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Abstract

Restoration of learning and memory deficits following traumatic brain injury (TBI) is attributed, in 

part, to enhanced neural stem/progenitor cell (NSPCs) function. Recent findings suggest gap 

junction (GJ)-associated connexin 43 (Cx43) plays a key role in the cell cycle regulation and 

function of NSPCs and is modulated following TBI. Here, we demonstrate that Cx43 is up-

regulated in the dentate gyrus following TBI and is expressed on vimentin-positive cells in the 

subgranular zone. To test the role of Cx43 on NSPCs, we exposed primary cultures to the α-

connexin Carboxyl Terminal (αCT1) peptide which selectively modulates GJ-associated Cx43. 

Treatment with αCT1 substantially reduced proliferation and increased caspase 3/7 expression on 

NSPCs in a dose-dependent manner. αCT1 exposure also reduced overall expression of Cx43 and 

phospho (p)-Serine368. These findings demonstrate that Cx43 positively regulates adult NPSCs; 

the modulation of which may influence changes in the dentate gyrus following TBI.
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Introduction

Traumatic brain injury (TBI) affects over 1.7 million Americans each year and is a leading 

cause of long-term disability [46, 54, 55, 62], including physical, cognitive, and emotional 

dysfunction ranging from headaches to memory loss and depression [31, 43, 49, 62]. While 

the yearly incidence of TBI is more than triple that of most cancers [10], no effective 

therapies exist to prevent neural tissue damage and/or fully restore neurological function. 

Impairment in learning and memory is a major hallmark of the neurocognitive sequela of 
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TBI [1, 21, 68] and is partly attributed to hippocampal neuronal and neural progenitor cell 

loss [4, 44, 68]. Neural stem/progenitor cells (NSPCs) in the dentate gyrus (DG) play a key 

role in hippocampal function [19, 35, 71]. Although NSPCs are initially vulnerable in this 

neurogenic region following TBI, subsequent promotion of neurogenesis could aid in 

replacing locally damaged neurons and enhancing neuronal circuit repair and restoration of 

neurocognitive decline [22, 27, 28, 56, 69, 70]. A comprehensive understanding of the 

cellular and molecular underpinnings controlling TBI-induced neurogenesis will promote 

future strategies targeting this adaptive mechanism after brain trauma.

Analysis of the neurogenic response in the human brain following trauma is severely limited 

due to lack of human tissue availability [13]. Therefore, rodent models of reproducible 

injury have been widely used to address the cellular and molecular changes occurring in the 

DG following trauma [25, 36, 40]. One such model, the moderate controlled cortical impact 

(CCI) injury results in a focal cortical contusion and selective cell loss in the hippocampus 

[5, 25, 64]. Recent studies using a transgenic approach to ablate Nestin-expressing NSPCs 

directly linked TBI-induced neurogenesis to cognitive and motor functional recovery [4, 11, 

70]. These findings emphasize the critical role of endogenous neurogenesis and underscore 

the importance of expanding our knowledge regarding the nuances regulating the complex 

milieu in the neurogenic niches of the brain following injury.

Gap junctional (GJ) communication plays a key role in proliferation and migration within 

the neurogenic zone during brain development by differentially coupling radial-glial (RG) 

and dividing neural progenitor cells in the ventricular zone [8, 60, 61]. Gap junctions are 

formed by connexin hemichannels and are specialized sites of cell-cell contact that allow the 

passage of ions, intracellular metabolites and messenger molecules (less than 2kDa) as well 

as provide adhesion sites between adjacent cells [9, 15, 23, 45]. Clusters of neural progenitor 

and RG cells, but not migrating neuroblasts, exist within the developing ventricular zone 

[17] and are differentially coupled by GJs depending on the phase of the cell cycle and the 

discrete stage of neurogenesis [3]. The modulation of gap junction-associated Cx43 during 

cell division is regulated, in part, at the level of phosphorylation [30, 52, 53]. 

