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Assessing the expected response to genomic selection of
individuals and families in Eucalyptus breeding with an
additive-dominant model

RT Resende1, MDV Resende2,3, FF Silva4, CF Azevedo2, EK Takahashi5, OB Silva-Junior6,7

and D Grattapaglia6,7

We report a genomic selection (GS) study of growth and wood quality traits in an outbred F2 hybrid Eucalyptus population
(n=768) using high-density single-nucleotide polymorphism (SNP) genotyping. Going beyond previous reports in forest trees,
models were developed for different selection targets, namely, families, individuals within families and individuals across the
entire population using a genomic model including dominance. To provide a more breeder-intelligible assessment of the
performance of GS we calculated the expected response as the percentage gain over the population average expected genetic
value (EGV) for different proportions of genomically selected individuals, using a rigorous cross-validation (CV) scheme that
removed relatedness between training and validation sets. Predictive abilities (PAs) were 0.40–0.57 for individual selection and
0.56–0.75 for family selection. PAs under an additive+dominance model improved predictions by 5 to 14% for growth
depending on the selection target, but no improvement was seen for wood traits. The good performance of GS with no
relatedness in CV suggested that our average SNP density (~25 kb) captured some short-range linkage disequilibrium. Truncation
GS successfully selected individuals with an average EGV significantly higher than the population average. Response to GS on a
per year basis was ~100% more efficient than by phenotypic selection and more so with higher selection intensities. These
results contribute further experimental data supporting the positive prospects of GS in forest trees. Because generation times are
long, traits are complex and costs of DNA genotyping are plummeting, genomic prediction has good perspectives of adoption in
tree breeding practice.
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INTRODUCTION

Genomic selection (GS), a method now fully integrated in genetic
prediction of breeding values in domestic animals (Van Eenennaam
et al., 2014), has been increasingly considered for plant breeding. Its
potential applications have been discussed for various crops and forest
trees (Desta and Ortiz, 2014; Grattapaglia, 2014) and an exponential
growth of published GS studies in several major plant species has
taken place in the past 6 years (Lin et al., 2014). However, following
the Gartner hype cycle for emerging technologies (Fenn and Raskino,
2008) we are now entering a new phase, where detailed considerations
are needed to fully understand the limits and exploit the opportunities
of GS (Jonas and de Koning, 2013; Heslot et al., 2015) in order to
reach the ‘plateau of productivity’. In the context of long-term tree
breeding programs, these include the assessment of the impact of
relatedness between training population and selection candidates, the
contribution of nonadditive variation to predictive ability and the
expected response to GS for different selection targets and selection
intensities (Grattapaglia, 2014).

In forest trees, genomic selection was originally approached by
simulation studies (Grattapaglia and Resende, 2011; Iwata et al., 2011)
and the first experimental reports in Pinus (Resende et al., 2012b) and
Eucalyptus (Resende et al., 2012a) demonstrated the encouraging
prospects of this new method. Other experimental studies have since
then confirmed the potential of GS in conifers and eucalypts (Resende
et al., 2012c; Zapata-Valenzuela et al., 2013; Beaulieu et al., 2014a, b;
Lima, 2014; El-Dien et al., 2015; Ratcliffe et al., 2015). Recently,
genomic prediction models across generations in Pinus pinaster
(Bartholomé et al., 2016; Isik et al., 2016) further underpinned the
promising perspectives of GS to accelerate breeding of forest trees.
Following the developments of GS in animal breeding, early studies in
forest trees typically modeled predictions accounting only for the
additive component of the genetic variation, whereas the nonadditive
contribution only more recently has been contemplated (Munoz et al.,
2014; Bouvet et al., 2016; de Almeida Filho et al., 2016; El-Dien et al.,
2016). Because genome-wide single-nucleotide polymorphism (SNP)
data accurately measure relatedness by capturing the Mendelian
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sampling term within families, the additive formulation of a genomic
relationship matrix (GRM) (G) can be extended to a (G+D) matrix to
include dominance effects. Such models were shown to improve the
partitioning of genetic variance relative to the pedigree-based
approach, and can be used to predict the total genotypic value of an
individual in genomic selection (Su et al., 2012; Vitezica et al., 2013;
Munoz et al., 2014; Nishio and Satoh, 2014; Wang et al., 2014; Bouvet
et al., 2016; de Almeida Filho et al., 2016; El-Dien et al., 2016).
Hybrid eucalypt breeding programs aim at selecting superior trees

to be deployed as clones, thus taking advantage of both the additive
and nonadditive genetic components. Broadly speaking, these pro-
grams usually encompass two main strategies: (1) reciprocal recurrent
selection between pure species and (2) multispecies synthetic hybrid
populations (SYN) (Assis and de Resende, 2011; Rezende et al., 2014).
SYN has gained increasing interest because of its simplicity and higher
speed by which generation advancement is made and new elite clones
produced, together with the possibility of exploiting a broader range of
interspecific variation (Kerr et al., 2004; Assis and de Resende, 2011).
SYN is based on relatively small effective size populations composed
by 10 to 20 elite parents (hybrids or pure species individuals) that are
crossed in incomplete diallel mating designs, aiming to capture
desirable features across species into single trees that are ultimately
deployed as clones. As discussed earlier (Resende et al., 2012a) it is in
the framework of such small, fast-moving specialized Eucalyptus
breeding populations that the operational application of GS has an
immediate and clear potential of application. However, it is still an
open question whether the incorporation of dominance effects in
genomic prediction models would effectively improve the predictive
ability of phenotypes of single individuals and families for different
traits in Eucalyptus.
A second issue relevant to the prospects of GS in tree breeding is the

