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Hemiptera, the largest non-holometabolous order of insects, represents

approximately 7% of metazoan diversity. With extraordinary life histories

and highly specialized morphological adaptations, hemipterans have

exploited diverse habitats and food sources through approximately 300 Myr

of evolution. To elucidate the phylogeny and evolutionary history of

Hemiptera, we carried out the most comprehensive mitogenomics analysis

on the richest taxon sampling to date covering all the suborders and infra-

orders, including 34 newly sequenced and 94 published mitogenomes. With

optimized branch length and sequence heterogeneity, Bayesian analyses

using a site-heterogeneous mixture model resolved the higher-level hemi-

pteran phylogeny as (Sternorrhyncha, (Auchenorrhyncha, (Coleorrhyncha,

Heteroptera))). Ancestral character state reconstruction and divergence time

estimation suggest that the success of true bugs (Heteroptera) is probably

due to angiosperm coevolution, but key adaptive innovations (e.g. prog-

nathous mouthpart, predatory behaviour, and haemelytron) facilitated

multiple independent shifts among diverse feeding habits and multiple

independent colonizations of aquatic habitats.
1. Introduction
Ernst Mayr defined evolutionary novelty as ‘any newly acquired structure or prop-

erty that permits the performance of a new function, which, in turn, will open a new

adaptive zone’ [1]. Driven by adaptive modifications and the colonization of new

ecospaces, evolutionary radiations of animals and plants have long been recognized

as driving today’s biodiversity. Tracking the evolutionary origins of morphological

novelty has fascinated biologists for over a century [2]. Even though stochastic

factors lead to the development of new lineages, only a fraction of these have suc-

cessfully diversified over time. Some of the major Metazoan radiations, such as true

flies [3] and beetles [4], have been well documented; however, other mega-diverse

invertebrate clades have not received the attention they deserve.

With an estimated 97 000–103 590 known species [5,6], Hemiptera represents

approximately 7% of metazoan diversity. The biodiversity of Hemiptera includes,

but is not limited to, plant lice, cicadas, planthoppers, moss bugs, and true bugs.

Heteroptera (true bugs) has evolved diverse life histories and specialized mor-

phological adaptations enabling them to colonize both terrestrial and aquatic

habitats, and to exploit various food sources ranging from plants, fungi, small

arthropods, and vertebrate blood [7]. Although its monophyly is well supported,

in particular, by the synapomorphic segmented, piercing-sucking mouthparts

with elaborate food and salivary pumps that permit fluid-feeding specializations
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[6] (see the electronic supplementary material, figure S1a–d),

the higher-level relationships within Hemiptera have been

debated for over two and a half centuries [8–10]. Traditionally,

Hemiptera has been categorized into ‘Homoptera’ and Hetero-

ptera, sometimes with ordinal status, based on the presence or

absence of a gula [8]. More recently, Hemiptera has been sub-

divided into four major suborders, Sternorrhyncha (Psylloidea,

Aleyrodoidea, Aphidoidea, and Coccoidea) (e.g. electronic

supplementary material, figure S1a,b), Auchenorrhyncha

(Cicadomorpha and Fulgoromorpha) (e.g. electronic sup-

plementary material, figure S1c), Coleorrhyncha (with the

only extant family Peloridiidae), and Heteroptera (seven infra-

orders) (e.g. electronic supplementary material, figure S1d,e).

The sister group relationship between Sternorrhyncha and

the remainder of Hemiptera has received strong support

from both morphological and molecular evidence [9–12].

However, the monophyly of Auchenorrhyncha has been ques-

tioned [10,13,14], and the phylogenetic position of

Coleorrhyncha is ambiguous [10,12,14,15]. In addition,

relationships among the basal infraorders of Heteroptera are

poorly understood [6].

Phylogenetic analysis of Hemiptera based solely on

morphology has been challenging. The sedentary lifestyles

coupled with phloem-feeding behaviours in some Auchenor-

rhyncha and especially Sternorrhyncha (behaving as plant

parasites) have spurred morphological reductions and

losses, neotenous females, extreme sexual dimorphism, and

convergently derived morphological characters that would

otherwise be useful in phylogenetic analyses [16,17]. The con-

fusion of convergent character states with synapomorphies has

contributed to the taxonomic reshufflings of superfamily com-

position within ‘Homoptera’ [16]. Owing to a large number of

morphological features unique to Hemiptera (e.g. the labium

forming a sheath for the remaining mouthparts), some of the

important characters cannot be readily homologized with

structures in the more inclusive groups, resulting in ambiguous

or even erroneous ancestral state reconstructions.

