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Abstract

The human gut microbiome can modulate metabolic health and affect insulin resistance, and it may play an important role
in the etiology of gestational diabetes mellitus (GDM). Here, we compared the gut microbial composition of 43 GDM patients
and 81 healthy pregnant women via whole-metagenome shotgun sequencing of their fecal samples, collected at 21–29
weeks, to explore associations between GDM and the composition of microbial taxonomic units and functional genes. A
metagenome-wide association study identified 154 837 genes, which clustered into 129 metagenome linkage groups (MLGs)
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for species description, with significant relative abundance differences between the 2 cohorts. Parabacteroides distasonis,
Klebsiella variicola, etc., were enriched in GDM patients, whereas Methanobrevibacter smithii, Alistipes spp., Bifidobacterium spp.,
and Eubacterium spp. were enriched in controls. The ratios of the gross abundances of GDM-enriched MLGs to
control-enriched MLGs were positively correlated with blood glucose levels. A random forest model shows that fecal MLGs
have excellent discriminatory power to predict GDM status. Our study discovered novel relationships between the gut
microbiome and GDM status and suggests that changes in microbial composition may potentially be used to identify
individuals at risk for GDM.
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Background

The increasing prevalence of gestational diabetes mellitus
(GDM), and its subsequent health outcomes, is a significant pub-
lic health concern and a major challenge for obstetric practice
[1]. GDM represents a heterogeneous group of metabolic disor-
ders [2] that affects 3–14% of pregnancies, and 20–50% of these
affected women are expected to develop type 2 diabetes (T2D)
within 5 years [3, 4]. Emerging evidence has revealed a link be-
tween the gut microbiome and human metabolic health includ-
ing T2D [5, 6], leading us to hypothesize that the gutmicrobiome
may impact gestational metabolism and development of GDM.

Microbial dysbiosis in the human gut may be an important
environmental risk factor for abnormal host metabolism, as re-
cently exemplified in studies of obesity and T2D (reviewed by
Karlsson et al.) [7]. A study using an experimental animal model
revealed that reduced numbers of Bifidobacteria led to enhanced
endogenous lipopolysaccharide production, endotoxemia, and
associated obesity and insulin resistance [8]. In humans, exces-
sive weight gain and obesity in pregnancy resulted in deterio-
rated glucose tolerance and increased risk of GDM [9, 10]. Pre-
votella copri and Bacteroides vulgatus have been identified as the
main species driving the association between biosynthesis of
branched-chain amino acids, insulin resistance, and glucose in-
tolerance [11]. Bacteroides spp. and Staphylococcus aureus are sig-
nificantly more abundant in overweight women than in normal-
weight women [12].

While themajority of previous studies have focused on asso-
ciations between intestinal microbiota and obese states or T2D
[6, 13–15], some recent studies have sought to characterize mi-
crobiota changes during pregnancy, with the goal of providing
novel insights into the relationship betweenmicrobiota changes
during pregnancy and potential metabolic consequences [16].
Studies based on sequencing of 16S ribosomal RNA have re-
vealed novel relationships between gut microbiome composi-
tion and the metabolic hormonal environment in overweight
and obese pregnant women in early gestation [17]. Koren et al.
found that maternal gut microbiota changed from the first to
third trimesters, with a decline in butyrate-producing bacte-
ria and increased Bifidobacteria, Proteobacteria, and lactic acid–
producing bacteria [16]. Further, transplants of fecal material
obtained during different trimesters were sufficient to confer
different phenotypes in mouse models, with third-trimester fe-
cal transplants leading to increased adiposity and inflammation
[16]. These studies suggest that pregnancy is associated with
major shifts in the gut microbiome that may play an important
role in observed increases in gestational inflammation, thereby
potentially contributing to the development of GDM. However,
studies focusing on changes in the gut microbiome during preg-
nancy and the development of GDM have not been reported
so far.

Metagenomic shotgun sequencing, in which the full comple-
ment of genes present in the microbiome are sequenced, can

furnish information about the relative abundance of genes in
functional pathways and at all taxonomical levels [18]. In this
study, we used whole-metagenome shotgun sequencing analy-
ses of the gut microbiome during pregnancy to explore associa-
tions between GDM and the composition and abundance of mi-
crobial taxonomic units and functional genes. The objective was
to obtain a comprehensive understanding of the connections be-
tween the gut microbiome and the development of GDM.