Phosphorylation of serine368 is important for cell division and peaks during mitosis as gap 

junction communication ceases. Interestingly, Cx43 also displays channel-independent roles 

in regulating migration and adhesion [12]. These findings suggest gap-junction associated 

Cx43 plays an important role in embryonic neurogenesis; however, no studies have 

addressed the expression and function of Cx43 in the adult neurogenic niches of the brain 

under homeostasis and following TBI.

To date it remains unclear whether modulation of GJ-associated Cx43 occurs in the clustered 

neural stem-progenitor cell niche of the SGZ of the DG and the effects of modulating Cx43 

in these highly coupled cells. To address this question we evaluated the expression of Cx43 

on vimentin-positive NSPCs in the SGZ in sham and CCI-injured mice at 4-days using 

confocal imaging microscopy. To further address the role of GJ-associated Cx43 in NSPC 

activities we exposed primary NSPC cultures to a mimetic peptide of Cx43, called α-

connexin Carboxyl Terminal 1 (αCT1), [18, 51], and found increased Caspase 3/7 activation 

and reduced BrdU incorporation in a dose-dependent manner. Treatment with αCT1 reduced 

total levels of Cx43 expression on NSPCs at 8 and 24 hours post-treatment. Our findings 
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suggest that Cx43 plays a positive role in regulating NSPC survival and proliferation, the 

modulation of which could influence key neurogenic changes following TBI.

Materials and Methods

Animals

All mice were generated and housed in an AAALAC approved, virus/specific antigen-free 

facility with a 12 h light-dark cycle; food and water ad libitum. CD1 mice were purchased 

from Charles Rivers and bred until desired numbers were generated for experimentation. All 

experiments were conducted in accordance with the NIH Guide for the Care and Use of 

Laboratory Animals and were conducted under the approval of the Virginia Tech 

Institutional Animal Care and Use Committee (IACUC; #15-063) and the Virginia Maryland 

Regional College of Veterinary Medicine.

CCI Injury—Male CD1 mice at 8–12 weeks of age were anesthetized with ketamine and 

xylazine intraperitoneal (i.p.) injection and positioned in a stereotaxic frame [2, 63, 64]. 

Body temperature was monitored with a rectal probe and maintained at 37°C with a 

controlled heating pad (homeothermic blanket system; Harvard Apparatus). A 5mm 

craniotomy was made using a portable drill over the right parietal-temporal cortex (−2.5 mm 

A/P and 2.0 mm lateral from bregma). Injury was induced by moderate CCI using the eCCI- 

6.3 device (Custom Design & Fabrication; 3mm impounder) at a velocity of 3.5 m/s, depth 

of 1.0 mm, and 150 ms impact duration [2, 63]. Sham controls received anesthesia and 

craniotomy only. Following injury, the incision was closed using Vetbond tissue adhesive 

(3M, St. Paul, MN, USA) and the animals were placed into a heated cage to maintain body 

temperature for 1 h post-injury followed by daily monitoring for 4 days or until the day of 

euthanization.

Tissue sectioning and Immunostaining—Brains were dissected from the skull and 

embedded into tissue freezing medium (Optical Cutting Temperature (OCT) Compound, 

Fisher Healthcare) before immediately snap frozen. Five serial, coronal sections (30μm in 

thickness) were collected spaced 300μm apart using a cryostat (Thermo Fisher Cryostar 

NX50, Waltham, MA, USA). To label for neural stem/progenitor cells undergoing apoptosis, 

slides were fixed in 10% formalin (Fisher Chemicals, Pittsburgh, PA, USA) for 10 minutes, 

washed 3 times with 1X PBS, and permeabilized in 2:1 Ethanol:Acetic Acid for 10 minutes, 

washed 3 times in 1X PBS then incubated with 0.4% Triton X-100 for 5 minutes and washed 

with 1X PBS. Slides were incubated in primary antibody using block overnight at 4°C at 

1:500 anti-Cx43 (Santa Cruz Biotechnology) and anti-vimentin (Santa Cruz Biotechnology, 

Dallas, TX, USA). Sections were washed with 1X PBS then incubated with anti-rabbit 

Alexa Fluor 594-conjugated and Alexa Fluor 488-conjugated anti-rabbit or Alexa Fluor 488-

conjugated anti-goat (Molecular Probes, Carlsbad, CA) in block for 1h at RT.

