DNA repeat based on a 171 bp
monomer. Monomers are 50–70% identical, and a
defined number of monomers are arranged tandemly
to create a higher order repeat (HOR) unit. The num-
ber of monomers and their order in the HOR confer
chromosome specificity; that is, the centromeres of
different human chromosomes are defined by HORs
that are structurally distinct. For instance, the Homo
sapiens chromosome X (HSAX) is defined by a HOR
of 12 monomers (DXZ1, 12-mer), whereas the HSA8
is defined by a 7-mer HOR (D8Z2). The order and
sequence of the monomers differ between chromo-
some-specific HORs, and thus, a satellite arrays on
each chromosome can be distinguished. Despite these
structural and organizational features that discrimi-
nate between a satellite arrays, the human genome
assembly lacks contiguous a satellite sequences at cen-
tromeres. Monomers are readily identified by
sequencing, but the HORs that define each chromo-
some-specific a satellite region are reiterated hundreds
to thousands of times so that the highly homogeneous
arrays (97–100% identical) extend over many mega-
bases. This makes it difficult to accurately assemble
long a satellite arrays, especially from short sequence
reads.8 Without contiguous centromeric genome
assemblies, it has been challenging to link specific fea-
tures of a satellite organization to centromere func-
tion. Recent computational efforts have resulted in
graphical models of human centromere sequences,14-
16 a first step toward linear centromere maps. This
approach has allowed assessment of genetic content
within a satellite DNA, revealing some of the diversity
in satellites within and among centromeres and rein-
forcing that many satellites are distinct among differ-
ent chromosomes. A limitation of these “maps” is that
they do not delineate the order of sequences within
any given centromere, so the long-range organization
of a satellite arrays in a single individual, much less
the population, remains largely undetermined.

From these studies, we know that most human
chromosomes have multiple HORs, that is more than
one multi-megabase higher order a satellite array
within the centromere region. Chromosomes like
HSA1, HSA5, HSA7, HSA15, and HSA18 have 2 (or
more) independent chromosome-specific a satellite

arrays. Moreover, HSA1, HSA5, and HSA19, share at
least one array (D1Z5), further emphasizing the struc-
tural complexity of centromere regions.17,18 The
multi-array organization of human centromere
regions presents a new view of normal chromosome
biology. Structurally, endogenous human chromo-
somes closely resemble dicentric or tricentric chromo-
somes that have been thought to arise primarily
through genome rearrangements that fuse 2 or more
different chromosomes. Multi-array endogenous
chromosomes are generally stable. Conversely,
dicentric chromosomes were originally described by
Barbara McClintock as unstable chromosomes that
were poorly tolerated by the genome.19-21 Dicentrics
that arise by genome rearrangement occur frequently
in humans (1 in 1000 individuals) and are stable
through mitosis and meiosis.22 This has been thought
to be due to the poorly understood phenomenon of
centromere inactivation, a process by which one
centromere loses its identity and function. Human
chromosomes, even multi-array chromosomes, have
only one site of centromere and kinetochore forma-
tion, so, in a sense, they are normal models for study-
ing active and inactive a satellite arrays. The fact that
most endogenous human chromosomes possess more
than one a satellite array suggests that the humans
may be inherently more tolerant of dicentrics caused
by genome rearrangement. Interestingly, when the
same acquired dicentric chromosome occurs in multi-
ple individuals, a specific centromere is often inacti-
vated.23 Results like these have led to models
describing differences in the functional potential (i.e.,
“centromere strength”) of distinct a satellite arrays. It
is conceivable that the independent arrays on endoge-
nous chromosomes may also exhibit variable strength
or functional capabilities.

HSA17 has 3 a satellite arrays D17Z1, D17Z1-B
and D17Z1-C, and is essentially structurally tricen-
tric24-26 (Fig. 1A). These a satellite arrays (and other
DNA segments in the human genome) were named
according to established gene nomenclature [D17Z1:
DNA segment (D), chromosomal assignment (17),
complexity of DNA (Z for repetitive), and sequential
number (1, 2, 3…) to confer uniqueness of DNA seg-
ment].27,28 We previously showed that within the pop-
ulation, 70% of individuals carry 2 HSA17s in which
D17Z1 is the site of centromere and kinetochore
assembly, based on the presence of inner and outer
kinetochore proteins29 (Fig. 1B). About 30% of the
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population has a heterozygous centromere configura-
tion in which D17Z1 is the active centromere and the
location of kinetochore assembly on one homolog,
while D17Z1-B is the active centromere on the other
(Fig. 1B). Such flexibility in centromere location,
termed centromeric epialleles, is mitotically and meiot-
ically stable.29 The molecular basis of centromeric

epialleles, that is, the ability to switch the position of
centromere and kinetochore assembly between a sat-
ellite arrays, is not understood. Furthermore, they are
not exclusive to HSA17. Our recent studies have iden-
tified centromeric epialleles on HSA1 and HSA7
(S McNulty, J Ross, and B Sullivan, unpublished
observations), indicating that flexibility in centromere