Data description

Whole-metagenome shotgun sequencing was used to test gut
microbial composition in fecal samples from 43 GDM pa-
tients and 81 healthy pregnant women based on the Illumina
HiSeq2000 platform in BGI-Shenzhen, China. We constructed a
paired-end library with an insert size of 350 base pairs (bp) for
every sample, sequencedwith 100-bp read length fromeach end.
Sequencing reads for fecal samples were independently pro-
cessed for quality control and host sequence removal based on
an in-house pipeline (see theMethods section), and a total of 795
Gbp of high-quality metagenomic data (average per sample, 6.4
Gbp) were generated for further analysis. We performed de novo
assembly and gene calling for data from each sample and con-
structed a non-redundant gene catalogue of all pregnantwomen
fecal samples containing 4 344 984 genes. This gene catalogue
provided a suitable reference for metagenomic gene quantifica-
tion, microbial diversity analysis, and metagenome-wide asso-
ciation study for the pregnant women fecal samples.

Results
Comparison of the gut microbiota between GDM
patients and healthy pregnant women

First, we explored potential differences in the gut microbiome
between 43 GDM patients and 81 healthy pregnant women. We
obtained 795.3 Gb of high-quality data (6.4 ± 1.3 Gb per sam-
ple) viametagenomic shotgun sequencing of their fecal samples
to perform this analysis. When we quantified the microbial (al-
pha) diversitywithin each subject, the GDMpatients showed sig-
nificantly lower gene count and Shannon index compared with
the healthy pregnant women (P < 0.05 for both indexes, Mann–
Whitney U test).We then aligned the sequencing reads (43.8%)
against available microbial genomes from the National Center
for Biotechnology Information and generated taxonomic com-
position for all samples at the taxonomic levels of phylum, class,
order, family, genus, and species. Multivariate analysis based on
Bray–Curtis distances between microbial genera revealed sig-
nificant differences between GDM patients and healthy con-
trols (Fig. 1a). We then performed the Mann–Whitney U test
to identify phylogenetic differences between GDM patients and
healthy controls. Abundance at the phylum and class levels was
similar between GDM patients and healthy controls; however,
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(a) (b)

Figure 1: Difference in microbial composition between GDM and healthy pregnant women. (a) Distance-based redundancy analysis based on Bray–Curtis distances
betweenmicrobial genera, revealing a GDM dysbiosis that overlaps only in part with taxonomic composition in GDM patients and healthy controls. The first 2 principal

components (PCs) and the ratio of variance contributed by them is shown. Lines connect samples in the same group, and colored circles cover the samples near the
center of gravity for each group. Genera (blue square), as themain contributors, are plotted by their loading in the PCs. (b) Boxplot shows genera that differ significantly
between GDM patients and healthy controls. Genera with q < 0.05 (Mann–Whitney U test corrected by the Benjamini–Hochberg method) are shown. Red and green
boxes represent GDM patients and healthy controls, respectively. Only the genera with average relative abundances greater than 0.05% in all the samples are shown

for clarity. The boxes represent the interquartile range (IQR) between the first and third quartiles, and the line inside represents the median. The whiskers denote the
lowest and highest values within 1.5 times IQR from the first and third quartiles, respectively. The circles represent outliers beyond the whiskers.

the order Clostridiales and the family Coriobacteriaceae were en-
riched in healthy controls. At the genus level, GDM patients had
a significantly higher abundance of Parabacteroides, Megamonas,
and Phascolarctobacterium, while healthy controls were signifi-
cantly enriched for Ruminiclostridium, Roseburia, Eggerthella, Fu-
sobacterium, Haemophilus,Mitsukella, and Aggregatibacter (Fig. 1b).
We also found a number of bacterial species that differed signif-
icantly between GDM patients and healthy controls, consistent
with the genus-level observations (Table S2). These findings sug-
gest dysbiosis of the gut microbiota among GDM patients.

