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Host cells sense viral infection through pattern recognition receptors (PRRs),

which detect pathogen-associated molecular patterns (PAMPs) and stimulate

an innate immune response. PRRs are localized to several different cellular

compartments and are stimulated by viral proteins and nucleic acids. PRR

activation initiates signal transduction events that ultimately result in an

inflammatory response. Human tumour viruses, which include Kaposi’s

sarcoma-associated herpesvirus, Epstein–Barr virus, human papillomavirus,

hepatitis C virus, hepatitis B virus, human T-cell lymphotropic virus type 1

and Merkel cell polyomavirus, are detected by several different PRRs. These

viruses engage in a variety of mechanisms to evade the innate immune

response, including downregulating PRRs, inhibiting PRR signalling, and

disrupting the activation of transcription factors critical for mediating the

inflammatory response, among others. This review will describe tumour

virus PAMPs and the PRRs responsible for detecting viral infection, PRR

signalling pathways, and the mechanisms by which tumour viruses evade

the host innate immune system.

This article is part of the themed issue ‘Human oncogenic viruses’.
1. Introduction
The detection of microbial pathogens is an essential first step in mounting an

innate immune response to infection. Cells sense invading pathogens through

germline-encoded pattern recognition receptors (PRRs) that recognize molecu-

lar signatures conserved across many microbes, known as pathogen-associated

molecular patterns (PAMPs). Viral PAMPs include viral proteins and nucleic

acids, such as single-stranded RNA, double-stranded RNA, CpG unmethylated

DNA and 50 triphosphorylated RNA.

PRR recognition of PAMPs triggers a signalling cascade that ultimately results

in the activation of transcription factors, NF-kB and IRF3/7 (reviewed in [1]). NF-

kB is responsible for upregulating pro-inflammatory cytokines and chemokines,

which attract immune cells to the site of infection, while IRF3/7 upregulates the

type I interferons (IFNs). Type I IFNs signal in an autocrine and paracrine manner

to induce an antiviral state through the upregulation of interferon-stimulated

genes (ISGs) such as PRRs, proteins involved in antigen presentation, transcrip-

tion factors, pro-inflammatory cytokines and chemokines, and proteins that

are directly antiviral. NF-kB activation occurs when PRR signalling results in

degradation of IkB, a protein that sequesters NF-kB in the cytoplasm, which

allows NF-kB to translocate to the nucleus. IRF3/7 activation also results in

nuclear translocation, and occurs when PRR signalling activates kinases that

phosphorylate these transcription factors.
2. Pattern recognition receptors and signalling
Toll-like receptors (TLRs) are one family of PRRs that sense PAMPs at the cell

surface or in endosomes (reviewed in [2]). Eleven mammalian TLRs have been

identified, and although their expression is cell-type dependent, most cells express

a subset of these receptors. The plasma membrane localized TLRs that are relevant

to viral infection are TLRs 2 and 4, which recognize viral proteins [3,4]. The

endosomal TLRs recognize nucleic acid and include TLR3, which recognizes
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double-stranded RNA, TLR7/8, which recognizes single-

stranded RNA, and TLR9, which recognizes CpG unmethylated

DNA, a common motif in DNA virus genomes [5–9].

TLRs recognize their substrates through leucine-rich repeat

(LRR) motifs in their Ig-like ectodomains (reviewed in [2]).

TLRs signal through their Toll/interleukin-1 receptor (TIR)

domains, found on the cytoplasmic side of the endosomal or

plasma membrane, by interacting with the TIR domain-con-

taining adaptor proteins MyD88 or TRIF. TLR3 is the only

TRIF-dependent TLR, while TLRs 2, 7/8 and 9 signal through

MyD88, and TLR4 can signal through either adaptor protein

[10–20]. Signalling from these adaptors leads to IRF3/7 and

NF-kB activation, resulting in upregulation of pro-inflamma-

tory cytokines, chemokines and type I IFN. In some cell

types, TLR activation can also result in upregulation of type

III IFNs, the IFNl family of cytokines [21]. Like type I IFNs,

type III IFNs are upregulated by IRFs and combat viral infection

by upregulating ISGs.