impact of relatedness as a driver of accuracy. Selection candidates
closely related to the training population have an advantage in
accuracy over distantly related ones (Daetwyler et al., 2013; Lin
et al., 2014; Van Eenennaam et al., 2014; Heslot et al., 2015). Increased
relatedness reduces the number of independently segregating chromo-
some segments, therefore increasing the probability that chromosome
segments identical by descent sampled in the training population are
also found in the selection candidates. If the validation population is
more or less related to the training population than the selection
candidates, then the prediction accuracy will be over- or under-
estimated, respectively. Although random assignment of individuals to
training or validation sets is prone to inflate the predictive ability
because of within-family components, a more realistic approach is to
assign whole full-sib or half-sib families to training or validation sets
(Saatchi et al., 2011). This expectation was shown experimentally in
forest trees where models developed for one population had limited or
no ability of predicting phenotypes in an unrelated one (Resende et al.,
2012a; Beaulieu et al., 2014a, b). Those studies, however, used a
considerably limited marker density, of only a few thousand markers,
unlikely to allow capturing any short-range historical linkage dis-
equilibrium (LD), such that prediction models relied essentially on
relatedness. It is therefore important to see whether a higher marker
density would allow maintaining satisfactory predictive abilities when
there is no relatedness between training and validation sets that could
be an indicative that short-range LD between SNPs and quantitative
trait loci would also be contributing to predictions.
In this study, we report the development of genomic prediction for

key traits in Eucalyptus breeding using much higher-density and ‘gold-
standard’-quality SNP data than in previous studies in forest tree,
generated with a fixed content SNP-chip (EuCHIP60K) (Silva-Junior

et al., 2015). To derive more realistic estimates of the value of GS we
carried out cross-validation (CV) by removing genetic relatedness
between individuals in the training and validation sets. Predictive
abilities (PAs) were estimated for different selection targets, namely,
families, individuals within family and individuals considering the
entire breeding population, using a genomic model that includes
dominance (G+D). To provide a more breeder-intelligible assessment
of the performance of GS we calculated the expected response to GS
(RGS) as the percentage gain over the population average expected
genetic value (EGV) for different proportions of individuals selected in
the population, based on their genomic expected genotypic value
(GEGV). In addition, the response to genomic selection was compared
with the response to phenotypic selection (PS) considering the
application of GS at early age for different proportions of individuals
selected.

MATERIALS AND METHODS

Plant material and SNP data
Genomic prediction models were developed for a multispecies synthetic
breeding population composed by 856 trees distributed across 37 full-sib
families derived from an incomplete diallel mating design among 10 unrelated
elite Eucalyptus grandis × Eucalyptus urophylla F1 hybrids (Ne= 10)
(Supplementary Table S1) such that the target trees of our study were
equivalent to outbred F2 individuals. Phenotypes for diameter at breast height
(DBH), height growth (HEI), basic wood density (BWD) and screened pulp
yield (SPY) and genotypes at 24 806 polymorphic SNPs were collected for 768
of the 856 trees as described in a previous genome-wide association study of
this same population (Resende et al., 2017). SNP genotypes were obtained using
the Illumina Infinium EuCHIP60K (Silva-Junior et al., 2015) that includes
47 069 SNPs located inside or at ˂10 kb distance of 30 444 of the 36 376 (84%)
annotated gene models. SNP genotypes were called from intensity files obtained
through GENESEEK (Lincoln, NE, USA) using GenomeStudio 2011.1 (Illu-
mina Inc., San Diego, CA, USA) following standard genotyping and quality
control procedures with no manual editing of clusters (Silva-Junior et al.,
2015). The 24 806 SNPs had call frequency 490%, sample call rates 495%,
minimum allele frequency 40.01 and provided an average genome-wide
density of one SNP every 24.3 kb. BWD was measured by the water
displacement method using a 3–5-cm-thick wood disk sampled at breast
height and SPY was estimated by batch kraft digestion of 150 g of wood chips at
15–18% effective alkali. For this study, however, DBH and HEI were combined
to estimate tree volume (VOL) in cubic meters calculated by Equation (1)
(Schumacher and Hall, 1933) where f is the taper factor (assumed to be 0.45),
and π is the ratio between the circumference and diameter of a circle.

VOL ¼ DBH2 p
40000

HEI f ð1Þ

VOL was in turn used to estimate the mean annual increment (MAI), the
actual trait used in selection decisions, by extrapolating the volume of
individual trees in one hectare divided by the age at measurement.