Identification of GDM-associated markers from
the gut microbiome

To explore detailed signatures of the gut microbiome in GDM
patients and heathy controls, we constructed a non-redundant
gene catalogue consisting of 4.34 million genes, which allowed
an average reads mapping rate of 79.5% for sequenced sam-
ples.We identified 154 837 genes that displayed significant abun-
dance differences between the 2 groups (Mann–Whitney U test,
q < 0.05) (Fig. S1 shows the P-value distribution between GDM
patients and healthy pregnant women for all genes tested).
About 68% of these genes were clustered into 129 metagenomic
linkage groups (MLGs) (Table S3), which allowed species-level
description for the microbiome differences. The 71 MLGs en-
riched in GDM patients included Parabacteroides distasonis, Kleb-
siella variicola, Catenibacterium mitsuokai, Coprococcus comes, and
Citrobacter spp., whereas the 58 MLGs enriched in healthy preg-
nantwomen includedMethanobrevibacter smithii,Alistipes spp. (A.
shahii, A. senegalensis), Bifidobacterium spp. (B. animalis, B. pseu-
docatenulatum), and Eubacterium spp. (E. siraeum, E. eligens). The
GDM-enriched and control-enriched MLGs were highly posi-
tively interconnected within each group; however, few nega-
tive connections were found between the 2 groups (Fig. 2). No-
tably, GDM-enrichedMLGs of Enterobacteriaceae, includingK. vari-
icola, E. coli, Enterobacter cloacae, and Citrobacter spp., were closely

linked (correlation coefficients > 0.40 between each other), rep-
resenting a cooperative promoting function of Enterobacteriaceae
to GDM development. Of particular interest, we also observed
that the relative abundance of Enterobacteriaceae was positively
associated with pre-pregnancy body mass index (PBMI) (Fig. S2).

Correlations between maternal blood glucose levels
and gut microbiota

In order to explore the potential clinical paths by which changes
in the microbiome might lead to GDM, we investigated whether
the MLGs can affect blood glucose tolerance. The ratios of the
gross abundances of GDM-enriched MLGs to those of control-
enriched MLGs were obviously positively correlated with blood
glucose levels during the second trimester of pregnancy (Fig. 3),
indicating that dysbiosis of the microbiome has a significant re-
lationship with GDM status. Several GDM-enriched MLGs (e.g.,
GDM67, GDM64, P. distasonis [GDM1], K. variicola [GMD41], and
E. rectale [GDM34]) were positively correlated with blood glucose
levels, while most control-enriched MLGs were negatively cor-
related with blood glucose levels (Fig. 4a). At the species level,
Eggerthella spp., Megamonas spp., Allofustis seminis, and several
species in Lachnospiraceae and Parabacteroideswere positively cor-
related with glucose tolerance, while several Alistipes spp. were
negatively correlated with glucose tolerance (Fig. 4b).

Functional characterization of the gut microbiota
in GDM

Next, we utilized Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway comparisons to explore potential differences
in the functional composition of the microbiome of GDM pa-
tients versus controls. Although the functional composition of
GDM patients and controls was highly similar (Fig. 5a), the mi-
crobiome of GDM patients showed a greater abundance in path-
ways of membrane transport and energy metabolism, while the
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Figure 2: Interconnection of GDM-associated MLGs. A co-occurrence network deduced from GDM-enriched and control-enriched MLGs is shown. Nodes depict MLGs
with their taxonomic assignment or ID shown. The size of each node indicates the number of genes within the MLG. Connecting lines represent Spearman correlation

coefficient ρ > 0.40 (gray line) or < −0.40 (red line). Classified MLGs are colored (red: GDM-enriched; green: control-enriched) and grouped according to their taxonomic
information. Only MLGs with >100 genes are shown for clarity of presentation and visualization, and the detailed information of all 129 MLGs is given in Table S2.

microbiome of controls had higher abundance in amino acid
metabolic pathways. We also found that the KEGG modules, in-
cluding the phosphotransferase system (PTS) and lipopolysac-
charide (LPS) biosynthesis and export systems, were associated
with glucose tolerance levels (Fig. 5b).

Gut microbiota–based prediction of GDM

Finally, we utilized random forest models to assess the predic-
tive ability of MLGs and species abundance profiles for GDM
status. We found that certain 20 MLGs provided the best dis-
criminatory power, as indicated by the area under the receiver
operating characteristic (ROC) curve (AUC) 0.91 (95% confidence
interval [CI] = 0.87–0.96), which was higher than that achieved
using species profiles with this model (the best AUC was 0.80;
95% CI = 0.73–0.86) using 40 species (Fig. 6a). The increased AUC
for the MLG-based model may be due to the fact that MLGs fur-
nish taxonomic and functional information for unknown or un-
analyzable species. Bacterial species providing the highest dis-
criminatory power were primarily members of the Bacteroides or
Parabacteroides genera (Fig. 6b and c), consistent with our obser-
vation that Parabacteroides is the predominant genus accounting
for differences in the gutmicrobiome betweenGDMpatients and
controls (Fig. 1b). Although PBMI is a predictor of GDM, it did not
substantially improve the performance of MLGs (Fig. 6d; Fig. S3).