While some TLRs detect viral nucleic acid in endosomes,

another family of PRRs called the RIG-I-like receptors (RLRs)

sense non-self RNAs in the cytoplasm (reviewed in [22]).

RLR signalling results in the activation of NF-kB and IRF3/7,

and thus upregulation of pro-inflammatory cytokines, chemo-

kines and type I IFN. The three RLR family members, RIG-I,

MDA5 and LGP2, are expressed at a low level in most cell

types, and are upregulated upon exposure of cells to IFN

[23–26]. RIG-I and MDA5 are both activated by double-

stranded RNAs with blunt ends, which are signatures of

foreign RNA (reviewed in [27]). RIG-I is activated by short

double-stranded RNAs bearing a 50 triphosphate moiety,

another signature of non-self RNAs, while MDA5 is activated

by long double-stranded RNAs. RIG-I may also be activated

by single-stranded RNAs bearing a 50 triphosphate.

RLRs are composed of two N-terminal tandem caspase

activation and recruitment (CARD) domains, a central

DExD/H box RNA helicase domain, and a C-terminal repres-

sor domain (reviewed in [22]). When no RNA is present, RIG-I

remains in a closed conformation where the CARD domains

are bound by the repressor domain and cannot signal [28].

RNA binding stimulates a conformational change that releases

the CARD domains from the repressor domain, allowing for

RIG-I multimerization and CARD domain association with

the RLR adaptor protein, MAVS [29–32]. On the other hand,

MDA5 lacks a functional repressor domain and does not

shield its CARD domains, and instead relies on multimeriza-

tion along double-stranded RNA for MAVS recruitment [33].

The third member of the RLR family, LGP2, lacks a CARD

domain and may act as a regulator of RIG-I and MDA5

signalling [26].

The RLR adaptor protein, MAVS, is a CARD domain-

containing transmembrane protein that is localized to the

outer membrane of mitochondria, to mitochondria-associated

membranes and to peroxisomes [29–32]. Upon RLR activation,

relocalization to MAVS-containing membranes occurs, and

CARD-CARD interactions between RLRs and MAVS leads to

activation of kinases. These kinases can then phosphorylate

and activate NF-kB and IRF3/7 to induce type I IFNs. Like

TLRs, RLRs can also induce IFNl.

While RLRs are cytosolic sensors of foreign RNA, there are

also cytosolic sensors of foreign DNA. The central regulator

of DNA sensing is stimulator of interferon genes (STING), an

endoplasmic reticulum-resident transmembrane protein that

also localizes to mitochondria and mitochondria-associated
membranes [34–38]. Upon STING activation, either through

direct sensing of DNA or by an upstream DNA sensor,

STING dimerizes and translocates to the perinuclear region,

where TBK1 is then recruited. TBK1 can then phosphorylate

STING and IRF3, resulting in the induction of type I IFN.

There are multiple DNA sensors that can activate STING

(reviewed in [39]). These include DAI, the first DNA sensor to

be identified, DDX41, which is a dendritic cell-specific DNA

sensor, and IFI16, which can recognize both cytoplasmic and

nuclear DNA, among several others. cGAS is the most recently

identified cytoplasmic DNA sensor, where binding of DNA to

cGAS stimulates the catalysis of cGAMP from ATP and GTP

[40–42]. cGAMP then acts as a second messenger to activate

STING. cGAS can also be activated by RNA:DNA hybrid mol-

ecules, and there is some evidence that STING can be activated

by fusion of viral and host membranes [43,44].

Nucleotide binding oligomerization domain (NOD)-like

receptors (NLRs) are another class of PRRs that recognize

PAMPs in the cytoplasm (reviewed in [45]). There are 22 mam-

malian NLRs, several of which can form inflammasomes,

which are comprised of an NLR, procaspase 1 and ASC.