Historically, some hemipterists assumed that the ancestor of

Hemiptera was phytophagous [18], whereas the ancestor of Het-

eroptera was considered to be predaceous [19]. The presumed

diet of ‘Homoptera’ was intuitive, because the vast majority

are plant feeders. The predaceous ancestor of Heteroptera was

inferred by the predatory behaviour exhibited by the putative

‘basal’ infraorders, Enicocephalomorpha, Dipsocoromorpha,

and Gerromorpha [19]. It is understood that after the Permian-

Triassic (P-T) extinction events, many previously exploited

niches once again became available for resource partitioning

[20]. Heteroptera constitutes approximately 40% of Hemiptera

and represents the vast majority of behavioural diversity in

terms of diet and habitat. The other three suborders are entirely

terrestrial and predominantly phytophagous [7]. Hypotheses of

selective forces underlying the diversification of higher-level

hemipteran lineages have not yet been substantiated outside

of morphology and fossil-based extrapolation [21,22].

With the advent of the Genomics Era, recent analyses have

increasingly embraced the molecular resources to advance our

understanding of the phylogeny of Hemiptera [10–13,15].

Nevertheless, major issues such as the phylogenetic status

(monophyly versus paraphyly) of Auchenorrhyncha and the

position of Coleorrhyncha are still unsettled [10,12]. With a

recent influx of genomic information, including mitochondrial

genomes (mitogenomes), new phylogenetic hypotheses are

emerging. Although representing only a subset of the genomic
information (approx. 16 000 nucleotides), mitogenomic data

have made substantial contributions to resolve intraordinal

relationships in insects [3,23,24].

Despite extensive efforts, previous mitogenomic analyses

in Hemiptera did not cover all the suborders and infraorders,

and had limited resolution due to the substitution saturation

and the compositional heterogeneity of mitogenomes

[11,13,15]. Here, we sequenced 34 mitogenomes to comp-

lement the existing mitogenomic data derived from 94

hemipteran species. Using a holistic sampling approach, we

included the mitogenomes from all four suborders and all

seven heteropteran infraorders, covering all four superfami-

lies of Auchenorrhyncha, three of the four superfamilies of

Sternorrhyncha (excluding Coccoidea), the only superfamily

of Coleorrhyncha, and 19 of the 23 superfamilies of Hetero-

ptera. Using a fossil-calibrated divergence dating analysis,

we also carried out the first order-wide diversification

study in Hemiptera to track the timing of major cladogenetic

events. Equipped with the most comprehensive mitochon-

drial phylogenomic analysis in Hemiptera and informed by

the ancestral state reconstruction of morphological characters,

habitat preference, and feeding behaviours, we address the

following questions: (i) what is the timing of key morphologi-

cal adaptations that led to the diversification of habitat

utilization and feeding behaviour in Heteroptera? (ii) Was

the ancestor of Heteroptera predatory or phytophagous?

(iii) What extinction and/or rapid radiation events coincide

with the diversification of the major lineages in Hemiptera?
2. Material and methods
(a) Taxon sampling
Previous studies assessed mitochondrialphylogenetic signal limits in

Paraneoptera and detected long-branch attraction artefacts among

Phthiraptera, Thysanoptera, and Sternorrhyncha [11,25]. Thus,

Phthiraptera and Thysanoptera were not included in the taxon

sampling of outgroups. We included six outgroup species to rep-

resent other paraneopteran lineages as well as the putatively more

ancient lineages Blattodea and Mantodea (electronic supplementary

material, table S1). As ingroups for phylogenetic analysis, 34 hemi-

pteran species were sequenced in this study, and the sequences of

94 hemipterans were obtained from the National Center for Biotech-

nology Information (NCBI) database. All 128 mitogenomes represent

each of the major hemipteran suborders (with coverage of extant

taxa) (electronic supplementary material, table S1).

(b) Complete mitogenome sequence generation
Specimens of 34 hemipterans were collected in 95–100% ethanol and

stored at 2208C in the Entomological Museum of China Agricultural

University (Beijing, China). Genomic DNA was extracted from the

thoracic muscle tissue using the DNeasy blood and tissue kit

(Qiagen) following the animal tissue protocol. Whole mitogenomes

were generated by amplification, sequencing, and assembly of over-

lapping PCR fragments, employing general insect mitochondrial

primers (electronic supplementary material, table S2). Species-

specific primers were designed based on the sequenced fragments

to bridge gaps when general primers failed to produce a usable pro-

duct. Details of the amplification conditions and sequencing

strategies were described in our previous study [26].

