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Earthquake forecasting during the complex
Amatrice-Norcia seismic sequence
Warner Marzocchi,* Matteo Taroni, Giuseppe Falcone

Earthquake forecasting is the ultimate challenge for seismologists, because it condenses the scientific knowl-
edge about the earthquake occurrence process, and it is an essential component of any sound risk mitigation
planning. It is commonly assumed that, in the short term, trustworthy earthquake forecasts are possible only for
typical aftershock sequences, where the largest shock is followed by many smaller earthquakes that decay with
time according to the Omori power law. We show that the current Italian operational earthquake forecasting
system issued statistically reliable and skillful space-time-magnitude forecasts of the largest earthquakes during
the complex 2016–2017 Amatrice-Norcia sequence, which is characterized by several bursts of seismicity and a
significant deviation from the Omori law. This capability to deliver statistically reliable forecasts is an essential
component of any program to assist public decision-makers and citizens in the challenging risk management of
complex seismic sequences.
INTRODUCTION
On 24August 2016, amagnitude 6 (M6) earthquake hit close to the city
of Amatrice, causing severe damage and killing about 300 inhabitants.
This earthquake was not anticipated by any increase in seismic activity,
and it initiated a very complex seismic sequence that had several bursts
of seismicity and a complex spatial pattern (Fig. 1), with more than
50,000 earthquakes recorded. After 2 months of a typical aftershock
sequence characterized by many smaller earthquakes, in late October,
the northern portion of the sequence was hit by M5.9 (on October 26)
and M6.5 (on October 30) earthquakes that caused significant damage
to a vast area around the city of Norcia, destroying the famous 14th cen-
tury basilica of San Benedetto that had withstood earthquakes for more
than six centuries. Later in January, fourM5+ earthquakes occurred close
in time and space in the southern part of the sequence, raising concerns
for the potential impact on the nearby Campotosto dam that forms the
second largest man-made lake in Europe.

This complex behavior is significantly different from the typical
mainshock-aftershock sequences,where one large earthquake is followed
by many smaller aftershocks. The statistics of typical mainshock-
aftershock sequences is successfully describedby themodel ofReasenberg
and Jones (R&J) (1), whichhasbeenwidely used in aftershock forecasting
since the 1989 Loma Prieta earthquake (1, 2). The R&J model is rooted
in the idea that aftershocks from a single mainshock are distributed
according to the Omori-Utsu (3, 4) and Gutenberg-Richter (5) empir-
ical laws, thus contemplating the possibility that aftershocks can be
larger than the mainshock. Although the R&J model gained wide ac-
ceptance in the seismological community, it cannot forecast the evolu-
tion of more complex seismic sequences, such as the Amatrice-Norcia
sequence, because it does not include spatial information, and it as-
sumes that there is only one major quake that triggers the whole
aftershock sequence. The limited applicability of the R&J model was
illustrated during the recent sequence that hit Kumamoto region, Japan,
in 2016. After the first M6.5 earthquake on April 14, the Japan Mete-
orological Agency (JMA) released aftershock forecasts for smaller earth-
quakes. A few days later, on April 16, an M7.3 earthquake hit the same
region, killing more than 50 inhabitants, and JMA stopped issuance of
forecasts because the sequence did not conform to typical mainshock-
aftershock sequence (6).

More recent clusteringmodels, such as the epidemic-type aftershock
sequence (ETAS) (7) and the short-term earthquake probability (STEP)
(8) models, are based on the same empirical laws used by R&J, but they
introduce two important improvements: the spatial component of the
forecasts and the assumption that every earthquake above a certain
magnitude can generate other earthquakes, not only the mainshock.
The latter precludes any meaningful distinction among foreshocks,
mainshocks, and aftershocks (9, 10), because they can be attributed,
at best, only a posteriori when the sequence is over. Despite these
conceptual improvements, the increase in forecasting skill with respect
to R&J and the capability of these models to deliver statistically reliable
real-time forecasts during complex seismic sequences are still mostly
unknown. With this specific aim, we analyze here the prospective
real-time forecasting performance of ETAS and STEP models during
the Amatrice-Norcia complex seismic sequence.