Discussion

In the present metagenomics study, we observed associations
between gut microbiome and GDM status. Specifically, Parabac-

teroides distasonis, Klebsiella variicola, etc., were enriched in GDM
patients, whereas Methanobrevibacter smithii, Alistipes spp., Bifi-
dobacterium spp., and Eubacterium spp. were enriched in controls.
The distribution of MLGs in GDM patients differed from that in
the control group. Functional analysis showed a greater abun-
dance of membrane transport, energy metabolism pathways,
lipopolysaccharide, and phosphotransferase systems in the mi-
crobiome of GDMpatients, while themicrobiome of controlswas
enriched in the amino acid metabolic pathways (Fig. 7). To our
knowledge, this is the first metagenomics study exploring the
roles of microbiota in the development of GDM.

Previous studies have shown that the GDM-enriched bacte-
ria observed in our study are involved in gut flora dysbiosis.
For example, GDM-enriched Bacteroides spp. and Parabacteroides
distasonis are considered opportunistic pathogens in infectious
diseases, with potential for developing antimicrobial drug re-
sistance [19]. The family Enterobacteriaceae also occurred with
a higher relative abundance in GDM patients than in healthy
controls, which indicates a status of gut flora dysbiosis that
may lead to a series of chronic diseases, such as colitis [20],
Crohn’s disease, and acute cholecystitis [21]. Previous studies
have shown that Enterobacteriaceae instigate inflammation to in-
duce colitis [20] and that the endotoxin-producing bacterium En-
terobacter contributed to the development of obesity in gnotobi-
otic mice [22].

The decreased microbes in GDM patients included Bifidobac-
terium spp. (including B. pseudocatenulatum, B. animalis, and 1
unclassified MLG), Eubacterium spp. (E. siraeum, E. eligens, and
2 unclassified Eubacterium MLGs), and Roseburia spp. (Tables S2
and S3). Similar findings were reported in previous studies on
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Figure 3: Association of gross abundance of GDM-enriched and control-enriched MLGs with blood glucose levels 0, 60, and 120 minutes after an oral glucose tolerance
test. Scatter plots of all samples (including GDM patients and healthy controls) are shown with lines indicating linear fit.

a variety of chronic diseases, including T2D [23], liver cirrhosis
[24], Crohn’s disease [25], and ulcerative colitis [26]. These bac-
teria can produce lactate or butyrate, which could regulate gut
permeability and induce the gut inflammatory response that
precedes the development of diabetes [27, 28].

Our data demonstrated that the ratio of gross abundances
of the GDM-enriched to control-enriched MLGs was positively
correlated with blood glucose tolerance levels, suggesting that
microbiome dysbiosis might have a direct association with
GDM pathophysiology. Functional analysis showed that the LPS
biosynthesis and export systems were involved in the regula-
tion of glucose levels. Previous studies have shown that higher
systemic LPS levels were associated with low-grade chronic in-
flammation in obesity, metabolic syndrome, and T2D [8, 29, 30].
Based on current knowledge, the possible pathways linking LPS
levels to glucose metabolism may include the increases in in-
testinal permeability, the changes in the relative amounts of
gram-negative versus gram-positive bacteria, and a low-grade
chronic inflammatory state. LPS is a bacterial cell wall compo-
nent in gram-negative bacteria and can stimulate an inflam-
matory response [31, 32]. Gut microbiome dysbiosis can fa-
cilitate LPS entry into systemic circulation through increasing
gut permeability, which leads to inflammation and metabolic
dysfunction [33]. Our results were concordant with a previ-

ous report [23] that found that gut microbiota dysbiosis in T2D
was characterized by a decrease in gram-positive butyrate, pro-
ducing Clostridium species that lack LPS and an increase in
gram-negative opportunistic pathogens including some Bac-
teroidetes and Proteobacteria species that contain LPS. The func-
tional analysis in the present study found thatmembrane trans-
port, energy metabolic, and PTS pathways were enriched in the
GDM patients. PTS pathways are responsible for transporting
glucose through outer and inner membranes and catalyzing the
uptake of carbohydrates. The increased relative abundance of
these pathwaysmay indicate that the gut environment of a GDM
status may stimulate accelerated bacterial usage of glucose as
energy.