Peptide Sequences

The inhibitor peptide, αCT1, includes the Cx43 C-terminal amino acids 374RPRPDDLEI382 

that encompass the ZO-1-binding sequence. A control peptide was generated by reversing 

the Cx43 amino acid sequence (IELDDPRPR), and is termed “Reverse” throughout the 
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manuscript. Both peptides contain a 16-amino acid antennapedia internalization vector 

(RQPKIWFPNRRKPWKK) linked to the N terminus of the Cx43 (or reversed Cx43) 

sequence; peptides were N-terminally biotinylated. These peptides were dissolved and used 

as previously described [24].

Neural stem cells assays

Neural stem/progenitor cells were isolated from the SVZ of adult CD1 mice (2 to 4 months 

old) and grown as monolayer cultures as previously described [65]. Once stem cells reached 

70–80% confluency, they were passaged and 20,000 cells were plated in a 96-well plate 

using monolayer culture media (DMEM/F12 (Hyclone, Logan, Utah) containing N2 

supplement (Life Technologies Corporation, Grand Island, NY), 35μg/mL bovine pituitary 

extract (Sigma-Aldrich, St. Louis, MO, USA), 1X pen-strep glutamine (100X stock, Life 

Technologies Co., Grand Island, NY), 5% fetal bovine serum, and 20ng/mL each epidermal 

growth factor (EGF, Chemicon International, Temecula, CA, USA) and basic fibroblast 

growth factor (EGF, Chemicon International, Temecula, CA, USA) in the presence of 

150μM, 75μM and 37.5μM Reverse or αCT1 peptide. After 8 or 24 hours, cells were fixed 

for 10 minutes using 10% buffered formalin. For immunostaining, wells were washed 3 

times in PBS before blocking in 2% fish gelatin with 0.1% Triton X-100 (2% fish gelatin/

0.1% Triton-X100) for 1h at RT before primary incubation in 1:500 (rabbit anti-Cx43 

polyclonal, Santa Cruz, Dallas, TX, USA) and 1:100 (mouse anti-Nestin, Santa Cruz 

Biotechnology, Dallas, TX, USA) for 1–2 hours at room temperature. Wells were washed 

with 1X PBS then incubated in anti-mouse Alexa-Flour 488-conjugated secondary antibody 

(1:250) or anti-rabbit Alexa-flour 594-conjugated secondary antibody (1:500) (Invitrogen) 

along with DAPI (1:2000, Cell Signaling, Danvers, MA, USA) for 1h at RT.

Caspase 3/7 analysis

To assess cellular apoptosis in vitro, NSPCs were plated in a 96-well plate and treated with 

peptides as described above. After 8h or 24h, CellEvent Caspase-3/7 Green Detection 

Reagent (ThermoFisher Inc, Waltham, MA, USA) was added to each well at a final 

concentration of 4μM and incubated for 30 min at 37°C. To quantify Caspase 3/7 expression, 

each well was imaged at 4X and overall expression was measured using mean intensity in 

ImageJ. To analyze mean intensity in Image J, we opened the image, selected “Analyze > 

Measure” and recorded the “Mean” value for mean intensity.