In the last few years, the SeismicHazard Center at IstitutoNazionale
di Geofisica e Vulcanologia (INGV) introduced an operational
earthquake forecasting (OEF) system (OEF_Italy) (11, 12) that provides
continuous authoritative information about time-dependent seismic
hazards to the Italian Civil Protection. Currently, the system is still in
a pilot phase. OEF_Italy consists of an ensemble of three different
clusteringmodels, two different flavors of ETAS (13, 14), and one STEP
model (15). The ensemble modeling weighs the forecasts of each single
model according to its past forecasting performance (16) and allows
proper estimation of the epistemic uncertainty that is of paramount
importance for testing (17) and for communicating uncertainties to
the decision-makers. Here, we analyze the weekly earthquake forecasts
for the complex seismic sequence still ongoing in Central Italy (Fig. 1).
The weekly forecasts are updated every week or after any earthquake of
M4.5 or above. Figure 2 shows the forecasts after (Fig. 2A) and before
(Fig. 2, B to D) the most important earthquakes of the sequence. Nota-
bly, although each earthquake has an isotropic triggering spatial kernel
inOEF_Italymodels, the sumof the spatial triggering of all earthquakes
yields a more heterogeneous spatial pattern. (All weekly forecasts used
in this analysis are available upon request to the corresponding author.)

To evaluate the scientific reliability of the forecasts, we test whether
the forecasts satisfactorily describe the space-time-magnitude distri-
bution of the 40 target earthquakes (1 of M ≥ 6, 6 of 5 ≤ M < 6, and
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33 of 4 ≤M < 5), which are the largest earthquakes that occurred in the
period between 24August 2016 to 31 January 2017.Wedonot consider as
target earthquakes the few events with M≥M4 that occurred in the first
few hours after the two largest Amatrice and Norcia earthquakes. (We
come back to this point later.) To test the space and time distribution,
we use the S- andN-tests proposed in the Collaboratory for the Study
of Earthquake Predictability (CSEP) framework (18, 19). The S-test
(20) verifies whether the spatial occurrence of target earthquakes is
consistent with the forecasts of themodel, that is, if the empirical spatial
distribution of the target earthquakes is not statistically different from
the spatial distribution of the forecasts; the N-test (21) verifies whether
the overall number of earthquakes predicted by the model is consistent
with the number of earthquakes observed. More technical details on
the S- and N-tests are provided in Materials and Methods. For magni-
tude distribution, we test whether the magnitude of the observed target
earthquakes fits the Gutenberg-Richter law that is used by all models in
OEF_Italy. Specifically, we test whether the magnitudes have an expo-
nential distribution, that is, if x ~ exp(L), where x =M −Mt + e, with
M as the magnitude of the observed target earthquakes, Mt = 3.95 as
the minimum magnitude for the target earthquakes, L as the average
of x, and e as a random uniform noise to avoid the binning problem of
the magnitudes. This goodness of fit is carried out using the Lilliefors
test (22).
RESULTS
Figure 3A shows the results of the S-test for the different forecasts. The
spatial probability of each target earthquake is given by the probability
of the last time window that begins before the occurrence time of the
target earthquake. The time of each forecast is reported in Table 1. The
length of these forecasts is not an issue for the S-test, because the spatial
probability of each target earthquake is normalized to the number of
earthquakes that occurred in the time window. The results show good
agreement between spatial forecasts and locations of the target earthquakes;
the quantile score x, which mimics the P value of the test (Eq. 1), is al-
ways larger than 0.2 and often close to 1, which indicates optimal spatial
forecasting.

Figure 3B shows the expected number of target earthquakes for
each forecast. Owing to the well-known fact that clustering models
based on ETAS severely underestimate the number of earthquakes
in the hours immediately after a large shock because of the significant
incompleteness of the seismic catalog (23), the statistical tests include
neither the forecasts nor any target earthquakes immediately after the
M6 Amatrice earthquake and after the M6.5 Norcia earthquake (fore-
cast numbers 1, 2, and 19). These forecasts were corrected in real time
with empirical factors before sending them to the Italian Civil Protection.
From the figure, we note that there is one significant underestimate for
forecast 18, which corresponds to the first forecast after the M5.9
earthquake in Visso on October 26. Being less thanM6, we did not cor-
rect theOEF_Italy forecast; therefore, an underestimate is not a surprise,
for the same reasons discussed above. The forecasts of Fig. 3B overlap in
time, posing challenges for statistical testing. To avoid this problem, we
rescale eachweekly forecast for the real-time length of the forecast using
a function proportional to 1/(t+ c) (seeMaterials andMethods formore
details). Figure 3C shows the results of the N-test, that is, that the
cumulative number of observed target earthquakes (40) lies within
the 95% confidence interval (7 to 46). Figure 3D shows the agreement
between the magnitudes of the target earthquakes and the Gutenberg-
Richter frequency-magnitude distribution of the forecasts; the P value
A