Phenotypic model
Phenotypic evaluation between and within families, components of phenotypic
variation and individual selection accuracies, were calculated using the mixed-
effects procedure with model no. 35 of the free software Selegen-REML/BLUP
(Resende, 2016) described as follows:

y ¼ XbþWbþ Zaþ Tsþ ϵ ð2Þ

where y is the observed phenotypic values; β is the controlled fixed effects
corresponding to the field trial; b is the random effect of experimental blocks; a
is the random additive effect of individual; s is the random effect of specific
combining ability associated with full-sib families; ε is the residual; X is the
incidence matrix for fixed effects; W, Z and T are the incidence matrices for
random effects. The EGV was calculated based on Equation (2) where
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EGV ¼ âþ ŝ. The covariance structures are:

yjb;VBNðXb;VÞ

bjs2bBNð0; Is2bÞ

ajs2aBNð0;As2aÞ

sjs2sBNð0; Is2s Þ

ϵjs2εBNð0; Is2εÞ;
with A corresponding to the matrix of additive genetic relationships (also
known as identity-by-descent matrix) and I is an identity matrix. Trait
heritabilities were obtained by calculating h2A ¼ s2a= s2b þ s2a þ s2s þ s2ε

� �
for

each one of three traits under consideration MAI, BWD and SPY. Total
genotypic heritabilities were obtained by calculating
h2T ¼ ðs2a þ s2s Þ= s2b þ s2a þ s2s þ s2ε

� �
.

Genomic model
Genomic evaluations were carried out using a genomic best linear unbiased
prediction (GBLUP) approach, using the Sommer R package (Covarrubias-
Pazaran, 2016) using the full (G+D) model in Equation (3)

y� ¼ Xlþ Z1g þ Z2dþ ε ð3Þ
and the reduced (G) model that is equivalent to Equation (3) without the
dominance term. The input data were the adjusted phenotypes obtained with
Equation (2), corrected for fixed effects of experiment and random effects of
blocks, by means of the expression y� ¼ ϵ̂þ âþ ŝ, where ϵ̂, â and ŝ are
estimated values of residual, individual and full-sib families. Following, g is the
genomic random effect with covariance structure given by gjs2g~Nð0;Gs2gÞ; d is
the dominant random effect with covariance structure given by djs2d~Nð0;Ds2gÞ;
μ is the intercept (fixed effect of overall mean); ε is the residual of the genomic
model, with covariance structure given by js2ε~Nð0; Is2εÞ; X and Z are the
incidence matrices for fixed and random effects of the genomic model,
respectively. The G matrix stands for the full genomic relationships matrix
associated to the random effect accounting for relatedness and family structure
(also known as identity-by-state matrix), and D is the genomic matrix of the
dominant effects (Vitezica et al., 2013), represented respectively by Equations
(4) and (5):

G ¼ WWTPmi
1 2piqi

ð4Þ

D ¼ HHT

2
Pmi

1 piqið1� 2piqiÞ
ð5Þ

where W is the SNP marker incidence matrix assuming
W� 0� 2piqi; 1� 2piqi; 0� 2piqi

� �
, pi is the allele frequency of the ith

SNP marker present in the W matrix columns (Legarra et al., 2008);
H� 0� piqi; 1� piqi; 0� piqi

� �
, with qi= 1− pi. Genomic (or molecular)

heritabilities were obtained for MAI, BWD and SPY for the two alternative
models, the reduced additive-only model (G) and the full additive+dominance
(G+D) model by calculating h2G ¼ s2g= s2g þ s2d þ s2ε

� �
and

h2GþD ¼ ðs2g þ s2dÞ= s2g þ s2d þ s2ε
� �

.

Cross-validations
To validate the GS models three jackknife CV schemes were used involving
different levels of relatedness between training and validation populations based
on the existing half-sib and full-sib family relationships in the population
(Supplementary Figure S1). In the first one (CV+Relatedness) each family was
used as a validation population, whereas the remaining 36 families were used
jointly as a training population. Thus, in this scheme, 37 validation sets were
tested and only half-sib relationships between training and validation were
present. In the second one (CV−Relatedness) all half-sib relationships between
training and validation populations were removed such that individuals used
for validation were totally unrelated to individuals in training. Finally, a third
scheme (CV_Random) was used as a control where individuals were randomly
assigned to training and validation populations such that variable levels of half

and full-sib relationships were present in the different fold validation sets
(Supplementary Figure S1). Training populations had between 740 and 758
individuals for CV+Relatedness, and between 400 and 603 individuals for
CV−Relatedness, whereas validation populations had between 10 and 28
individuals for both schemes. For adequate comparisons, a 37-fold validation
was used in the CV_Random scheme such that the number of individuals in
training and validation populations were the same as in CV+Relatedness.
For each CV scheme, PAs for the (G+D) model were estimated by the

correlation between the GEGV and the corresponding phenotypic values (y*)
corrected for environmental and experimental effects estimated by Equation
(2). GEGVs were obtained by Equation (5)

GEGVjk ¼
Xmi

i

Wijkâik þHijkd̂ik ð5Þ

whereW is the SNP marker matrix (with order imarkers by j individuals of the
validation population), such as described for Equation (4), and âik is the
additive effect of ith marker of kth validation group and d̂ik is the dominance
effect of ith marker of kth validation group. PAs were estimated for three
different selection targets: (1) for overall individual selection among all 768
trees considered jointly, a single PA by the correlation between the vectors of
GEGV and y* for all 768 individuals; (2) for family selection a single PA was
estimated by the correlation between the family average GEGV and family
average y*, such that the PA was a correlation with 37 entries; (3) for individual
selection within family a PA for each one of the 37 families by estimating the
correlation of the vectors of GEGV and y* for the individuals of each family
separately. For comparison, PAs were also estimated for the reduced, additive-
only model (G) by estimating the genomic expected breeding value whose
expression is equivalent to Equation (5) without the dominance term.