NLR oligomerization results in activation of caspase 1, which

can then cleave and mature pro-IL-1b and pro-IL18 to their

active forms, IL-1b and IL18. These pro-inflammatory cyto-

kines are secreted and can then bind their cognate receptors,

resulting in downstream activation of NF-kB. Inflammasomes

can also be formed by non-NLR proteins like AIM2 and RIG-I,

an RLR.

NLRs consist of an N-terminal effector domain, a central

NOD domain and variable numbers of LRR domains [46].

The effector domain can be either a CARD or PYD domain,

which can form homotypic interactions with adaptor proteins

and caspases. The NOD domain is responsible for NLR oligo-

merization, which is an ATP-dependent process. As is the case

for TLRs, the LRR domains of NLRs are responsible for PAMP

sensing. These domains may also function to auto regulate

NLR activation by binding the NOD domain and preventing

spontaneous NLR oligomerization [47,48]. NLRs can recognize

several PAMPs, as well as damage-associated molecular

patterns (DAMPs), and direct binding of NLRs to bacterial

components has been demonstrated [49,50]. It is possible that

NLRs sense cellular changes induced by viral infection,

rather than viral proteins or nucleic acids [51,52].
3. Detection of tumour viruses by pattern
recognition receptors

(a) DNA tumour viruses
(i) Kaposi’s sarcoma-associated herpesvirus
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known

as human herpesvirus 8, is the etiologic agent of three human

cancers, Kaposi’s sarcoma, primary effusion lymphoma and

multicentric Castleman’s disease [53]. KSHV is a gammaher-

pesvirus with a large, double-stranded DNA genome. Like

other herpesviruses, KSHV primarily establishes latent infec-

tion where only a few viral genes are expressed, but can be

reactivated from latency to a lytic state where genome replica-

tion and production of progeny virions occur. KSHV infection

is detected by a variety of PRRs. In primary monocytes, KSHV

infection activates TLR3, which may be recognizing viral RNA

transcripts packaged in the tegument, resulting in TLR3
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upregulation and induction of IFN [54]. In plasmacytoid den-

dritic cells (pDCs), the major IFN-producing cells in the

human body, KSHV DNA activates TLR9 [55,56]. TLR signal-

ling can also stimulate reactivation from latency in infected B

cells, as reactivation can be triggered by treatment with a

TLR7/8 agonist or by infection with vesicular stomatitis

virus [57]. Furthermore, de novo KSHV infection and reactiva-

tion from latency are detected by RIG-I and MAVS [58], as

well as the cGAS-STING pathway [59]. Mice deficient for

cGAS have higher viral titres following infection with

MHV68, a virus related to KSHV, providing further evidence

for the importance of the cGAS-STING pathway in detecting

and suppressing KSHV infection [60]. KSHV infection is also

detected by IFI16 and NLRP1, which form inflammasomes

that stimulate IL-1b secretion [61,62].

(ii) Epstein – Barr virus
Epstein–Barr virus (EBV), also known as human herpesvirus

4, infects more than 90% of the world’s population [63]. EBV

is associated with Burkitt’s lymphoma, Hodgkin lymphoma

and post-transplant lymphoma, as well as nasopharyngeal

carcinoma [63,64]. Like KSHV, EBV is a gammaherpesvirus

with a large double-stranded DNA genome, and latent and

lytic phases of the viral life cycle. EBV infection is detected

by TLRs 2 and 7, which do not require viral replication for

stimulation, as both wild-type and UV-inactivated virus can

activate these TLRs [65]. Surprisingly, TLR2 can also be acti-

vated by a nonstructural protein, the EBV dUTPase [66]. In B

cells, the natural reservoir of EBV, infection results in TLR7

upregulation and TLR9 activation [67–69]. Likewise, EBV

stimulates TLRs 7 and 9 in pDCs [70,71]. TLR7 can be acti-

vated by EBV-encoded RNAs (EBERs), which may be

released from infected cells in exosomes, activating PRRs in

neighbouring cells and stimulating IFN production [71,72].