B

C

Fig. 1. Space-time evolution of the Amatrice-Norcia seismic sequence. (A) Seismicity
above M3.5 observed during the sequence. Red, seismicity from 24 August to 29
October 2016; light blue, seismicity from 30 October 2016 to 17 January 2017;
green, seismicity from 18 January to 31 January 2017. (B) Time evolution of the
daily number of earthquakes of M3 or larger in the whole region. (C) Plot of the
space-time evolution of the M2.5+ seismicity projected along the axis X-X′ shown
in Fig. 1A.
2 of 7



SC I ENCE ADVANCES | R E S EARCH ART I C L E
of the Lilliefors test is larger than 0.05, which is the significance level
usually adopted by the CSEP experiments (19–21).

In summary, this prospective testing phase shows a good agreement
between the forecasts and the observed space-time-magnitude distribution
of the largest earthquakes that occurred during the sequence. The skill
and reliability withwhichOEF_Italy tracks the spatial evolution of the se-
quence canbequalitatively graspedby looking at Fig. 1C; besides showing
the spatial pattern of the evolution of the sequence, the plot shows that
the largest earthquakes of the sequence (markedby stars) occurred in areas
that are characterized by spatial clustering of the preceding seismicity.
DISCUSSION
Statistically reliable and skillful OEF forecasts are a prerequisite for any
practical use or dissemination of this information (12). However, the
conversion of OEF forecasts in terms of risk reduction strategies is
challenging and is still a matter of discussion (24, 25). To illustrate this
general problem for the Central Italy sequence in Fig. 4, we show the
time evolution of the weekly exceedance probability of macroseismic
intensities VII and VIII in a circle of 10 km around Norcia before the
Marzocchi, Taroni, Falcone, Sci. Adv. 2017;3 : e1701239 13 September 2017
M6.5 earthquake on October 30 that severely damaged this historical
city. Figure 4 (top) shows the long-termbackgroundprobability, includ-
ing the increase in probability due to the nearby M6.2 L’Aquila
earthquake that occurred in 2009 at about 55 km from Norcia. In
Fig. 4 (bottom), we show that weekly earthquake probability increases
to 100 to 1000 times that of background before the M6.5 earthquake,
achieving weekly probabilities of about 5% (for intensity VII) and slightly
less than 1% (for intensity VIII) a few days before the M6.5 event. Al-
though the probability of such a ground shaking occurrence is a few per-
cent, the associated risk can be large, very likely above any a priori–defined
acceptable risk threshold (26).As is the case for anykindof low-probability
high-impact events,management of this risk poses a great challenge to the
wide range of possible decision-makers (27); but despite its un-
predictability, the risk can hardly be considered negligible or irrelevant.
For this reason, we foresee in the near future a clear urgency to im-
prove communication strategies to make OEFmessages comprehen-
sible to any possible interested stakeholders.

Besides the practical implications of seismic risk reduction for soci-
ety, the capability to accurately forecast the evolution of the natural
phenomena is the distinctive feature of science with respect to all other
Fig. 2. Some examples of weekly forecasts (the number of the forecasts are reported on Table 1). (A) Forecast number 3, a few hours after the Amatrice
earthquake and the M3.5+ earthquakes (blue-green circles) that occurred in the forecasting time window. (B) Forecast number 15, before the M5.9 earthquake
(blue-green star) that occurred on October 26. (C) Forecast number 18, before the Norcia M6.5 earthquake (blue-green star) that occurred on October 30. (D) Forecast
number 35, before the Campotosto M5.5 earthquake (blue-green star) that occurred on January 18.
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human enterprises (28). OEF advances a valuable scientific approach,
because it describes what we really know about the earthquake occur-
rence process, and it represents a benchmark for measuring any scien-
tific improvement through a prospective statistical testing phase.
Prospective statistical testing is the scientific gold standard for validating
models (17), showing where models can be improved, and allowing
scientists to quantify the forecasting ability of a new model compared
to that of models currently in use. This framework modifies the way
in which the earthquake predictability problem has been approached
by scientists and perceived by society, moving from the tacit dichot-
omy for which earthquakes either can be predicted at a probability
close to 1 or cannot be predicted at all toward a more incremental
continuum of probabilities between 0 and 1, traditionally termed
forecasts.