Expected performance of genomic selection
The expected performance of GS compared with standard PS was evaluated
only for the full (G+D) model by calculating the RGS as a percentage of the
population average EGV as follows:

RGS %ð Þ ¼ EGVs � EGV0

EGV0

� 	
´ 100 ð6Þ

where EGVs is the average of the selected population proportion (or individual
EGV when a single individual is selected) and EGV0 is the population average.
For example, suppose a truncation selection of the top 40 individual trees of the
population for a trait based on the GEGVs. We took the corresponding EGV
for these individuals and calculated their EGVs and from that, the RGS as a
percentage gain over the average population EGV according to Equation (6).
Because the result of EGVs −EGV0 corresponds to the selection differential
and the heritability is already embedded in the calculation of the EGVs, RGS
corresponds to the response to selection as described in Falconer (1989).
Furthermore, because GS can be practiced in Eucalyptus at seedling stage, 1 year
or less, whereas PS requires obtaining phenotypes for trees at least at age 3
years, a conservative RGS(%)/year was obtained by dividing the RGS(%) by
three such that the response to selection/year of GS and PS could be compared.
RGS was then estimated for increasingly higher proportions of individuals
selected.

RESULTS

Genomic predictions
Trait heritabilities under the additive (h2A) and additive+dominance
(h2T) models were essentially the same for BWD and SPY but showed
a considerable difference for MAI increasing from 0.33 to 0.51, and
the same was seen when genomic heritabilities were compared. For
MAI a considerable increase of 84% was seen in the estimate of
genomic heritability when the dominance component was included,
going from h2G= 0.26 to h2G+D= 0.48 (Table 1). The genomic
heritability (h2G+D) explained 94.1, 95.7 and 87.5% of the total
heritability (h2T) estimated from phenotypic data (Table 1). Genomic
PAs for BWD were slightly higher than for MAI and SPY, irrespective
of the selection target and CV scheme, consistent with the higher
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heritability of BWD. For comparison, we report the PAs for the
additive-only model (G), and the additive+dominance model (G+A)
(Table 1). Only for MAI the PAs for the additive+dominance model
(G+A) were somewhat higher than for the additive-only model (G),
but this increase was relatively modest between 5 and 14%. Hence-
forth, we will only consider the PA estimates for the (G+A) model that
is the more relevant one for tropical Eucalyptus amenable to clonal
propagation. For all three traits, PAs were higher as more relatedness
was present between training and validation sets (Table 1 and
Figure 1). As expected, higher PAs were seen in the CV_Random
scheme (full-sib and half-sib relationship present) when compared
with CV by minimizing or removing relatedness (Table 1 and
Figure 1). PAs decreased between 9 and 25% when CV was carried

out removing all relatedness between training and validation (CV−
Relatedness) when compared with CV_Random for individual selec-
tion, 17 to 28% for family selection and 14 to 32% for within-family
individual selection. Reductions were always the highest for MAI (23,
30 and 25%) for the three selection targets, consistent with the lower
heritability of this trait (Table 1). Nevertheless, PAs when no
relatedness was present in CV were still quite satisfactory at 0.40,
0.57 and 0.48 for individual selection and 0.56, 0.75 and 0.65 for
family selection for MAI, BWD and SPY, respectively. When the
selection target was the individual within family, for over 50% of the
full-sib families PAs were greater than 0.41, 0.56 and 0.45 for the three
traits, MAI, BWD and SPY, respectively, reaching values ⩾ 0.82 for
BWD and SPY in some families.