EBERs are also detected by RIG-I, as they are RNA polymer-

ase III-derived transcripts which contain a 50 triphosphate

moiety [73].

(iii) Human papillomavirus
Human papillomavirus (HPV), a non-enveloped virus with a

small, double-stranded DNA genome, infects the basal kera-

tinocytes of skin or mucous membranes. High-risk HPV

subtypes are the causative agents of cervical cancer and are

also associated with anogenital, oropharyngeal, and head

and neck cancers [74]. In keratinocytes, HPV DNA is detected

by TLR9 [75]. Additionally, there is some circumstantial evi-

dence to support a role for STING in detection of HPV in that

HPV E2 downregulates STING [76], and HPV E7 interacts

with and inhibits this sensor [77], although sensing of HPV

primary infection by STING has not yet been demonstrated.

(iv) Hepatitis B virus
Hepatitis B virus (HBV) currently infects approximately 240

million people worldwide, and chronic HBV infection can

lead to liver cancer [78]. An estimated 73% of liver cancer

deaths worldwide are attributable to hepatitis viruses. HBV

is an enveloped virus with a partially double-stranded DNA

genome. When HBV-infected cells are transfected to overex-

press the TLR adaptor proteins MyD88 or TRIF, the RLR

adaptor protein MAVS, or the DNA sensor DAI, the quantity

of HBV DNA and RNA in those cells decreases [79,80].

Treatment of HBV transgenic mice with TLR3, 4, 5, 7 or 9
agonists, but not TLR2 agonists, reduced HBV replication

[81]. A TLR7 agonist also decreased HBV DNA in the liver of

infected chimpanzees [82]. Additionally, in transfected cells

or in mice hydroponically injected with HBV genomes,

MDA5 is upregulated and is activated by HBV, and HBV-

infected mice heterozygous for MDA5 have increased HBV

DNA compared to wild-type mice [83]. Taken together, these

data indicate that both TLRs and RLRs are responsible for

detecting HBV infection.

(v) Merkel cell polyomavirus
Merkel cell polyomavirus (MCV) is a small, non-enveloped

virus with a double-stranded DNA genome. MCV is the cau-

sative agent of Merkel cell carcinoma, a rare type of skin

cancer [84]. The interaction between MCV and the innate

immune system is largely unknown. However, TLR9 may

play a role in the detection of MCV infection given that

MCV large T antigen downregulates TLR9 expression [85].

(b) RNA tumour viruses
(i) Hepatitis C virus
Hepatitis C virus (HCV) is a flavivirus that currently infects

approximately 170 million people worldwide [86]. HCV is

capable of establishing chronic infection, which can result in

liver damage and hepatocellular carcinoma [87]. HCV is an

enveloped virus with a single-stranded, positive sense RNA

genome. The HCV core protein and non-structural protein 3

activate TLR2 at the cell surface [88]. In endosomes, HCV

RNA is detected by TLR3 and by TLR7/8 [89,90]. HCV RNA

is also sensed in the cytoplasm by RIG-I, which recognizes sev-

eral features of the HCV genome such as a 30 polyU sequence,

short regions of dsRNA, and the 50 triphosphorylated end of

the genome [91–93]. Surprisingly, the HCV 30UTR can also

stimulate STING [94]. HCV infection also activates NLRP3,

which may sense cellular changes induced by infection, as

the production of reactive oxygen species during infection is

important for NLRP3 activation [95,96].

(ii) Human T-cell lymphotropic virus type 1
Human T-cell lymphotropic virus type 1 (HTLV-1) is a retro-

virus that currently infects an estimated 15–20 million

people worldwide [97]. HTLV-1 is associated with adult

T-cell leukaemia/lymphoma, a proliferation of CD4þ T

cells caused by integration of the HTLV-1 provirus. HTLV-1

is predominantly detected in CD4þ T cells, but has also

been found in other immune cells including pDCs [98,99].