BrdU analysis

To assess proliferation we performed BrdU incorporation, which identifies cells in the s-

phase of the cell cycle, after NSPCs were plated in a 96-well plate and treated as described 

above. After 8h or 24h of αCT1 treatment, 10 μM BrdU was added for 20 min before cells 

were fixed with 10% formalin and washed 3 times with 1X PBS. Cells were incubated in 1N 

HCL for 1h at 37°C to denature the DNA and the pH was neutralized in 0.1M-borate buffer 

at pH 8.5 and washed in 1X PBS. Cells were blocked in 2% fish gelatin/0.1% Triton-X100 

for 1h before incubating with rat anti-BrdU antibody 1:2000 (LifeTechnologies, Eugene, 

OR, USA) in block overnight at 4°C. The following day, each well was washed in 1X PBS 

then incubated in anti-rat Alexa-Flour 594-conjugated secondary antibody (1:500) 

(Invitrogen, Inc) were added with DAPI (1:2000, Cell Signaling Inc., Dallas, TX, USA) for 

Greer et al. Page 4

Brain Res Bull. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1h at RT. After washing in 1X PBS, the ratio of BrdU-positive cells to total nuclei was 

determined by imaging each well 2 times at 10X and using the Cell Counter on ImageJ 

(NIH) to quantify total cell numbers. Each experiment was repeated 4–5 times with 4–5 

wells per treatment.

Confocal imaging and Cx43 quantification

In order to analyze images taken on Zeiss LSM 880 confocal laser scanning microscope, 

three series coronal sections per brain were imaged using z-stack at 20X and 40 X 

magnifications. To analyze z-stacks as one image rather than several images individually, we 

used Fiji by ImageJ (NIH) [47] to project the z-stack images into a 2D plane. We analyzed 

mean intensity expression on each 2D plane by placing a triangle shaped contour around the 

dentate gyrus, then using the Fiji by ImageJ program to calculate the “Mean” value for mean 

intensity by selecting “Analyze” > “Measure”. This recorded the mean intensity for Cx43 

expression inside the contour of the dentate gyrus.

Western blot analysis

Protein of NSC cultures or hippocampal brain was extracted by lysing cells in RIPA buffer 

(1% NP-40, 1% sodium-deoxycholate, 0.1% SDS, 0.15 M NaCl, 2 mM EDTA, and 0.01M 

sodium phosphate) in the presence of complete protease inhibitor cocktail (Roche, 

Indianapolis, IN, USA) and phosphatase inhibitor cocktail 2 (Sigma, St. Louis, MO, USA). 

Supernatant was collected by centrifuging at 13000 g for 20 min at 4°C and the Lowry assay 

was used for determination of protein concentration (Pierce, Rockford, IL). Cell lysates (50 

μg) were resolved on 10% SDS-PAGE gels and blotted onto PVDF membranes, blocked 

with 5% bovine serum albumin (BSA) in TBST buffer (20 mM Tris, 137 mM NaCl and 

0.1% tween) then incubated in block overnight at 4°C with primary antibody against Cx43 

(rabbit polyclonal, Santa Cruz, Dallas, TX, USA), p-Cx43 (s368, Cell Signaling, Danvers, 

MA, USA), or β-actin (mouse, 1:5000 Cell Signaling, Danvers, MA). Secondary antibodies 

(donkey anti-rabbit IRDye 800CW and donkey anti-mouse IRdye 680; Licor) were applied 

at 1:5000 to the membrane for 3 hours at room temperature before scanning the membranes 

with the Odyssey Fc imaging system (Licor, Lincoln, NE). Blots were quantified by 

densitometry using acquisition into Adobe Photo Shop (Apple, Cupertino, CA, USA). The 

level of protein expression was normalized according to β-actin control levels. Samples were 

run in duplicate.

Statistical analysis

Data was graphed using GraphPad Prism, version 4 (GraphPad Software, Inc., San Diego, 

CA). Student’s two-tailed t test was used for comparison of two experimental groups. 