Expected response to genomic selection
The expected performance of GS compared with standard PS was
evaluated by calculating the response to genomic selection (RGS%).
The performance of GS was compared using only for the most
rigorous CV scheme, that is, without relatedness (CV−Relatedness).
Scatter diagrams between the GEGV and the corresponding pheno-
typic value (y*) (corrected for environmental and experimental effects)
were plotted for the three traits and for individual and family selection.
GEGV is centered to a zero average, and the phenotypic value in actual
units of measurement (Figure 2). In addition, a heatmap was applied
to each dot (individual or family) to indicate the response (RGS%)
that would result from selecting the individual or family. Dots colored
toward blue indicate individuals or families that would result in higher
gain in EGV. As expected, better performance of GS would result from
family than individual selection and for BWD and SPY than MAI.
Truncation genomic selection of the top 40 and 20 individuals based
on their GEGVs (under CV−Relatedness) were performed to evaluate
the response (Figure 3). Such numbers of selected individuals in this
population of 768 trees correspond to ∼ 5 and 2.5% selection
intensities, respectively, that are the usual proportions of trees selected
to be taken to the next step of clonal trial in a Eucalyptus breeding
program. Boxplots show how would these individuals selected based
on their GEGV correspond to the ranking in terms of phenotype-
based total expected EGV. All selected individuals by GS are ranked at
the top of the distribution of EGV with the exception of a few outliers
indicated by the dots outside the boxplot range. The boxplots also
show that for all traits in both selection intensities ~ 50% of the
individuals selected by GEGV would rank among the top 100
individuals selected by EGV, exception made for SPY where the
median was at the 116th individual ranked by EGV. To check whether
GS would in fact perform better than random selection we built a null
distribution with the same selection intensities (40 and 20 individuals)
using a resampling permutation test with 10 000 iterations. The null
hypothesis (Ho) considers that GS would select individuals at random,
whereas the alternative (Ha) would be that GS correctly selects
individuals with higher average EGV. The dashed line indicates the
probability of rejecting Ho at α= 1% and the solid line the average
EGV of the selected individuals. Results clearly show that GS would
successfully select individuals with an average EGV much higher than
the population average (Figure 4). Finally, because GS would be
carried out at seedling stage (less than age 1 year) whereas PS, in the
fastest scenario, at age 3 years, a conservative response per year (RGS
(%)/year) was calculated to compare GS with PS for variable
proportions of individuals selected by GS. When compared with PS,
GS provides much larger response per year for all three traits. Taking
the results for MAI for example, if the top 10% individuals were
selected by GS the graph shows that the response to selection over the

Table 1 Accuracy of phenotypic selection and predictive abilities

(PAs) of genomic selection for different cross-validation (CV) schemes

and selection targets for MAI, BWD and SPY in the Eucalyptus
breeding population

Attribute MAI BWD SPY

Phenotypic
y 35.28±16.87 471.64±33.38 50.76±2.33

h2A 0.33 0.69 0.46

h2T 0.51 0.70 0.48

Accuracy of individual

selection

0.70 0.80 0.74

Accuracy of family selection 0.78 0.85 0.83

Genomic
h2G 0.26 0.67 0.37

h2G+D 0.48 0.67 0.42

Explained h2T 94.1% 95.7% 87.5%

CV_Random: cross-validation including full- and half-sib individuals
PA individual selection 0.49/0.52 0.65/0.64 0.53/0.51

PA between-family

selection

0.78/0.80 0.84/0.83 0.79/0.79

PA within-family

individual selection

Min 0.16/0.35 0.36/0.36 0.23/0.20

Mean 0.48/0.52 0.64/0.63 0.53/0.53

Median 0.52/0.55 0.63/0.63 0.54/0.53

Max 0.72/0.79 0.84/0.84 0.88/0.88

CV+Relatedness: cross-validation including only half-sib individuals
PA individual selection 0.40/0.50 0.64/0.64 0.50/0.51

PA between-family

selection

0.76/0.79 0.74/0.75 0.68/0.66

PA within-family

individual selection

Min 0.04/−0.03 0.31/0.31 0.14/0.00

Mean 0.41/0.47 0.60/0.61 0.47/0.46

Median 0.41/0.48 0.63/0.64 0.51/0.48

Max 0.80/0.78 0.84/0.85 0.84/0.84

CV−Relatedness: cross-validation with no relatedness
PA individual selection 0.37/0.40 0.56/0.57 0.48/0.48

PA between-family selection 0.52/0.56 0.63/0.75 0.65/0.65

PA within-family

individual selection

Min −0.21/−0.15 0.20/0.20 0.09/0.11

Mean 0.34/0.39 0.54/0.52 0.46/0.46

Median 0.34/0.41 0.57/0.56 0.45/0.45

Max 0.73/0.74 0.82/0.82 0.87/0.85

Abbreviations: BWD, basic wood density (kg m−3); h2, trait heritability; h2G, genomic heritability;
MAI, mean annual increment (m3 ha−1 per year); Max, maximum; Min, minimum; SPY,
screened pulp yield (%); y, phenotypic mean and their s.d.
PAs are reported for the additive-only model (G)/additive+dominance model (G+D).
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population average EGV would be 40% but only 20% by PS, that is, a
relative increase of 100% gain per year. Equivalent gain in response
would be seen for BWD and SPY (Figure 5). The relative gains would
evidently become smaller as a larger proportion of individuals were
selected that is not what is done in breeding. Conversely, if PS would
be practiced at ages later than 3 years, for example age 6 years, the

relative gain of GS over PS illustrated by the spread between the GS
curve and the PS dotted curve would be even larger.

DISCUSSION

In this study, we provide original results regarding the expected
response of genomically selecting individual trees and families in terms

Figure 1 Box plots of the predictive abilities for within-family individual selection obtained with the three different CV schemes for the additive-only (G) and
additive+dominance (G+D) models for the three traits: MAI(m3 ha−1 per year), BWD (kg m−3) and SPY (%). Thick lines within the box plots indicate the
median PA of the distribution for the 37 families.