(c) Assembly, annotation, and alignment
Sequences from each genome were assembled into contigs

using SEQUENCER v5.1 (Gene Codes, Ann Arbor, MI, USA).
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Protein-coding genes (PCGs) and rRNA genes were identified

using BLAST searches of GenBank and alignment with homolo-

gous sequences. The tRNAs were identified with tRNAscan-SE

v1.21 [27]. Sequences of each PCG (excluding stop codons) were

aligned individually based on codon-based multiple alignments

using the MAFFT algorithm implemented in the TranslatorX

online platform [28]. Ambiguously aligned sites were removed

from the protein alignment before back-translating to nucleotides

using GBlocks in TranslatorX with default settings. Sequences of

each RNA gene were individually aligned using the MAFFT v7.0

online server with G-INS-i strategy [29] and ambiguously aligned

sites were omitted using GBlocks v0.91b [30] with default settings.

All alignments were then checked and corrected manually in

MEGA v6.0 [31] for quality.

(d) Phylogenetic analyses
Recent phylogenomic studies have shown the ability of site-

heterogeneous models (e.g. CAT-based models) to reduce artefacts

resulting from mutational saturation and unequal patterns of sub-

stitution, which are major problems when analysing genomic data

and ancient events [24,25,32–36]. The heterogeneity of sequence

divergence within the dataset (e.g. each codon position of PCG

and sequences of RNA genes) was analysed using AliGROOVE

[37] with the default sliding window size. Indels in the nucleotide

dataset were treated as ambiguity and a BLOSUM62 matrix was

used as the default amino acid substitution matrix. To account

for the strong sequence heterogeneity of the third codon position

of the PCGs found in the results of AliGROOVE analysis (elec-

tronic supplementary material, figure S2), three datasets were

concatenated for phylogenetic analysis: (i) the AA matrix, includ-

ing amino acid sequences of the 13 PCGs (total of 3 123 amino

acids), (ii) the protein-coding plus RNA gene (PCGRNA) matrix,

including all three codon positions of the 13 PCGs, two rRNA

genes, and 17 tRNA genes (total of 11 652 bp), (iii) the

PCG12RNA matrix, including the first and second codon positions

of the 13 PCGs, two rRNA genes, and 17 tRNA genes (total of

8 528 bp). Five tRNAs (Ala, Ile, Met, Gln, and Ser) were not

found in many nearly complete mitogenomes and therefore

were excluded from our analyses.

Bayesian cross-validation was performed to test the fit of two

site-heterogeneous mixture models (CAT and CAT þ GTR) and

site-homogeneous model (GTR) to our mitogenomic data using

PhyloBayes 3.3f [38]. The cross-validation was performed accord-

ing to the PhyloBayes manual in 10 replicates each with 1 100

cycles and the first 100 cycles being discarded as burn-in. The

CAT þ GTR model was found to be the best fitting model for

all datasets (electronic supplementary material, table S3). We

then inferred phylogenies from three datasets using PhyloBayes

MPI 1.4f [39], with the CAT þ GTR model and a discrete gamma

distribution with 4 rate categories. In each individual analysis,

two independent chains starting from a random tree were run

and a consensus tree was calculated by pooling sampled trees

from two independent runs, with all analyses satisfactorily con-

verged (maxdiff less than 0.3). The number of discarding trees

(burn-in) was calculated case by case to minimize the maxdiff stat-

istics. All analyses were carried out on the CIPRES Science

Gateway (https://www.phylo.org) and at the High Performance

Computing Cluster at the University of Kentucky Analytics and

Technologies (UKAT).

(e) Ancestral character state reconstruction
Ancestral states for feeding and living habits and morphological

characters were reconstructed in MESQUITE v2.75 (http://mesquite-

project.org) with Maximum Likelihood (ML) methods. We based

ancestral state reconstruction on the tree from PhyloBayes analysis

of the PCGRNA dataset with Heteropterodea (Heteroptera þ
Coleorrhyncha) constrained to be monophyletic. For the ML
optimizations, the ‘Markov k-state 1 parameter model’ (MK1

model in which ‘forward’ and ‘backward’ transition rates are

equal) was used. Sources of data for feeding habit, living habitat,

mouthpart placement, and the presence of hemelytra are listed in

the electronic supplementary material, table S4. To make decisions

regarding the significance of ancestral character state reconstruc-

tions, we followed the recommendation that ancestral character

state estimates with a log-likelihood of two or more units lower

than the best state estimate be rejected [40]. For ease of interpret-

ation, likelihoods of ancestral states are reported as proportional

likelihoods (PL; scaled to add up to 1, thus expressed as a per

cent of total likelihood).