Multiple comparisons were done by using one-way ANOVA where appropriate followed by 

post hoc Tukey test for multiple pairwise examinations. Differences were identified as 

significant if P < 0.05. Mean values were reported together with the standard error of mean 

(SEM).
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Results

Connexin43 expression in the hippocampus and dentate gyrus following controlled 
cortical impact

Our preliminary findings demonstrate that Cx43 is highly expressed in the neurogenic 

compartments of the adult brain, specifically the subventricular zone and the subgranular 

zone (SGZ) of the dentate gyrus (DG) (supplementary Fig. 1). Cx43 expression has been 

shown to be increased after TBI, although it is unclear whether these changes occur in the 

hippocampus, an area vulnerable to brain trauma. To examine this we isolated protein from 

the hippocampus 4 days following sham or controlled cortical impact (CCI) injury and 

evaluated levels of Cx43 and pS368 using Western blot analysis. Using antibodies against 

Cx43 and pS368, we found no statistically significant difference in the expression of Cx43 

and reduced p-S368 (Fig. 1a and 1b) (P>0.05 for both). To evaluate more cell-specific 

changes, we used serial coronal tissue sections of sham and CCI-injured brains and assessed 

Cx43 expression in the DG on vimentin-positive cells using immunohistochemistry. 

Vimentin is a type III intermediate filament protein present on neural stem cells and is 

upregulated in the DG following CCI injury (Fig. 1d) compared to sham (Fig. 1c). This 

upregulation coincides with an increase in Cx43 immunostaining in the SGZ and hilus of the 

DG following CCI injury (Fig. 1d, 1e and 1f) compared to sham (Fig. 1c, 1e and 1f). 

Vimentin is also upregulated on reactive astrocytes and is associated with astroglial 

proliferation. Therefore, Cx43 expression is present on both neural stem cells and reactive 

astrocytes in the DG after CCI injury.

Modulation of Cx43 on primary adult NSPCs using αCT1

Modulation of Cx43 using αCT1 has been shown to increase Cx43 gap junctional activity 

and impair proliferation and survival of breast cancer cells [20]. To investigate the role of 

gap junction-associated Cx43 on adult NSPC behavior, we exposed primary murine NSPCs 

[2, 11, 63] to the Cx43 mimetic peptide αCT1. Using BrdU incorporation, we found a 

significant reduction in proliferation in a dose dependent manner. At 24 hours post-

treatment, the lowest concentration (37.5 μM) showed a significant reduction in proliferation 

(p<0.05) between cells treated with αCT1 (11.37 ± 1.923% positive BrdU cells) compared 

to Reverse control peptide (19.06 ± 1.957 % BrdU-positive cells). At 75μM there was also a 

significant difference in proliferation (p<0.001) between αCT1 (5.482 ± 1.356% BrdU-

positive cells) and Reverse 16.88 ± 1.765% positive BrdU cells) treated cells. At the highest 

concentration (150μM), αCT1 (2.397 ± 0.440% BrdU-positive cells) inhibits proliferation 

(p<0.01) in comparison with the Reverse control peptide (7.567 ± 1.683% BrdU-positive 

cells) however, at this concentration the reverse also appears to have some suppressive effect 

on proliferation. To determine whether this effect was occurring earlier than 24 hours we 

examined BrdU incorporation at 8 hours post-αCT1 or -Reverse control treatment. We 

found no significant changes in the percent of BrdU-positive cells between 150μM 

(F=13.65, p=0.7057), 75μM (F=1.389, p=0.7831), or 37.5μM (F=8.740, p=0.1013) αCT1 

and Reverse. These results demonstrate that modulation of Cx43 using the selective inhibitor 

αCT1 negatively affect NSPC proliferation.
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To test whether αCT1 reduces proliferation due to changes in cell survival, we assessed 

Caspase 3/7 activation, which is indicative of cells undergoing apoptosis. At 24 hours post-

Reverse or – αCT1 peptide treatment we found a significant increase in Caspase 3/7 

activation (p<0.001) at 150μM αCT1 (2.427 ± 0.2943 mean intensity) (Fig. 3f and 3g) 

treated cells compared to 150μM Reverse (0.9813 ± 0.05619 mean intensity) (Fig. 3c and 