Figure 2 Scatter plots of the performance of genomic selection for the (G+D) model with no relatedness between training and validation sets. The x and y
axes are respectively the adjusted phenotypic values (y*) and genomic breeding value (GEGV). Top charts: individual selection over the entire population;
bottom charts: between-family selection. Heatmaps indicate the response to genomic selection as a percentage gain over the population average expected
breeding value (EGV) obtained when selecting the individual or family. MAI (m3 ha−1 per year), BWD (kg m−3) and SPY (%).
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of gain over the population average total expected genetic value in
hybrid Eucalyptus. Because tree breeding generally advances based on
the application of truncation selection of specific proportions of
individuals or families, more than learning the overall predictive
ability, it is relevant to estimate the actual response to selection and
consequently the gain that GS would provide over PS. Furthermore,
our results advance beyond most previous reports in forest trees in
general (see below), and Eucalyptus in particular, by estimating
genomic predictive ability including dominance in the genomic model
and removing relatedness in CV.
Pedigree-based heritabilities estimated for growth and wood quality

traits were moderate to high with BWD showing higher values than
MAI and SPY. Heritabilities for MAI were generally similar to
estimates reported earlier for other E. grandis×E. urophylla hybrid
populations (Bouvet and Vigneron, 1995; Bouvet et al., 2009; Lima,
2014) with a higher value when dominance effects were included in
the model. Genomic heritabilities either under an additive-only (h2G)
or an additive+dominance (h2G+D) model, captured large proportions
(487%) of the pedigree-based estimates and showed a considerable
difference only for MAI (Table 1). This result is consistent with

reports based on pedigree data indicating that dominance had
substantial contribution to genetic variance for growth in E. grandis×
E. urophylla hybrids but was unimportant for BWD (Bison et al.,
2006, 2009), and in line with the documented heterosis for growth
exploited in clonally propagated hybrid eucalypts (Rezende et al.,
2014). The slightly larger heritabilities obtained from pedigrees could
be because of the inability of the pedigree model to establish the true
genetic relationship among the individuals, and its ineffectiveness in
disentangling the nonadditive genetic component from the additive
one, particularly so in some studies that were carried out on half-sib
families (Beaulieu et al., 2014a; Munoz et al., 2014; El-Dien et al.,
2015).
Random allocation of individuals in CV has been the common way

to estimate PAs in most GS studies to date with two noteworthy
exceptions (Beaulieu et al., 2014a; El-Dien et al., 2016). For example,
the initial report of GS for Eucalyptus (Resende et al., 2012a)
disregarded the degree of kinship in CV and provided estimates of
PA that are equivalent to our estimates obtained by CV_Random
(Table 1). Although legitimate, this approach tends to overestimate the
positive perspective of GS. Predictive abilities when removing related-
ness between training and validation sets typically showed a significant
reduction (Resende et al., 2012a; Beaulieu et al., 2014a, b; El-Dien
et al., 2016), consistent with theoretical studies (Habier et al., 2007;
Daetwyler et al., 2013) on the role of relationship as one of the main
drivers of genomic selection. In our data set, however, relatively
modest reductions between 9 and 30% were seen when no relation-
ship existed between training and validation, depending on trait and
selection target (Table 1). Doing the inverse calculation, when
performing CV by randomly sampling individuals irrespective of
genetic relatedness, PAs 10 to 47% greater than those seen when
removing relatedness were obtained, with the largest difference
observed for MAI. Nevertheless, from the standpoint of the prospects
of GS, PAs obtained when relatedness was removed (CV−Relatedness)
were still largely satisfactory (Table 1). We had previously estimated
the average LD for this breeding population (r2= 0.06) and reported
that the LD decayed below the usable LD threshold (r2= 0.2) at
∼ 20–30 kb in the majority of the chromosomes (Resende et al., 2017).
Such an estimated extent of LD is consistent with the SNP density in
this experiment, on average one SNP every 25 kb (605Mb/24 806
SNPs) (Supplementary Figure S2), suggesting that in this experiment
the SNP density used was able to capture usable short-range LD to
drive good predictions despite the lack of kinship. These results are
important because they suggest that GS under such circumstances
should perform satisfactorily across unrelated families, although most
likely limited to parents that have at least a common provenance
origin to the ones sampled in this study such that historical LD is
shared. Moreover, in theory, if short-range LD is in fact having a key
contribution to predictions, PAs estimated in this generation would
better persist across subsequent ones (Habier et al., 2013), and this will
need to be assessed experimentally across generations.
We used GBLUP as the method to model predictions. We chose not

to use alternative methods because it has recurrently been shown that
they perform similarly for complex traits with a large number of
quantitative trait loci involved (Lorenz et al., 2011; Daetwyler et al.,
2013). In fact, growth and wood quality traits in eucalypts, pines and
spruces have adequately fit the assumptions of the infinitesimal model
in previous reports, such that GBLUP provides a sound compromise
between computation time and prediction efficiency (Resende et al.,
2012c; Lima, 2014; El-Dien et al., 2015; Ratcliffe et al., 2015; Isik et al.,
2016). GS provided considerably higher PA to select families when
compared with selecting individuals consistent with the higher

Figure 3 Boxplots of the GEGV of the top 40 and 20 genomically selected
individuals scaled to the total EGV ranking of all 768 individuals in the
population. Dashed line is the median EGV of the population. The EGV
rankings of the median (thick line inside boxplots) and extreme individuals
selected are indicated; dots outside the boxplot range are outliers. MAI
(m3 ha−1 per year), BWD (kg m−3) and SPY (%).
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Figure 4 Average of the EGV of 40 and 20 top selected individuals based on their GEGV (solid vertical lines) compared with the null distributions of the
same numbers of randomly selected individuals. Dashed lines indicate probabilities of rejecting Ho at 1%. MAI (m3 ha−1 per year), BWD (kg m−3) and
SPY (%).