( f ) Divergence time estimation
Recent molecular dating analyses have questioned the adequacy of

the uncorrelated models of molecular clock relaxation parameters

for estimating divergence times with large phylogenomic datasets

[41–43]. Based on Bayes factor comparisons, Lepage et al. [41]

showed that the autocorrelated models provide a significantly

better fit than the uncorrelated gamma model for phylogenomic

data. Our divergence time estimates were calculated for the two

nucleotide and amino acid datasets using PHYLOBAYES 3.3f [38],

the best fitting relaxed clock models, and the optimal tree used

in the analysis of ancestral character state reconstruction. We

used Bayes factor (calculated using thermodynamic integration)

in PhyloBayes to compare three widely used relaxed models, the

autocorrelated Lognormal and Cox–Ingersoll–Ross (CIR) process

and uncorrelated gamma multipliers (UGAM) [41]. In PhyloBayes,

Bayes factor analysis was conducted by running 10 000 points,

sampling every 10 points after a burn-in of 1 000. The uncorrela-

ted UGAM model fell into the same category as the models

implemented in BEAST, and this model is shown to fit the data

more poorly than two autocorrelated models (CIR and Lognor-

mal). As the Bayes factors for the CIR and Lognormal models

were similar (electronic supplementary material, table S5), ‘-auto’

analyses (see PhyloBayes manual) were used to compare these

two models. For all molecular clock analyses, a birth–death

prior on divergence time and the root age of Hemiptera was con-

strained to prior 306 to 311 Ma, corresponding to the early

Hemiptera fossils from the Moscovian age (e.g. Aviorrhyncha
magnifica and Protoprosbole straeleni) [44]. Additionally, 12 fossil

calibrations were used with soft bounds, and the details of these

fossil calibrations are provided in electronic supplementary

material, table S6. We allocated 10% of the probability mass to

lie outside each calibration interval. All calculations were per-

formed by running 20 000 generations and sampled every 10

generations (after a burn-in of 2 000 generations).
3. Results and discussion
(a) Phylogeny of Hemiptera
The results of our phylogenetic study based on two nucleotide

datasets (PCGRNA and PCG12RNA) produced nearly identi-

cal topology with high nodal support values (figure 1; see

the electronic supplementary material, figures S3 and S4).

The monophyly of Hemiptera was strongly supported, with

Sternorrhyncha forming the sister group to all the remaining

hemipterans (PP ¼ 1.0 and 0.85). Five long-recognized groups

were recovered within Hemiptera: Sternorrhyncha, Cicado-

morpha, Fulgoromorpha, Coleorrhyncha, and Heteroptera.

However, Auchenorrhyncha was recovered as paraphyl-

etic, with Cicadomorpha forming the sister group to

(Fulgoromorpha þ Coleorrhyncha). Within Heteroptera, all

infraorders were recovered as monophyletic with high support

values, except for Cimicomorpha, which was paraphyletic in all
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Figure 1. Phylogeny of Hemiptera as inferred from PhyloBayes analyses of the PCGRNA and PCG12RNA datasets under the CAT þ GTR mixture model. We show a
schematic cladogram depicting the family-level relationships of Hemiptera. Values at nodes are Bayesian posterior probability (PP) using the PCGRNA (left) and
PCG12RNA (right) datasets. Dashes indicate PPs less than 0.5. The histogram on the right indicates the branch length of terminal taxa from the Bayesian tree
of the PCGRNA dataset and A þ T content of terminal taxa from the PCGRNA dataset.
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analyses. The Cimicomorpha was the closest extant relative of

Pentatomomorpha. Leptopodomorpha was recovered as the

sister to Cimicomorpha and Pentatomomorpha. The remaining

infraorders formed a clade: (Nepomorpha, (Dipsocoromorpha,

(Gerromorpha, Enicocephalomorpha))).

The sister relationship between Sternorrhyncha and all the

remaining hemipterans and the monophyletic Auchenor-

rhyncha have been well resolved in recent studies based on

two mitochondrial DNAs and five nuclear loci [10], 1 478

nuclear genes [12], and morphological characters [14].