3g), and in 75μM αCT1 (1.244 ± 0.08346 mean intensity) (Fig. 3e and 3g) compared to 

75μM Reverse (0.7774 ± 0.02735 mean intensity) (Fig. 3b and 3g) treated cells. We did not 

see any significant changes (F=2.160, p=0.1293) between 37.5μM αCT1 (0.8428 ± 0.04075 

mean intensity) (Fig. 3d and 3g) and 37.5μM Reverse (0.08158 ± 0.05118 mean intensity) 

(Fig. 3a and 3g) treatments. Under phase contract microscopy, cells treated with 150μM 

αCT1 were visibly unhealthy showing numerous pyknotic cells when compared to 37.5μM 

(supplementary Fig. 2). In addition, cells were fixed and immunostained for antibodies 

against Nestin and Cx43 at 24 hours after Reverse (Fig. 4a and 4b) or αCT1 (Fig. 4c and 4d) 

peptide exposure. Using fluorescence image analysis we found reduced Cx43 aggregates on 

the cell surface of Nestin-positive, αCT1 treated NSPCs compared to Reverse. Nestin 

expression also revealed significant morphological changes such as reduced extensions or 

processes in the αCT1 treatment groups compared to Reverse controls. Together, these 

results show that modulation of Cx43 suppresses the growth and survival of adult NSPCs.

To more quantitatively assess the effects of αCT1 treatment on Cx43 expression, we 

collected protein from αCT1 or Reverse treated cells at 24 hours and performed Western 

blot analysis (Fig. 5). We found a significant decrease in Cx43 expression in cells treated 

with 150μM αCT1 (0.325 ± 0.005 relative to β-actin) compared to 150μM Reverse peptide 

(2.24 ± 0.01 relative to β-actin) (Fig. 5a and 5b) and an overall decrease in the total levels of 

phosphorylated serine 368 (pS368) (Fig. 5a). However, relative to the total Cx43 levels, 

pS368 was significantly increased in αCT1 (2.25 ± 0.02 relative to Cx43) compared to 

Reverse (0.55 ± 0.02 relative to Cx43) treated NSPCs. Moreover, we observed a trend 

towards reduced expression of p-Akt (1.01 ± 0.03 Reverse vs 0.74 ± 0.01 αCT1 relative to 

total Akt) and Bcl-2 (0.31 ± 0.001 Reverse vs 0.17 ± 0.02 αCT1 relative to β-actin), 

although the results did not reach statistical significance. We also analyzed Cx43 and pS368 

expression by Western blot at 8 hours post-treatment and found a significant reduction in 

both pS368 and total Cx43 expression and no change in p-AKT or bcl-2 (data not shown). 

This correlates with previous reports showing overexpression of Cx43 stimulated 

proliferation of neural progenitor cells, however, chemical-induced uncoupling of gap 

junctions reduced proliferation and increased cell death [7]. Our findings suggest that αCT1 

negatively affects NSPC survival and proliferation by reducing total cellular Cx43.

Discussion

The gap junction (GJ)-associated protein Cx43 has been implicated in the response to TBI 

[16, 41, 57, 58]. Previous studies suggest that radial glial-like stem cells in the adult dentate 

gyrus form Cx43 associated GJs, which is necessary to maintain adult neurogenesis [29, 33, 

39]. Our findings demonstrate that Cx43 is up-regulated in the subgranular zone of the 

dentate gyrus, specifically on vimentin-positive cells and is expressed by both horizontal and 

radial glia (RG)-like neural stem cells in the adult DG [48]. To identify the role of Cx43 in 

adult NSPC function, we exposed cultured NSPCs to the α-connexin carboxyl-terminal 
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peptide, αCT1, [18, 24] which resulted in an overall reduction in Cx43 expression at 8 and 