Figure 5 Response to GS expressed as a percentage gain of the average population EGV per year (solid line) compared with PS (dashed line) calculated for
different proportions of individuals selected by GS.
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accuracies for family versus individual selection either over the entire
population or within family when using phenotypic data alone
(Table 1 and Figures 1 and 2). To the best of our knowledge, genomic
prediction of average family GEGV has not been yet considered by
previous studies in forest trees. These first estimates of PA for GS of
families in Eucalyptus should be an interesting alternative to breeders
when the selection unit for commercial deployment is an elite family
and not an individual. Genomically selected families of high GEGV
could be amplified by large-scale mating between the parents involved,
and additionally scaled up by clonal propagation. Although such a
family forestry deployment scheme is common in pines, this has not
been implemented yet for tropical eucalypts, mostly because individual
clones usually provide higher gains (Rezende et al., 2014). However,
with the recent increased occurrence of a number of physiological-
and pathogen-related problems of previously adapted clones in Brazil
following extended droughts and climatic fluctuations (Gonçalves
et al., 2013), the use of family forestry would provide a considerably
higher buffering capacity while still providing high productivities. GS
of elite families with high predictive ability would therefore find great
fit in breeding toward such a deployment strategy in eucalypts.
Predictive abilities under an additive+dominance model improved

predictions by 5 to 14% for growth (MAI) when compared with an
additive-only model, but no improvement was seen for wood quality
traits (Table 1 and Figure 1). Interestingly, although a 54% increase in
heritability was seen when dominance was included (h2A= 0.33 going
to h2T= 0.51), only a relatively small increase in predictive ability was
realized. Our experimental results agree with a recent study (Bouvet
et al., 2016) showing that despite the documented importance of
dominance for height growth in F1 hybrid eucalypts (Vigneron and
Bouvet, 2000; Bison et al., 2006; Volker et al., 2008; Rezende et al.,
2014) adding dominance or epistatic effects did not improve genomic
prediction. In other words, in our population that is actually
equivalent to an outbred F2 as the parents were themselves hybrids,
the inclusion of nonadditive genetic effects did not improve the
prediction to the extent that would be expected based on the increase
in heritability. Similar conclusions were found in experimental studies
in loblolly pine for height growth (Munoz et al., 2014; de Almeida
Filho et al., 2016), and in line with these experimental data,
simulations have shown that the inclusion of nonadditive effects in
the model only improves prediction ability when they are prominent
(Denis and Bouvet, 2013; de Almeida Filho et al., 2016). Our results
comparing the (G) with the (G+D) models and the available literature
prompted us not to spend time testing any more complex model
including higher-order interactions (epistasis). In summary, the
additive infinitesimal model in the context of genomic prediction of
growth and wood quality traits in Eucalyptus, and likely in forest trees
in general, seems to be a useful abstraction that closely fits the trait
architecture, except for traits involving a few large-effect nonadditive
loci (de los Campos et al., 2015).
The scatter plots (Figure 2) are illustrative in showing the dispersion

of the GEGV×adjusted phenotypic values (y*) and what would be the
expected response in terms of EGV (heatmaps of RGS%) when
individuals or families would be selected based on genomic data. In
predicting the GEGVs, the phenotypes of individuals are regressed on
genetic markers for training. Although the ideal phenotype would be
the true total genetic value, this is unknown. Instead, adjusted
phenotypes are used to estimate marker effects. Plots therefore
compare a genomic expected total genetic value that involves
additive+ dominance effects with the phenotypic value (y*) that
involves a ‘package’ including additive, dominance, epistasis and
uncontrollable environmental variation. Consistent with the

magnitudes of the estimates of PA (Table 1), these dot plots and the
heatmap inside each dot show that when applying GS one would miss
individuals or families that would in principle contribute a higher
response and include some poor individuals or families. However,
from the standpoint of the actual practice of GS, the relevant issue is to
evaluate the average response when applying truncation genomic
selection in terms of the average EGV of the selected proportion. The
distribution of the GEGV-selected individuals compared very favor-
ably both with their EGV ranking (Figure 3) and with the null
distributions of equally sized randomly selected proportions of
individuals (Figure 4). Clearly, the GEGV-selected individuals, either
the simulated top 20 or 40 individuals, would display a significantly
higher average EGV for all three traits, and thus provide a strongly
positive response to selection.
Besides the fact that GS would largely identify individuals or families