Mitochondrial phylogenomic analyses, however, suggested

that the species with accelerated substitution rates always fall

together in one group, e.g. the grouping of Sternorrhyncha
with Fulgoromorpha in Song et al. [13], Fulgoromorpha with

Coleorrhyncha in Cui et al. [15], and Sternorrhyncha with

Fulgoromorpha and Coleorrhyncha in this study (electro-

nic supplementary material, figure S5). These unexpected

groupings were probably caused by the high degree of compo-

sitional heterogeneity and, in particular, a significantly

accelerated rate in Sternorrhyncha, Fulgoromorpha, and

Coleorrhyncha (figure 1; electronic supplementary material,

figure S6). The inclusion of rRNA genes in the nucleotide

dataset improved the phylogenetic inferences under the site-

heterogeneous model, and correctly recovered the majority of

deep branches within Hemiptera phylogeny. The sister relation-

ship of Fulgoromorpha and Coleorrhyncha, which exhibited



1

1

1

1

1

1

1

1

0.94

0.3

1

0.93

1

1

1

1

0.3

Sternorrhyncha

Cicadomorpha

Fulgoromorpha

Heteroptera

outgroups

Auchenorrhyncha

1/1

1/1

1/1

1/0.85

1/1

1/0.93

1/1

0.98/1

1/1

1/1

(a)

Coleorrhyncha

Sternorrhyncha

outgroup

Cicadomorpha

Heteroptera
Heteropterodea

1/1

1/1

1/1
0.98/0.98

1/1

1/1

1/1

1/1

0.81/0.7

1/1

(b)

(c)

1

1

11

0.82
1

Sternorrhyncha

Fulgoromorpha

Cicadomorpha
Auchenorrhyncha

Heteroptera

outgroups

Coleorrhyncha

Heteropterodea

1

1

outgroups

Sternorrhyncha

Fulgoromorpha

Cicadomorpha
Auchenorrhyncha

Heteroptera

Coleorrhyncha

Heteropterodea

(d)

0.3

1

0.2

Figure 2. Phylogenetic trees obtained from PhyloBayes analyses of datasets with improved taxon sampling under the CAT þ GTR mixture model. (a) Datasets with
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long branches compared with species from Cicadomorpha and

Heteroptera, was highly supported. We used the ‘long-branch

extraction’ method [45] to sequentially remove Coleorrhyncha

and then Fulgoromorpha from the Bayesian analyses of

PCGRNA and PCG12RNA datasets using a CAT þ GTR

model. When coleorrhynchans were excluded, the monophyly

of Auchenorrhyncha was recovered in all analyses, with Fulgor-

omorpha forming the sister group to Cicadomorpha (figure 2a;

see the electronic supplementary material, figures S7 and S8).

When fulgoromorphs were excluded, Coleorrhyncha grouped

with Heteroptera (figure 2b; see the electronic supplemen-

tary material, figures S9 and S10). The four resulting trees

showed the identical relationships of heteropteran infraorders

as those obtained from the original analyses. These results

suggest that the grouping of Fulgoromorpha and Coleor-

rhyncha is probably an artefact. With the removal of five

species with the longest branches in Sternorrhyncha, seven

species with the shortest branches in Cicadomorpha, three

species with the longest branches in Fulgoromorpha (electronic

supplementary material, figure S11a), and the two moss bug

species in Coleorrhyncha with substantial heterogeneity in

their sequence divergence (electronic supplementary material,

figure S11b), we generated a 117-taxa dataset for the subsequent

phylogenetic analysis (see the electronic supplementary

material, figure S11). Using PhyloBayes with a CAT þ GTR

model, the monophyly of Auchenorrhyncha (PP ¼ 1.0) and

the sister relationship of Heteroptera and Coleorrhyncha

(PP ¼ 0.93 and 0.94) were both recovered by the datasets

PCG12RNA (figure 2c; electronic supplementary material,

figure S12) and PCGRNA (figure 2d; electronic supplementary

material, figure S13).
With the most comprehensive hemipteran mitogenome

sampling to date, the site-heterogeneous mixture model pro-

duces an almost fully resolved tree except for the paraphyletic

Cimicomorpha. Our results demonstrate that mitogenomes

have considerable resolving power in a phylogenetic study

because of the ease of sequencing, the feasibility of large

taxon sampling, and the use of comprehensive evolutionary

models [24,25,32,36].
(b) Ancestral state reconstructions
Results of ancestral state reconstructions suggest that

the common ancestors of Hemiptera, Sternorrhyncha,

Auchenorrhyncha, and Coleorrhyncha are all phytophagous

and terrestrial with significant PL in all cases, whereas the

common ancestor of Heteroptera is predaceous and terrestrial

(figure 3; electronic supplementary material, figures S14 and

S15). Within Heteroptera, there was a transition from preda-

tion to phytophagy in the common ancestor of Miridae þ
Tingidae (Cimicomorpha, in part) and Pentatomomorpha,

and a reversal from phytophagy to predation (Geocoridae).