Although the results reported here demonstrate that current OEF
models can provide statistically reliable and skillful forecasts even dur-
ing complex seismic sequences, OEF is still in a nascent stage. The
steady accumulation of scientific knowledge, which is implicit in the
OEF’s brick-by-brick approach (18), may eventually pave the way to
a “quiet revolution” in earthquake forecasting as in weather forecasting
(29). Without pretending to be exhaustive, we foresee that significant
improvement may come from including complete geodetic and/or geo-
logical information (30), a better physical description of the earthquake-
generating process and fault interaction, and the identification of
possible physical and/or empirical features that may shed light on
Marzocchi, Taroni, Falcone, Sci. Adv. 2017;3 : e1701239 13 September 2017
the so-far elusive distinction between the preparatory phase of small
and large earthquakes.
MATERIALS AND METHODS
S- and N-tests
The S-test (20) is a likelihood test applied to a forecast that has been
normalized to the observed number of target earthquakes, thereby
isolating the spatial distribution of the forecast. After normalizing each
forecast, the S-test is summarized by a quantile score

z ¼ nfSijSi ≤ S; Si ∈ Ssg
nfSsg ð1Þ

where Si is the ith simulated spatial likelihood according to the
model, Ss is the whole set of simulated spatial likelihoods, S is the
likelihood of the spatial forecast relative to the observed seismicity,
and n{A} indicates the number of elements in a set {A}. The score z
indicates the percentage of times in which the simulated spatial like-
lihoods are less or equal to the spatial likelihood observed, mimicking a
statistical P value. If z is below the critical threshold value, say 0.05,
the spatial forecast is deemed inconsistent; values close to 1 indicate
optimal spatial forecasts.
1 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

# Forecast

# 
Ta

rg
et

 e
ar

th
qu

ak
es

4 4.5 5 5.5 6 6.5
0

0.2

0.4

0.6

0.8

1

Magnitude

C
D

F

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

# Target earthquakes

P
ro

ba
bi

lit
y 

fu
nc

tio
n

5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

# Forecast

ζ 
sc

or
e

A

DC

B

P = 0.38

S-test

N-test
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The N-test (21) verifies whether Nobs ~ F(Nforecast), that is, if the ob-
served number of target earthquakes (Nobs) over the entire region
samples the distribution F(Nforecast) that describes the expected total
number of target earthquakes predicted by the OEF model (Nforecast).
We assumed that the target earthquakes follow a generalized Poisson
distribution with the time-varying parameter l that has a gamma
Marzocchi, Taroni, Falcone, Sci. Adv. 2017;3 : e1701239 13 September 2017
distribution to describe the variability among the rates produced by
each one of the three models in OEF_Italy. This gamma-Poisson mix-
ture produces an NBD for the expected number of target earthquakes.

NBD of the number of target earthquakes
The mass function of the NBD can be written as

f ðn;r; pÞ¼ Gðr þ nÞ
n!GðrÞ pnð1� pÞr ð2Þ

where G(r) is the gamma function, n is a positive integer random
variable (the number of target earthquakes), and r > 0, p ∈ (0, 1) are the
two parameters of the distribution. NBD can be derived from the
gamma-Poisson mixture distribution

f ðn;r; pÞ ¼ ∫
∞

0 f1ðn;lÞf2 l;r;
1� p
p

� �
dl ð3Þ

where f1(n;l) is the Poisson distribution of the positive integer ran-
dom variable n, and the parameter l of the Poisson distribution is
assumed to follow a gamma distribution

f2ðl;k; qÞ ¼ lk�1e�
l
q

qkGðkÞ ð4Þ

where k, q > 0 are the parameters of the gamma distribution that are
related to the parameters r and p of NBD through