There were several limitations in our study. First, the sample
size is relatively small. Second, we only analyzed 1 stool sample
per participant, which was collected in the second trimester of
pregnancy. It is well known that immune andmetabolic changes
occur throughout pregnancy and that the gut microbiota shifts
from the first to third trimesters [16]. In the present study, we
are unable to clarify the causal relationship between the micro-
biome and the development of GDM due to the cross-sectional
design. Consequently, data atmultiple time points are needed to
provide further insights into their dynamic relationship. Third,
we did not have information on several factors; e.g., lifestyle
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(a) (b)

Figure 4: Correlation of blood glucose levels 0, 60, and 120minutes after an oral glucose tolerancewithMLGs (a) and species (b). Spearman’s rank correlation coefficients
and P-values for the correlations are shown. The plus sign denotes P < 0.05; double plus sign denotes P < 0.01. Only MLGs or species with average relative abundances

greater than 0.001% and correlated (P < 0.05) with at least 1 index are shown for clarity.

and diet may further affect both blood glucose levels and gut
microbiota composition. In order to more confirm the associa-
tions observed in the current study, a large prospective cohort
investigation with analysis of other potentially significant vari-
ables will be necessary. Additionally, due to the lack of serum
samples, we could not measure LPS levels and describe the real
endotoxemia level of the patients.

In summary, this is the first study to demonstrate an associ-
ation between the gut microbiota dysbiosis, functional changes,
and GDM. Our findings contribute to the understanding of GDM
pathophysiology andmay have important implications for iden-
tifying patients at risk for the development of GDM.

Potential implications

The gut microbiome can be considered both an endocrine and a
metabolic organ, the dysfunction of which plays important roles
in disease development. During gestation, profound hormonal,
immunological, and metabolic changes take place [34–36]. Our
findings suggest that gutmicrobiota in pregnantwomen are sen-
sitive to subtle changes in metabolism and increases in blood
glucose levels. When taken together with results from previous
studies on T2D [23], our findings suggest that gut microbiota
may be a potential predictor of T2D after pregnancy. Further-
more, data from our cohort indicate that women diagnosedwith
GDM also suffered from moderate gut bacterial dysbiosis and
functional dysbiosis that was not restricted to certain microbial
species. Although causality has not been demonstrated, it raises

the possibility that susceptibility of postpartum metabolic (e.g.,
T2D) and immune dysfunction might be modified by recondi-
tioning of gut microbiota. Given that the gut microflora can be
modified by diet, altering test the composition of gut microbiota
in pregnant women may improve diabetes-related outcomes.
Future studies should explore how gut bacterial dysbiosis could
be improved and evaluate the efficacy of potential interventions,
such as probiotics and dietary manipulation, among pregnant
women.

Methods
Study population and sampling

As part of the Born in Guangzhou Cohort Study (BIGCS) [37], fecal
samples were obtained from 298 pregnant women during their
second trimester in Guangzhou Women and Children’s Medical
Center (GWCMC) between 1 August 2012 and 31 August 2013.
The inclusion criteria of the current study were as follows: (i)
without diseases that might affect glucose metabolism or mi-
crobiome composition such as pre-pregnancy diabetes, hyper-
tension, thyroid disorders, asthma, lipidmetabolic disorders, in-
flammatory bowel disease, irritable bowel syndrome, and celiac
disease; (ii) had not received any antibiotic treatment 1 month
before sample collection; (iii) had not taken probiotics 2 weeks
before sample collection. Of the 287 eligible women, 43 had
a diagnosis of GDM and were included in the present study
as the case group, and 81 non-GDM women were randomly
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(a)

(b)