well ranked in terms of EGV, it is when response to selection per year
is calculated that the advantage of GS becomes more evident. We
calculated a conservative comparative estimate of RGS%/year between
GS and PS assuming that PS would be practiced at age 3. In tropical
Eucalyptus age–age correlations for growth are typically high between
age 3 and rotation age at 6 years, such that age 3 has been consistently
shown to be an adequate although minimum biological age for
selection (Osorio et al., 2003; Pinto et al., 2014). For wood quality
traits such as BWD and SPY however, selection usually has to wait
until age 6 for robust phenotyping of adult wood (Rezende et al.,
2014). Still, even adopting early PS as a benchmark, responses to
genomic selection were considerably higher and more so as a higher
selection intensity was applied (Figure 5). The nominally higher
percent gains in MAI reflect the significantly larger phenotypic
variance for growth when compared with BWD and SPY. It is
important to point out, however, that from the economic standpoint
a gain of 5% in BWD or 1% in pulp yield (SPY) may have a greater
overall impact on the total efficiency of a pulp production operation
than a gain of 20% in MAI (Borralho et al., 1993). In the only study
that presented a similar approach of evaluating the response to
truncation genomic selection on a per year basis in tree breeding,
significant gains from selecting the top 5% individuals based on their
genomic expected breeding value were also predicted (Beaulieu et al.,
2014a, b).
Based on our results we proposed a comparative flowchart of a

typical Eucalyptus multispecies recurrent breeding cycle that releases
new clones in 18 years compared with two alternative GS schemes
(Figure 6). In a more conservative one, where progeny trial is
precluded and only the preliminary and the expanded clonal trial
are deployed, elite clones would be released in 14 years. A more
aggressive one where GS selected seedlings would be immediately
deployed in an expanded clonal trial would allow selecting elite clones
in 9 years. The recurrent selection breeding cycle would in turn be
reduced from 9 to 5 years, depending on the efficiency of flower
induction in young plants, usually attained between ages 1 and 2 using
growth regulators (Hasan and Reid, 1995). However, not only time
would be saved by GS, but also costs involved in the clonal testing
phase could be optimized by increasing selection intensity in the clonal
trials. GS provides an important and frequently overlooked additional
advantage of selecting individuals for all traits of interest simulta-
neously thus exploiting the entire spectrum of genetic variation
available. This further emphasizes the key importance of investing
heavily in phenotyping the training population for all traits of interest
at the most adequate age in the target environment (Grattapaglia,
2014).
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When breeding for individuals to be deployed as clones, a critical
issue that has emerged is how good is the correspondence between the
performance of an individual tree in a progeny trial, that is, based on a
single observation, and the performance of the same tree as a clone.
Unless this correspondence is high, the breeding program efficiency
can be severely affected. Experimental studies with E. grandis×
E. urophylla hybrids have shown strikingly contrasting results.
Whereas in one study the correspondence for wood volume was
480% (Fonseca et al., 2010), in another the coincidence across
different selection intensities was only 27% (Reis et al., 2011). This low
correspondence was attributed in large part to a significant genotype ×
year interaction. Although this issue is also present in conventional
breeding, it becomes particularly challenging when GS is to be
implemented. Assuring that the target environment where phenotypes
are collected for model training will be the same one for the
forthcoming selection candidates may be much more critical for GS
than conventional PS (Heslot et al., 2015). In GS if a particular year of

data are a distorted sample of the target environment due to climate
fluctuations, it may affect genetic gain over a much longer period of
time unless model updating is carried out. This risk could be mitigated
by clonally propagating the entire training population. This would
open the possibility of replicating the training population in different
environments to build environment-specific prediction models. In
addition, historical data of prior and existing clonal trials could be very
valuable as complementary training sets providing very robust
phenotype data. Field data typically comprising hundreds of clones
across multiple years and locations together with Geographic Infor-
mation System (GIS) data (Marcatti et al., 2017) could be integrated in
model training and validation to optimize recommendations of
Eucalyptus genotype deployment across environments.
In conclusion, this work provides novel data on the expected

response to selection in the context of a breeding program that aims at
clonal deployment of elite genotypes. More specifically, performance
of GS was evaluated with a genomic model including dominance

Figure 6 Comparative timeline of two alternative genomic selection strategies aiming to reduce the breeding cycle length and release of new elite clones of
Eucalyptus compared with the conventional breeding cycle. The release of new clones can be reduced to 14 years by precluding the progeny trial or down to
9 years when the initial clonal trial is also eliminated. The recurrent breeding cycle is reduced from 9 to 5 years by precluding the progeny trial.
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aiming at different selection targets and adopting a more rigorous CV
scheme with no relatedness between training and validation sets. These
experimental results further highlight the fact that GS has great
prospects for accelerating tree breeding, although we are aware that
other important issues still remain to be addressed for the practical
implementation of genomic prediction, most notably the performance
of GS across subsequent generations (Grattapaglia, 2014). The
groundbreaking advance of GS in dairy cattle is frequently used as
an example of the economically successful use of this technology.
Although gains from GS may still be elusive for annual crops (Bassi
et al., 2016) it does not seem so for forest trees where GS was
considered to be potentially even more successful than in dairy cattle
(Jonas and de Koning, 2013). The convergence of genomics and
quantitative genetics is bound to transform how we breed trees.
Because generation times are long, traits are complex, tree breeders are
fully familiar with BLUP methods and costs of DNA genotyping are
plummeting, genomic prediction is likely to be adopted in standard
tree breeding practice. Strategic and logistics aspects for the adoption
of GS are now the challenges to fully integrate this new breeding
technology into routine tree improvement.
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