r ¼ k ð5Þ

and

p ¼ q
1þ q

ð6Þ

The models included in OEF_Italy provide a set of different
rates for each forecast with different weights, describing the past
forecasting performance of each model. From these rates, we esti-
mated the parameters of the gamma distribution using the method
of moments. In particular, we computed the weighted mean ~m and the
weighted variance ~s2 of the three rates for each forecast, and then we
used them to calculate the parameters k and q of the gamma distri-
bution, that is

k ¼
∼m2

∼s2
ð7Þ

and

q ¼
∼s2

∼m
ð8Þ

Once the k and q parameters are obtained, it is possible to
estimate the parameters r and p of the NBD through Eqs. 5 and
Table 1. Forecast number (as used in Figs. 2 and 3) and the starting
date. UTC, Coordinated Universal Time.
Forecast
 Starting date
 Forecast
 Starting date
1*
 24 August 2016,
0200 UTC
21
 30 October 2016,
1345 UTC
2*
 24 August 2016,
0300 UTC
22
 01 November 2016,
0815 UTC
3
 24 August 2016,
1215 UTC
23
 03 November 2016,
0000 UTC
4
 25 August 2016,
0000 UTC
24
 03 November 2016,
0100 UTC
5
 25 August 2016,
0345 UTC
25
 10 November 2016,
0000 UTC
6
 26 August 2016,
0445 UTC
26
 17 November 2016,
0000 UTC
7
 01 September 2016,
0000 UTC
27
 24 November 2016,
0000 UTC
8
 08 September 2016,
0000 UTC
28
 01 December 2016,
0000 UTC
9
 15 September 2016,
0000 UTC
29
 08 December 2016,
0000 UTC
10
 22 September 2016,
0000 UTC
30
 15 December 2016,
0000 UTC
11
 29 September 2016,
0000 UTC
31
 22 December 2016,
0000 UTC
12
 06 October 2016,
0000 UTC
32
 29 December 2016,
0000 UTC
13
 13 October 2016,
0000 UTC
33
 05 January 2017,
0000 UTC
14
 20 October 2016,
0000 UTC
34
 12 January 2017,
0000 UTC
15
 26 October 2016,
1730 UTC
35
 18 January 2017,
0945 UTC
16
 26 October 2016,
1945 UTC
36
 18 January 2017,
1015 UTC
17
 26 October 2016,
2200 UTC
37
 18 January 2017,
1030 UTC
18
 27 October 2016,
0000 UTC
38
 18 January 2017,
1345 UTC
19*
 30 October 2016,
0700 UTC
39
 19 January 2017,
0000 UTC
20
 30 October 2016,
1215 UTC
40
 26 January 2017,
0000 UTC
*The forecasts that were modified in real time with empirical corrections
because of severe seismic catalog underreporting immediately after large
earthquakes.
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6. More information on the derivation of the NBD as mixture of
Poisson distribution can be found in the study of Greenwood and
Yule (31).

Correcting the weekly forecasts to account for shorter
forecasting time windows
Weekly forecasts (that is, the expected number of target earthquakes in
1 week) have been updated every week or every earthquake of M4.5 or
larger. This means that some weekly forecasts have been superseded by
a new forecast before the end of the established 1-week forecasting time
window (see Table 1). Thus, when testing the expected number of target
earthquakes for the entire sequence (N-test, Fig. 3C), we had to correct
each weekly forecast accounting for the real extent of the corresponding
forecasting time window. For this purpose, we assumed that the
earthquake rate l decays with time within the forecasting window by
Marzocchi, Taroni, Falcone, Sci. Adv. 2017;3 : e1701239 13 September 2017
following a simple power law equation

l ¼ constant
t þ c

ð9Þ

where c = 0.015 day−1 (13). The expected number of target earthquakes
in a generic forecasting time window T is

nT ¼ ∫
T

0 l dt ¼ constant lnð1þ T=cÞ ð10Þ

Using Eq. 10, we can calculate the expected number of target earth-
quakes nT for a generic forecasting time window of length T (shorter
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than or equal to 7 days) from the weekly expected number of target
earthquakes nweek given by the model

nT ¼ lnð1þ T=cÞ
lnð1þ T=cÞ nweek ð11Þ

We have verified that replacing Eq. 9 with the more complex
function

l ¼ constant

ðt þ cÞp ð12Þ

did not change the results significantly for any realistic value of p esti-
mated by Lombardi and Marzocchi (13).
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