Figure 5: Association of microbial genetic functional pathway composition in GDM patients and healthy pregnant women. (a) Distributions of relative abundances of
KEGG pathway categories in GDMpatients and healthy controls. The asterisk denotes q< 0.05 (Mann–Whitney U test corrected by the Benjamini–Hochbergmethod). (b)
Correlation of blood glucose levels 0, 60, and 120 minutes after an oral glucose tolerance test, with PTS system and LPS biosynthesis and transport system. Spearman’s
rank correlation coefficients and P-values for the correlations are shown. The plus sign denotes P < 0.05; double plus sign denotes P < 0.01.

selected as the control group. Basic characteristics of the 124
pregnant women included in the study are summarized in Ta-
ble S1. Compared to non-GDM women, women with GDM were
more likely to be older and multiparous and have higher pre-
pregnant weight, pre-pregnancy body mass index (BMI), gesta-
tional weight gain during pregnancy, and premature delivery
incidence. Fecal samples were frozen in –20◦C freezers imme-
diately (within 30 minutes) and transferred to –80◦C freezers
within 24 hours after collection.

This study received approval from the Ethics Committee
of GWCMC, and written informed consent was obtained from

all participating pregnant women. Participants underwent a
standard 2-hour 75-g oral glucose tolerance test (OGTT) be-
tween 21 and 29 weeks’ gestation by collection of 2-ml blood
samples when fasting, at 1 hour, and at 2 hours after a 75-
g glucose load, using NaF/EDTA tubes. After centrifugation,
plasma glucose was measured by a hexokinase method using
a Beckman Coulter AU5800 automatic analyzer (Beckman Coul-
ter, Brea, CA, USA). The laboratory previously achieved ISO15189
certification by China National Accreditation Service for Con-
formity Assessment. GDM was defined using the Chinese di-
agnostic criteria [38], which is in agreement with the one-step
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(a)

(d)

(b) (c)

Figure 6: Classification of GDM status by the relative abundance of MLGs and species. (a) Classification performance of a random forest model using MLG or species

abundance assessed by AUC. The performance was explored for different numbers of explanatory variables, ordered by importance. (b, c) The 30 most discriminant
MLGs (b) and species (c) in the models classifying GDM and controls. The bar lengths in (b) and (c) indicate the importance of the variable, and the colors represent
enrichment in GDM (red shades) or controls (blue shades). (d) ROC analysis for classification of GDM status by MLGs and PBMI.

approach endorsed by the American Diabetes Association [39].
Pregnant women were diagnosed as having GDM if 1 or more of
the following glucose levels were elevated: fasting ≥5.1 mmol/L,
1 hour ≥10.0 mmol/L, and 2 hours ≥8.5 mmol/L [38]. None of
these women was treated with insulin or glyburide. Maternal
age, pre-pregnancy weight, and pre-pregnancy height were ex-
tracted from clinical records of the Hospital Information Sys-
tems used in GWCMC. Pre-pregnancy body mass index was cal-
culated from height and weight information.

DNA extraction and metagenomic sequencing

Total bacterial DNA was extracted from about 180–200 mg of fe-
ces using Qiagen QIAamp DNA Stool Mini Kit (Qiagen) follow-
ing the manufacturer’s instructions [40]. Extracted DNA of each
sample was kept frozen at –20◦C until used. Illumina HiSeq 2000
was used to sequence the samples. We constructed a paired-
end library with insert size of 350 base pairs for every sample,
and sequenced with a 100-bp read length from each end. Illu-
mina sequencing reads for fecal samples from pregnant women
were independently processed for quality control using the FAS-
TAX Toolkit (FASTAX Toolkit, RRID:SCR 015042) [41]. The follow-
ing criteria were used for quality control: (i) reads were removed
if they contained more than 3 N bases or more than 50 bases

with low quality (<Q20); (ii) reads were trimmed in the end with
low quality (<Q20) or assigned as N. The remaining reads were
then mapped to the human genome using SOAPalinger2 (SOA-
Paligner/soap2, RRID:SCR 005503) [42] to remove contaminating
human DNA. After QC, an average of 1.9% of low-quality or hu-
man genome reads were removed for the 124 samples.