Figure 1. (For figure legend, see page 334.)
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location is an intrinsic property of human chromo-
somes. In the case of HSA17, D17Z1 appears to be the
major site of centromere and kinetochore assembly,
suggesting that it is a dominant centromere.
Collectively, these observations raise several interest-
ing questions. What would make one centromere
stronger than the other? Why might one a satellite
array be a preferred centromere? How is the site of
centromere assembly chosen when 2 or more competent
arrays are available?

In answering these questions, one can consider
models of gene expression and genetic variation. Gene
function can be affected by genomic variation within
the gene body or regulatory regions that alter pro-
moter activity, splicing, enhancer activity, or tran-
scription factor binding. Early studies of a satellite
arrays uncovered substantial genomic variation at
centromeres.30-32 Within the same chromosome-
specific array, this variation exists in multiples forms:
as HOR size variation, single nucleotide polymor-
phisms (SNPs) within HORs, and differences in total
array size between homologues and among individuals.
HSA17 exhibits extensive a satellite variation.31,33-35

The major array D17Z1 is classically defined by a
HOR of 16 monomers (16-mer) (Fig. 1A, C), however,
monomeric deletions have produced variant D17Z1
HORs that contain 15-, 14-, 13-, 12-, and 11-mers.31,34

These deletions have not swept through entire arrays,
but are typically present as a fraction of an array, so
that 35% of the human population has hybrid D17Z1
arrays containing both wild-type (16-mer) HORs and

variant HORs. D17Z1-B and D17Z1-C appear to be
homogenous arrays; both are defined by different, but
related, 14-mer HORs.16,24

In our recent study, we explored the role of a satel-
lite variation in controlling centromeric epialleles.36

We specifically tested the role of total a satellite array
size in determining the location of the centromere on
HSA17. D17Z1 and D17Z1-B arrays were molecularly
sized from multiple individuals whose HSA17 centro-
meres had been functionally characterized.29 D17Z1 is
overall a much larger array, ranging from 2–4 Mb
between HSA17s homologues and among different
individuals.36-38 Total array size for D17Z1-B and
D17Z1-C is smaller, ranging 0.3–1.5 Mb24,29,36

(K Chew and B Sullivan, unpublished observations).
We found that large D17Z1 arrays (� 3 Mb) tended to
be the site of centromere and kinetochore assembly.
However, when D17Z1 and D17Z1-B were closer in
size, D17Z1-B tended to be active. Although array
length cannot absolutely predict the site of centromere
assembly, our findings imply that a large D17Z1 array
may recruit or retain an increased critical mass of cen-
tromere proteins, giving it an advantage over a smaller
D17Z1-B array.

About 70% of the population has 2 HSA17s in
which D17Z1 is the centromere on both homologs,
and »30% of individuals carry one homolog in which
D17Z1-B is the active centromere.29,36 We were par-
ticularly interested in the fraction of HSA17s in which
D17Z1 is not the active centromere, and delved deeper
into the genomic structure of D17Z1 arrays on these