If we include predatory Pentatomidae and Miridae, at least

two additional independent reversals would be expected.

Omnivory arose twice independently, once from a predac-

eous ancestor within Nepomorpha (Corixidae) and once

from a phytophagous ancestor within Miridae. There were

two independent transitions (Reduviidae and Cimicidae)

from predation to haematophagy (blood feeding) in

Heteroptera. Fungivory in adults arose once from a phyto-

phagous ancestor in Aradidae (and in nymphs of some

Auchenorrhyncha). All aquatic, water surface-dwelling, and



Heteroptera

outgroup

Coleorrhyncha 

Sternorrhyncha

Cimicidae 

Cimicomorpha 

Leptopodomorpha 

Enicocephalomorpha 

Dipsocoromorpha 

Nepomorpha 

Pentatomomorpha

Ochteridae 

Geocoridae 

Triatoma dimidiata 
(Reduviidae)

Gelastocoridae 

feeding habit
phytophagous
predaceous
fungivorous
hematophagous

habitat
terrestrial

aquatic

shoreline

surface skimmer

hemelytra

present

absent

mouthpart placement
orthognathous 

hypognathous 

prognathous 

equivocal (orthognathous/hypognathous)

Auchenorrhyncha
(Fulgoromorpha) 

Gerromorpha 

Aradidae 

omnivores

Corixidae 

Nesidiocoris tenuis
(Miridae)

Auchenorrhyncha
(Cicadomorpha) 

Figure 3. Summary of character state transitions for four characters of hemipteran insects. We based ancestral state reconstruction on the tree from PhyloBayes
analysis of the PCGRNA dataset with Heteropterodea (Heteroptera þ Coleorrhyncha) constrained to be monophyletic. All character state transitions are judged to be
significant by ML methods except where otherwise noted (equivocal or unknown).
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litter-dwelling infraorders (incidentally all predators

except the omnivorous Corixidae) were recovered as a

monophyletic group.

There were two independent transitions to shoreline habi-

tat (one from a terrestrial ancestor and one from an aquatic

ancestor within Nepomorpha), one transition to surface

skimmers from a terrestrial ancestor (Gerromorpha), and one

transition from terrestrial to aquatic habitat (Nepomorpha).

Optimization of mouthpart origin (see the electronic sup-

plementary material, figure S1a–d ) indicates that the ancestor

of Sternorrhyncha had hypognathous mouthparts, the

ancestors of Auchenorrhyncha and Coleorrhyncha had orthog-

nathous mouthparts, and the ancestor of Heteroptera had

prognathous mouthparts that arose from an ancestor with

orthognathous mouthparts (figure 3; electronic supplementary

material, figure S16). The presence of hemelytra (electronic sup-

plementary material, figure S1e) arose once in the common

ancestor of all Heteroptera (figure 3; electronic supplementary

material, figure S17). This character state was lost in the
common ancestor to Dipsocoromorpha, Enicocephalomorpha,

and Gerromorpha.

(c) Adaptive innovations driving the diversification of
true bugs

Divergence data estimates were not significantly different

between datasets using an autocorrelated CIR model (electro-

nic supplementary material, table S7). Hemiptera shares a

common ancestor with the remaining Paraneoptera about

328 Ma (confidence interval (CI), 340–318 Ma; figure 4).

Subsequently, Hemiptera diversified into Sternorrhyncha

and the remaining Hemiptera approximately 309 Ma (CI

311–306 Ma), at the end of the radiation of spermatophytes

(seed plants) 385–299 Ma [46]. Our analyses suggest that a

Permian diversification of hemipteran suborders was immedi-

ately followed by a Triassic diversification of heteropteran

infraorders (figure 4). From a Carboniferous origin, early

terrestrial lineages of Hemiptera radiated soon after the
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Figure 4. Chronogram showing hemipteran phylogeny and divergence time estimates. Consensus tree presenting divergence dates produced by the PhyloBayes
analysis of the PCGRNA dataset (with Heteropterodea, Heteroptera þ Coleorrhyncha, constrained to be monophyletic) using 13 fossil calibration points, the CIR
autocorrelated process, the site-heterogeneous mixture CAT þ GTR substitution model, and soft bound 10%. Blue bars indicate 95% mean confidence intervals
of each node. A geological timescale is shown at the bottom. New mitogenomes are highlighted using an asterisk close to the species name. Divergence
date estimates based on the PCG12RNA and AA under the CIR model are summarized in the electronic supplementary material, table S7.
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hypothesized origin of gymnosperms [47], and formed Sternor-

rhyncha, Auchenorrhyncha, Coleorrhyncha, and Heteroptera

in the Permian.