In pDCs, HTLV-1 RNA is detected by TLR7 [100]. Currently,

no other PRRs have been described as important for innate

immune detection of HTLV-1.
4. Evasion of host innate immunity by tumour
viruses

Tumour viruses employ a variety of mechanisms to evade

the host innate immune response. These strategies include

downregulation of sensors, inhibition of signal transduction

pathways and disruption of transcription factor activation,

among others. The following section will describe tumour

virus-encoded proteins that antagonize the innate immune

response. Figure 1 summarizes tumour virus inhibition of TLR
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signalling pathways, and figure 2 summarizes inhibition of

cytoplasmic PRRs.

(a) DNA tumour viruses
(i) Kaposi’s sarcoma-associated herpesvirus
KSHV encodes several proteins that antagonize the innate

immune response. For example, KSHV vIRF1, vGPCR and

RTA downregulate TLRs 2 and 4 [101,102]. Additionally, the

adaptor protein responsible for mediating TLR3 and some

TLR4 signalling, TRIF, is degraded by KSHV RTA [103]. RIG-I

signalling is also disrupted by KSHV, as the KSHV deubiquiti-

nase ORF64 prevents RIG-I ubiquitination, a modification

essential for RIG-I activity [104]. In addition to inhibiting TLR

and RLR signalling, KSHV blocks STING signalling. KSHV

ORF52 disrupts cGAS binding to DNA and inhibits the enzy-

matic activity of cGAS to prevent STING activation [105].

Furthermore, there is evidence that cytoplasmic localized iso-

forms of LANA (latency-associated nuclear antigen) bind

cGAS and prevent cGAS-mediated IFN production [106].

Additionally, KSHV vIRF1 blocks STING activation by disrupt-

ing STING interactions with TBK1 [59]. Inflammasome

signalling can also be inhibited by KSHV ORF63, which blocks

the NLRP1 inflammasome to prevent caspase activation and

IL1b and IL18 processing, thereby reducing NLRP1-mediated

cell death [62]. Finally, KSHV can disrupt transcription factor

activation. Three of the four KSHV vIRF proteins interact with

cellular IRFs and prevent their transcriptional activity (reviewed

in [107]). KSHV ORF45 prevents IRF7 phosphorylation, and
ORF50 can stimulate IRF7 ubiquitination and degradation

[108,109]. Lastly, KSHV LANA competes with IRF3 to bind

the IFN promoter, thereby reducing IFN transcription [110].

(ii) Epstein – Barr virus
Like KSHV, EBV inhibits the innate immune response at several

points in PRR signalling pathways. The EBV proteins LMP1

and BGLF5 reduce TLR9 expression through inhibition of

TLR9 transcription or degradation of TLR9 transcripts, respect-

ively [69,111]. EBV encodes a deubiquitinase that prevents TLR

signalling-mediated NF-kB activation [112]. Additionally, EBV

ORF52 blocks cGAS binding to DNA [105]. Finally, the EBV

tegument protein LF2 disrupts IRF7-mediated IFN expression

[113], and EBV infection induces the expression of a dominant

negative form of IRF5 [67].

(iii) Human papillomavirus
HPV employs similar innate immune evasion strategies to