Figure 1. (see previous page) a satellite variation and the molecular basis of centromeric epialleles in humans. (A) The centromere
region of human chromosome 17 (HSA17) contains 3 a satellite arrays that are each defined by a different higher order repeat (HOR)
unit. a satellite DNA is composed of 171bp monomers (white arrows) that are 50–70% identical. A defined number of monomers are
tandemly arranged to create a HOR that is chromosome-specific. D17Z1 (blue), the predominant array is defined by a canonical 16-
monomer HOR; EcoRI restriction sites demarcate the first monomer of each HOR. D17Z1-B (green) and D17Z1-C (shaded orange) are
each defined by different 14-mer HORs. The monomers are numbered by their order in the HOR, and do not necessarily indicate
sequence identity at the same monomer position between HORs of different arrays. (B) In the population, 70% of individuals carry 2
HSA17s that assemble the centromere and kinetochore (red dot) at D17Z1 (Z1/Z1). In 30% of individuals (Z1/Z1-B), D17Z1-B is the
active centromere on one HSA17 homolog and D17Z1 is the centromere on the other homolog. No individuals have been identified
yet that assemble both HSA17 centromeres at D17Z1-B (Z1-B/Z1-B). (C) D17Z1 is a polymorphic array. Single and multiple monomeric
deletions produce HOR variants, including 15-mers, 14-mers, 13-mers, as well as 12-mers and 11-mers (not shown). (D) Some mono-
mers also carry a common SNP in monomer 13 (black arrowhead) that creates an EcoRI site. This SNP is in linkage disequilibrium (LD)
with the 13-mer HOR. Arrays containing specific HORs and the SNPs exist as distinct haplotypes in humans. Wild-type haplotype (I)
occurs in most individuals and is defined by the canonical 16-mer HOR, as well as rarer 15- and 14-mers (C). Wild-type D17Z1 arrays are
usually the site of centromere and kinetochore assembly (red circles) on mitotically stable HSA17. Haplotype II is defined by HOR var-
iants that include a high proportion of 13-mers, many of which contain the SNP. D17Z1 arrays that have a high proportion of variant
HORs are less likely to be the site of centromere assembly. Instead, the centromere is formed at “backup” array D17Z1-B and the
HSA17 is extremely stable. (E) In a subset of Haplotype II individuals, the proportion of wild-type to variant HORs within the multi-meg-
abase D17Z1 array is nearly equivalent. In these instances, if the centromere forms at D17Z1, the HSA17 is extremely unstable in mitosis
due to a deficiency in centromere and kinetochore proteins (small red circles) and abnormal kinetochore architecture.
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chromosomes. The D17Z1 canonical 16-mer HOR is
operationally defined by EcoRI sites that designate
monomer one of the HOR and define the boundary
between individual HORs.26 D17Z1 has 2 major poly-
morphisms. First, there is a size polymorphism caused
by deletion of 3 monomers, yielding a 13-mer
HOR31,39 (Fig. 1C–E). As already mentioned, addi-
tional monomeric deletions have produced HOR var-
iants ranging from 15-mer to 11-mer.31,34 In addition,
a subset of HORs contain a SNP that has introduced
an EcoRI site within monomer 13 (Fig. 1D, E).33 HOR
size variants and the presence or absence of the com-
mon SNP define distinct haplotypes.34 Haplotype I
(wild-type) contains 16-, 15-, and 14-mer HORs and
is present in 65% of HSA17s in the population. Haplo-
type II (variant) is present in 35% of HSA17s in the
population. It is defined by the 13-mer HOR that is in
linkage disequilibrium with the SNP. Interestingly, the
frequencies of wild-type to variant D17Z1 haplotypes
(65%:35%) resembles that of active to inactive D17Z1
arrays (70:30).

We also measured D17Z1 variation in the context
of centromere location among various individuals and
within a multigenerational family. Individuals carry-
ing HSA17 centromeric epialleles exhibited substantial
D17Z1 variation. Variant D17Z1 arrays defined by
Haplotype II (i.e., containing the 13-mer HOR and
the EcoRI SNP) were negatively associated with cen-
tromere function. That is, centromere and kinetochore
assembly was more likely to be occur at D17Z1-B if
D17Z1 was variant. Overall, our findings indicated
that a large D17Z1 array composed of > 50% wild-
type HORs will typically be the site of centromere
assembly (Fig. 1C). However, smaller D17Z1 arrays
(< 3Mb) that contain more (> 80%) variant HORs
are more likely to be inactive and instead, the centro-
mere will be assembled at D17Z1-B (Fig. 1D). Our
studies suggest that D17Z1-B serves as a “backup”
array, when the amount of variation within D17Z1
exceeds 80%.

Intriguingly, several D17Z1 arrays exhibiting
50–70% variation were chosen as the site of centro-
mere assembly (Fig. 1E). We found that these HSA17s
were highly unstable and showed increased aneu-
ploidy over time. Notably, HSA17s with active, invari-
ant D17Z1 or active D17Z1-B arrays did not exhibit
appreciable instability. The HSA17 mutants allowed
us to test the causal relationship between D17Z1 varia-
tion and HSA17 instability. We measured key

centromere proteins on active variant D17Z1 arrays
and compared them to active wild-type D17Z1 or
D17Z1-B arrays. CENP-A is a variant of histone H3
that creates a unique type of chromatin exclusive to
the centromere.2,3,40 CENP-C is a member of the
CCAN that links the inner and outer kinetochore and
is important for CENP-A recruitment and kineto-
chore maturation.41-43 We observed reduced amounts
of CENP-A and CENP-C on variant D17Z1 arrays,
but not wild-type D17Z1 or D17Z1-B arrays. These
results suggested that the molecular basis for instabil-
ity of HSA17s with active, variant arrays is an archi-
tectural kinetochore defect. Our studies also suggest
that there is a critical molecular threshold for a satel-
lite variation and centromere formation. In our data
set, centromere formation occurred on D17Z1 arrays
with moderate (50–70%) variation at the cost of
decreased chromosome stability. It is not clear why a
chromosome would continue to assemble the kineto-
chore at a mutated array. Determining if centromere
function on these “threshold” arrays eventually
switches to the backup D17Z1-B array to correct
HSA17 instability and identifying molecular triggers
that stimulate the shift are important next steps in the
study of centromeric epialleles.