24 hours which coincided with a dose-dependent reduction in proliferation and increase in 

apoptotic expression of caspase 3/7. These effects were both present at the highest dosage 

(150μM). While there was no significant difference in Caspase 3/7 activation at 37.5μM or 

75μM, there is still a significant reduction in proliferation at these dosages. This specific 

effect on cell cycle arrest might be attributed to time difference in activation of Caspase 3/7 

vs exiting the s-phase of the cell cycle at the lower dosages. Alternatively, a dose dependent 

effect of αCT1 on overall Cx43 expression could exist, making the cells more vulnerable to 

apoptosis higher doses. This dosage response could also regulate differential effects on cell 

signaling pathways important for survival and/or proliferation [14]. Moreover, it is unlikely, 

these effects influenced the production of doublecortin-positive neuroblasts in the NSPC 

cultures. The defined cell culture conditions used generally do not allow for the 

differentiation of doublecortin positive cells as the NSPCs are kept in a tight self-renewal 

state. It is also unlikely that after 8 or 24 hours of alpha-CT1 treatment this would change 

given that differentiation is a much slower event.

Although not significant, a trend toward reduced expression of anti-apoptotic protein Bcl-2 

and p-Akt growth signaling could suggest that Cx43 may positively regulate NSPC survival 

and proliferation by mediating these downstream pathways. Additionally, the mTOR 

pathway, which regulates the trafficking of Cx43, could also be disrupted by αCT1 

treatment [50]. Immunocytochemistry revealed that αCT1 reduced the density and size of 

Cx43 aggregates and caused a morphological change in cell shape. These findings correlate 

with previous studies showing high levels of Cx43 and GJ communication are required for 

maintaining NSPCs in a proliferative state [7, 33, 37] and suggest that up-regulation of Cx43 

on NSPCs may represent a compensatory mechanism to induce proliferation and cellular 

replacement in the DG after TBI. The role of Cx43 on NSPC proliferation and survival 

appear to be regulated, in part, by epidermal growth factor receptor signaling (EGF/EGFR), 

which has a modulatory effect on the functional activity and expression of connexin proteins 

[34, 38]. However, the impact of EGF/EGFR signaling axis on GJ coupling and Cx43 

expression appears to be cell-type dependent. For example, EGF mediates down-regulation 

of Cx43 on cortical rodent astrocytes [66] and inhibits Cx43-mediated GJ communication in 

HEK cells and liver epithelial cells [6, 32]. On the other hand, EGF/EGFR signaling 

enhances GJ communication and Cx43 expression in kidney epithelial cells and granulosa 

cells [26, 67], as well as embryonic-derived neural progenitor cells [7]. Although we did not 

test Cx43 expression in adult NSPCs following withdrawal of EGF, we did observe 

enhanced cell death and growth restriction when cells were exposed to αCT1in the absence 

of EGF and FGF (data not shown). Overall, these data suggest that adult NSPCs are highly 

vulnerable to changes in Cx43 expression, and high level of Cx43 and strong cell-cell 

coupling may be required to maintain them in a healthy, proliferative state.

It remains unclear whether αCT1 may also disrupt GJ-independent actions of Cx43 such as 

hemi-channel-related cell survival signaling cascades [59]. Cx43 hemichannels can 

transduce survival signals in response to extracellular cues via ERK anti-apoptotic pathways 

[42]. Likewise, αCT1 may be mediating translocation of Cx43 to the mitochondria of 

NSPCs, where Cx43 was previously shown in pancreatic cancer cells to interact with Bax 

and initiate the mitochondria apoptotic pathway [59, 72]. Future studies elucidating these 
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and other pathways are currently underway. To conclude, we find that adult NSPCs are 

selectively vulnerable to changes in Cx43 expression and that selective inhibition of Cx43 

using the αCT1 peptide resulted in the induction of apoptosis and reduced proliferation of 