With the exception of some mycophagous nymphs,

Sternorrhyncha, Auchenorrhyncha, and Coleorrhyncha are

entirely phytophagous, feeding on fluids of phloem, xylem,

or cambium, with some inducing galls (some Psylloidea, Aphi-

doidea, and Coccoidea) [21]. Extinct hemipteran taxa that

formed the ancestral stock of today’s major lineages were con-

sistently linked to gymnosperms. Shcherbakov [48] inferred

‘such short-legged Archescytinidae (primitive Hemiptera)

either lived in confined spaces of gymnosperm reproductive

organs or clung tightly to the plant surface’. Small, usually dor-

soventrally depressed hoppers and their flattened cryptic

nymphs (a body form possibly adapted to living between

cone scales) [49] probably fed on phloem of thick gymnosperm

stems [21]. The first xylem-feeding Hemiptera existed in the

gymnosperm-dominated Permian and Triassic forests, while

the large and clumsily built early Permian boreoscytids poss-

ibly fed on large gymnosperm ovules [21]. Furthermore,

fossils representing the early members of Sternorrhyncha and

Auchenorrhyncha were recovered from the same Kungurian

beds (275–270 Ma), coincident with gymnosperm dominance

[21]. However, most family-level diversification events in

extant Sternorrhyncha seem to coincide with the angiosperm

radiation, as indicated in our analysis (Psylloidea may be

exceptional in that all eight extant families are not older than

the Eocene) [50]. Ortiz-Rivas et al. [51] likewise linked angiosperm

and aphid tribe diversification, producing angiosperm-

feeding taxa. As all extant superfamilies of Sternorrhyncha

(scales, aphids, whiteflies) feed on angiosperms and gymnos-

perms, yet evolved from gymnosperm feeders [17,51–53], it

is difficult to deduce the finer mechanisms governing their

evolution. This notion is especially complicated considering

that well after the era of gymnosperm replacement with

angiosperms (beginning 150 Ma), there was an increase in

gymnosperm diversification rates persisting over the last

100 Ma [54].

The evolution and diversification of seed plants give rise to

vast ecological niches [46]. The evolution of the seed has not

only promoted the evolutionary success of plants for nearly

400 Ma but also probably initiated and facilitated the sub-

sequent success of Hemiptera. Among the four hemipteran

suborders, Heteroptera displays the greatest diversity in their

habitat and behaviour, as well as species diversity. The origin

of Heteroptera (approx. 262 Ma; CI, 273–249 Ma) coincided

with the evolution of the apically produced labium (electronic

supplementary material, figure S1d; i.e. a gula permitting a

prognathous rostrum position), predatory behaviour, and the

novel protective forewing. The true bug infraorders diversified

in the Late Permian and Triassic (262–226 Ma). We propose

that the diversification of potential prey species following the

P-T extinction (252 Ma) [55] may have paved the way for the

diversification of the arthropod-feeding heteropteran lineages.

Two key adaptations that facilitated the rapid family-level

radiation of Heteroptera coincide with the shift from

gymnosperm- to angiosperm-dominance. The evolution of

prognathous mouthparts and the novel hemelytron probably

facilitated multiple independent evolutions of predatory be-

haviour from a phytophagous ancestor and, consequently,

multiple transitions to aquatic and semi-aquatic habitats. The

prognathous mouthparts clearly facilitated the development

of a more versatile suite of feeding behaviours including
predation, blood feeding, and mycophagy, none of which

occurs in the other three predominantly phytophagous and

entirely terrestrial suborders. This behavioural diversity may

explain the higher rates of diversification (of extant lineages)

in Heteroptera, composing more number of families and

species than the other three hemipteran suborders.