KSHV and EBV. For example, the E6 and E7 proteins from

high-risk HPV subtypes reduce TLR9 expression, and the

TLR3 adaptor, TICAM1, is downregulated in HPV-positive

cells [75,114]. Additionally, HPV E7 blocks cGAS-STING sig-

nalling [77]. HPV-positive keratinocytes have reduced

NLRP2 expression compared to uninfected cells, and the E6

protein from high-risk HPV subtypes can mediate degradation

of the immature form of IL-1b, thereby reducing the impact of

inflammasome signalling [114,115]. HPV also disrupts tran-

scription factor activation, as the E6 and E7 proteins from
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high-risk HPVs downregulate genes involved in NF-kB acti-

vation, and upregulate UCHL1, a disruptor of TLR signalling

that inhibits IRF3 phosphorylation [116]. UCHL1 also blunts

NF-kB activation by destabilizing NF-kB essential modulator,

a scaffolding protein that coordinates the degradation of IkB

to allow for NF-kB nuclear translocation. HPV E2 downregu-

lates IFNk, a type of IFN secreted exclusively by epithelial

cells [76]. Furthermore, the E6 protein from high-risk HPVs

prevents phosphorylation of STAT transcription factors,

which are critical for mediating signalling from the IFN recep-

tor and upregulating ISGs [117]. This disruption is essential for

HPV replication and long-term maintenance of HPV episomes.

The E6 and E7 proteins from high-risk HPVs are also capable of

downregulating some IFN-stimulated genes, and can counter-

act the effects of the ISG PKR, a kinase that blocks all

translation by phosphorylating the translation initiation factor

EIF2a [118,119]. E6 and E7 prevent PKR phosphorylation and

activation, allowing translation to occur [119].

(iv) Hepatitis B virus
HBV is also capable of disrupting the innate immune response.

Purified HBV virions inhibit signalling from TLRs 3 and 4, and

the HBV polymerase inhibits both TLR3 and RIG-I signalling

[120–122]. Signal transduction through the RLR adaptor protein

MAVS is also disrupted by an interaction with the HBV X pro-

tein [123]. Additionally, the HBV polymerase interacts with

STING and blocks STING K63-linked polyubiquitination, a

modification essential for STING-mediated IFN induction [124].
(v) Merkel cell polyomavirus
The mechanisms of MCV evasion of the innate immune

response remain largely unknown. However, it has been

reported that MCV small T antigen binds to and disrupts NF-

kB essential modulator, thereby inhibiting NF-kB activation

and signalling [125].

(b) RNA tumour viruses
(i) Hepatitis C virus
HCV also encodes proteins that disrupt innate immune sig-

nalling. The HCV protease cleaves the TLR3 and TLR4

adaptor protein TRIF, as well as the RLR adaptor MAVS

[30,126]. Additionally, the HCV NS4B protein is a STING

homologue that interacts with STING and disrupts STING

signalling complexes [94]. Finally, HCV NS3 prevents IRF3

phosphorylation [127].

(ii) Human T-cell lymphotropic virus type 1
HTLV-1 uses several mechanisms to disrupt IRF and NF-kB

signalling. HTLV-1 induces expression of microRNAs that

downregulate mediators of PRR signalling, like the kinase

responsible for phosphorylating IRF3 [128,129]. Additionally,

HTLV-1 Tax induces SOCS1 expression, a protein responsible

for IRF3 ubiquitination and degradation [130,131]. Further-

more, the HTLV1 HBZ protein interacts with NF-kB and

blocks NF-kB DNA binding activity, and can also stimulate

NF-kB ubiquitination and degradation [132]. HTLV-1 also
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blunts STAT signalling, possibly through Tax competing with

STAT2 for co-activating proteins [133,134].

In summary, cells encode an array of PRRs that can detect

viral infection by recognizing PAMPs. These PRRs can sense

viral proteins at the surface of the cell, or viral nucleic acid

in endosomes, in the cytoplasm, or in the nucleus. Tumour

virus infection is detected by these receptors, which results

in activation of transcription factors that upregulate pro-

inflammatory cytokines, chemokines and IFN. These

molecules are responsible for attracting immune cells to the

site of infection, and for inducing an antiviral state in infected

and neighbouring cells. However, tumour viruses have sev-

eral mechanisms for confounding the innate immune
response, including downregulating PRRs, preventing PRR

recognition of their substrates, blocking transcription factor

activation, disrupting signalling from IFN receptors, and

inhibiting the effects of antiviral proteins.
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