Overall, our findings indicate that different a satel-
lite sequences do not have equal functional potential
and that variation within a satellite organization nega-
tively affects centromere assembly and function. The
relationship between long-range organization of a sat-
ellite, i.e., where wild-type versus variant HORs are
situated across a 4Mb array, is not known. A prior
study of 3 HSA17s intimated that HOR variants
within D17Z1 are clustered into domains.44 We do
not know how HOR size variants are organized in
active vs. inactive D17Z1 arrays in our functionally
characterized data set. A few models could explain
how a satellite organization affects centromere assem-
bly and function. Inactive D17Z1 arrays in our study
exhibited > 80% variation and had 30–60 times more
HOR size/SNP variation compared with HSA17s with
active D17Z1 arrays. These inactive arrays are homo-
genously variant, so the large number of variant
HORs dispersed across the entire array may prevent
or disfavor CENP recruitment/maintenance, skewing
centromere assembly toward D17Z1-B. However,
several of the D17Z1 arrays in our data set exhibited
an intermediate range of variation and centromere
function. The arrays were 50–70% variant and were
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often chosen as the site of centromere assembly, but
the HSA17s were unstable. On variant arrays contain-
ing an equal amount of wild-type and variant HORs,
the long-range organization of the entire a satellite
region and where centromeric chromatin is located
may be crucial. a satellite organization in which vari-
ant HORs are clustered at one end of the array may be
less detrimental because centromere assembly can
occur on wild-type HORs concentrated at the opposite
end of the array. However, if variant and wild-type
HORs are interspersed across the entire array, the
irregularity might disrupt structural requirements for
kinetochore architecture, such as CENP-C-mediated
bridging between nucleosomes.4

CENP-B is another constitutive centromere protein
with a satellite DNA binding properties. It recognizes
the CENP-B box, a 17-bp sequence motif found in a
subset of a satellite monomers on all human chromo-
somes except the Y.45-47 CENP-B is thought to posi-
tion CENP-A nucleosomes and to stabilize CENP-A
and CENP-C, based on the position of the CENP-B
box within the DNA that is wrapped around the
nucleosome.48-53 The number and location of
CENP-B boxes might correlate with the ability of an
array to achieve the proper higher order structure
required for centromere function. Monomeric dele-
tions that gave rise to variant HORs may have altered
the number of available binding sites for CENP-B
which could destabilize the interactions between
CENP-A nucleosomes, CENP-C, and other CCAN
proteins. Our rough calculations of the number of
CENP-B boxes in highly variant arrays indicate that
they have 25–50% fewer CENP-B boxes than wild-
type arrays (NG Peterson and BA Sullivan, unpub-
lished observations). Nevertheless, variant D17Z1
arrays have 5–6 times more CENP-B boxes than
D17Z1-B arrays, suggesting that a factor other than
the overall number of CENP-B boxes affects func-
tional potential of variant arrays. CENP-B boxes
within variant arrays could be mutated so that they
are not recognized by CENP-B, but without extensive
sequence information we cannot test this hypothesis.
Alternatively, HORs containing 13-mers are shorter
than wild-type (16-mer) HORs and the decreased
HOR length might alter positioning of nucleosomes
and centromere protein complexes across a variant
D17Z1 array.49,53-55

Centromeric transcription is an integral part of
kinetochore assembly and mitosis.56-63 In humans,

each a satellite array produces a unique set of
array-specific, long non-coding transcripts (SM
McNulty and BA Sullivan, unpublished observations).
We speculate that transcription of wild-type vs. vari-
ant a satellite HORs are correlated with distinct differ-
ences in centromere assembly. Genomic variation
within D17Z1 may alter the abundance, stability, and/
or structure of long, non-coding a satellite RNAs so
that variant transcripts are less stable or cannot inter-
act properly with centromere proteins. Additional
studies are needed to distinguish transcription at vari-
ant and wild-type D17Z1 arrays and to capture the
interaction of these transcripts with centromere
protein complexes.

The extent of genomic variation within D17Z1
beyond what we have studied is not known, and much
less so are the types and frequency of variation in
other a satellite arrays located on different human
chromosome. Concerted efforts to expand genomic
studies of highly repetitive sequences will allow us to
fully uncover links between a satellite DNA
organization and centromere function.
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