NSPCs. It is possible these effects may be mediated by both GJ-dependent and independent 

mechanisms. Although up-regulation of Cx43 following TBI has been linked to neural 

damage, the functional consequence of Cx43 dysregulation in the brain may be cell-type 

specific. The preservation and maintenance of Cx43 expression on NSPCs in the neurogenic 

compartment may confer protection of selective progenitor cell populations and be 

necessary and sufficient to enhance the neurogenic response following TBI although future 

studies will elucidate these cell-type specific longitudinal changes in Cx43 expression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Cx43 maintains proliferation and survival of adult neural stem progenitor 

cells

• Up-regulation of Cx43 in the dentate gyrus after TBI may mediate 

neurogenesis

• αCT1 exposure reduces Cx43 expression, proliferation and survival of adult 

NSPCs
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Fig. 1. Cx43 expression in the hippocampus 4 days post-CCI injury
(a) Western blot analysis showing total Cx43 and phospho (p) serine 368 protein levels in 

the whole hippocampus at 4 days post-sham or CCI injury. (b) Quantified data showing the 

fluorescence intensity of Cx43 relative to β-actin and p-S368 relative to total Cx43. (c) 

Immunohistochemistry for vimentin (red) and Cx43 (green) expression in the dentate gyrus 

(DG) of sham injury mice at 4 days post-sham compared to CCI injury (d). Increased 

expression by immunofluorescence is seen in the DG following CCI injury (e). (f) The mean 

fluorescence intensity of Cx43 expression in the region of the subgranular layer of the DG 

was significantly increased after CCI injury. *P<0.01 compared to sham injury.
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Fig. 2. Proliferation of NSPCs is reduced following αCT1treatment
Exposure of NSPCs to selective inhibitor αCT1 (d–f) reduces BrdU incorporation in a dose 

dependent manner following 24 hour incubation compared to the control Reverse control 

peptide (a–c). (g) Quantified data showing a significant reduction in the percentage of BrdU-

positive cells at 37.5 and 75 μm αCT1 exposure compared to Reverse. Non-specific effects 

of Reverse at 150 μm were also seen. (h) Quantified data showing no changes in NSPC 

proliferation are evident at 8 hours of αCT1 treatment. *P<0.01; ***P<0.001 compared to 

Reverse control peptide.
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Fig. 3. Modulation of Cx43 induces apoptosis in NSPCs
Compared to Reverse control peptide (a–c), αCT1 dose dependently increased caspase 3/7 

activation following 24 hour incubation (d–f). (g) Quantified data showing a significant 

increase in caspase 3/7 mean intensity following 150 μm αCT1 exposure compared to 

Reverse and an increase trend at 75 μm αCT1. ***P<0.001 compared to Reverse.
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Fig. 4. αCT1 reduces Cx43 expression and induces changes in NSPC morphology
(a–b) Immunocytochemistry using antibodies against Cx43 (red) and Nestin (green) on 

monolayer cultures of NSPCS treated with 150 μm Reverse control peptide for 24 hours. (c–

d) Significant morphological changes are seen following 150 μm αCT1 exposure, 

demonstrated by nestin staining showing NSPCs are more rounded with fewer protrusions. 

The density and aggregate number and size of Cx43 is also visibly reduced compared to 

Reverse control peptide.
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Fig. 5. αCT1 reduces Cx43 protein expression
(a–b) Using Western blot analysis we find a significant reduction in Cx43 expression at 24 

hours post-αCT1 treatment compared to Reverse. Quantified expression of Cx43 is graphed 

relative to β-actin levels. Although overall pS368 is reduced, the expression relative to the 

total levels of Cx43 is increased following 150 μm αCT1 exposure compared to 150 μm 

Reverse. (c–d) Expression of p-Akt (relative to total Akt) and Bcl-2 (relative to β-actin) 

show a trend towards reduced levels in αCT1 compared to Reverse. ***P<0.001 compared 

to Reverse control peptide.
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