Angiosperm coevolution is often the default explanation for

major radiations. The family diversifications of Sternorrhyncha

(without Psylloidea) and Pentatomomorpha coincide, in large

part, with the consequent decline of gymnosperms (i.e. shift

to angiosperm dominance; 125–100 Ma) [56]. However, at the

family-level, there is little clear association to be made between

the radiations of hemipterans and angiosperms, probably

because the latter is much older than the former as in the case

of Psylloidea. Although angiosperms may have driven familial

or intrafamilial diversity in many groups, the diversity of habi-

tat and feeding behaviour observed in Heteroptera can almost

entirely be linked to diversification events coincident with an

era of angiosperm suppression before 150 Ma. Of course,

hypothesizing explanations for such ancient events remains

challenging. Future studies focusing on thorough sampling of

each suborder/infraorder must be conducted to elucidate

finer intrafamilial radiation stories (perhaps for interfamilial

relationships as well).

Similarly, Hunt et al. [4] failed to directly link the ‘superra-

diation’ of beetles (which account for 25% of all metazoans) at

285 Ma with angiosperm coevolution. Like beetles, true bugs

exhibit immense versatility with diverse habitat colonization,

varied feeding habits, and modified forewings that confer pro-

tection [57] and even facilitate plastron (air bubble) retention

for aquatic respiration. The modified, protective forewings of

beetles and true bugs may account for the rapid lineage diver-

sification and probably facilitated the versatile feeding and

habitat colonization, including multiple independent shifts to

predation and aquatic habitats [4] that gave rise to the biodiver-

sity before us today. The radiation of angiosperms may have

simply facilitated an already bustling process.
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26. Li H, Liu H, Shi A, Štys P, Zhou X, Cai W. 2012 The
complete mitochondrial genome and novel gene
arrangement of the unique-headed bug
Stenopirates sp. (Hemiptera: Enicocephalidae). PLoS
ONE 7, e29419. (doi:10.1371/journal.pone.0029419)

27. Lowe TM, Eddy SR. 1997 tRNAscan – SE: a program
for improved detection of transfer RNA genes in
genomic sequence. Nucleic Acids Res. 25, 955 – 964.
(doi:10.1093/nar/25.5.0955)

28. Abascal F, Zardoya R, Telford MJ. 2010 TranslatorX:
multiple alignment of nucleotide sequences guided
by amino acid translations. Nucleic Acids Res. 38,
W7 – W13. (doi:10.1093/nar/gkq291)

29. Katoh K, Standley DM. 2013 MAFFT multiple
sequence alignment software version 7:
improvements in performance and usability. Mol.
Biol. Evol. 30, 772 – 780. (doi:10.1093/molbev/
mst010)
30. Talavera G, Castresana J. 2007 Improvement of
phylogenies after removing divergent and
ambiguously aligned blocks from protein sequence
alignments. Syst. Biol. 56, 564 – 577. (doi:10.1080/
10635150701472164)

31. Tamura K, Stecher G, Peterson D, Filipski A,
Kumar S. 2013 MEGA6: molecular evolutionary
genetics analysis version 6.0. Mol. Biol. Evol. 30,
2725 – 2729. (doi:10.1093/molbev/mst197)

32. Song F, Li H, Jiang P, Zhou X, Liu J, Sun C, Vogler
AP, Cai WZ. 2016. Capturing the phylogeny of
Holometabola with mitochondrial genome data and
Bayesian site-heterogeneous mixture models.
Genome Biol. Evol. 8, 1411 – 1426. (doi:10.1093/
gbe/evw086)

33. Lartillot N, Philippe H. 2004 A Bayesian mixture
model for across-site heterogeneities in the amino-
acid replacement process. Mol. Biol. Evol. 21,
1095 – 1109. (doi:10.1093/molbev/msh112)

34. Delsuc F, Brinkmann H, Philippe H. 2005
Phylogenomics and the reconstruction of the tree of
life. Nat. Rev. Genet. 6, 361 – 375. (doi:10.1038/
nrg1603)

35. Morgan CC, Foster PG, Webb AE, Pisani D,
McInerney JO, O’Connell MJ. 2013 Heterogeneous
models place the root of the placental mammal
phylogeny. Mol. Biol. Evol. 30, 2145 – 2156. (doi:10.
1093/molbev/mst117)

36. Timmermans MJTN et al. 2015 Family-level
sampling of mitochondrial genomes in Coleoptera:
compositional heterogeneity and phylogenetics.
Genome Biol. Evol. 8, 161 – 175. (doi:10.1093/gbe/
evv241)

37. Kück P, Meid SA, Groß C, Wägele JW, Misof B. 2014
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