De novo assembly, gene calling, and gene catalogue
construction

To determine the best assembling method for the obtained
high-quality Illumina sequencing reads, we compared the per-
formance of 2 assemblers, SOAPdenovo v. 2.04 (SOAPdenovo2,
RRID:SCR 014986; as previously used in the MetaHIT and IGC
projects) [43, 44] and IDBA-UD v. 1.1.1 (a de novo assembler for
metagenomic sequences) [45]. For the SOAPdenovo, we tested
the k-mer length, ranging from 23 bp to 123 bp by 10-bp step for
each sample, and selected the assembled contig set with longest
N50 length. For the IDBA-UD, the parameters “–mink 21 –maxk
81 –step 20 –pre correction” were used. For most samples, IDBA-
UD obtained a better assembled contig set than SOAPdenovo.
This could be attributable to the relative efficiency of IDBA-UD
in assembling bacterial genomes within regions of highly un-
even depth in metagenomic samples. As a result, we obtained

https://scicrunch.org/resolver/RRID:SCR_015042
https://scicrunch.org/resolver/RRID:SCR_005503
https://scicrunch.org/resolver/RRID:SCR_014986
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Figure 7: A schematic diagram showing the main bacteria and functions of the gut microbes that had a predicted GDM association. Red and orange columns and text
denote enriched bacteria and their putative functions in GDM patients; green columns and text denote depleted bacteria and their putative functions in GDM patients.

an average of 197.9 ± 50.3 Mbp (mean ± SD) contig sets for each
pregnant women sample, with N50 length of 8.8 ± 3.9 kbp.
Unassembled reads from these samples were pooled and re-
assembled by using IDBA-UD for further analysis.

Genes were predicted by MetaGeneMark [46] based on
parameter exploration by the MOCAT pipeline (MOCAT,
RRID:SCR 011943) [47]. A non-redundant gene catalogue of
pregnant women samples was constructed using CD-HIT (CD-
HIT, RRID:SCR 007105) [48], through which genes with >90%
overlap and >95% nucleic acid similarity (no gap allowed) were
removed as redundancies. A pregnant women gene catalogue
containing 4 344 984 non-redundant genes was generated
for fecal samples collected from these 124 pregnant women.
This gene catalogue was further combined with the previous
integrated gene catalogue (IGC) [44] by removing redundancies
(2 621 398 genes) in the same manner as above. In the end,
39.6% (1 723 586) of the genes in the pregnant women gene
catalogue were identified as novel.

Quantification of metagenomic genes

The abundance of genes in the combined non-redundant gene
catalogue (combining the pregnant women gene catalogue and
IGC) was quantified as a relative abundance of reads. First, high-
quality reads from each sample were aligned against the gene
catalogue using SOAP2.21 [42], with thresholds that allowed a
maximum of 2 mismatches in the initial 32-bp seed sequence
and 90% similarity over the whole reads. Only 2 types of align-
ments were accepted: (i) the entire paired-end read can be
mapped onto a gene with the correct insert size; (ii) 1 end of the
paired-end read can be mapped onto the end of a gene only if

the other end of the read was mapped outside the genic region.
The relative abundance of a gene in a sample was estimated by
dividing the number of reads that uniquelymapped to that gene
by the length of the gene region and by the total number of reads
from the sample that uniquely mapped to any gene in the cata-
logue. The resulting set of gene relative abundances of a sample
was its gene profile.

Richness

We used the gene count and Shannon index to represent the
richness and evenness of the gut microbiota for each sample. As
defined previously [5], the gene counts of a metagenomic sam-
plewere calculated based on their readsmapping number on the
non-redundant gene catalogue. To eliminate the influence of se-
quencing depth fluctuation, an equal number of 11million reads
for all samples was randomly extracted for mapping, and then
the mean number of genes over 30 random drawings was gen-
erated. The Shannon index (within sample diversity) was calcu-
lated as previously described [23].

Taxonomical and functional analyses

Taxonomical classification of genes
Reference microbial genomes were downloaded from the NCBI-
genome database (v. May 2015), which included 8953 bacte-
rial/archaea genomes (of which 2785 genomes were complete
and 6168 were draft genomes) and 4400 viral genomes. Genes
from the non-redundant gene catalogue were aligned to refer-
ence genomes using BLASTN (BLASTN, RRID:SCR 001598) with
parameters “-word size 16 -evalue 1e-10 -max target seqs 5000.”

https://scicrunch.org/resolver/RRID:SCR_011943
https://scicrunch.org/resolver/RRID:SCR_007105
https://scicrunch.org/resolver/RRID:SCR_001598
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At least 70% alignment coverage of each genewas needed. Based
on the parameter exploration of sequence similarity across phy-
logenetic ranks [49], we used 85% identity as the threshold for
genus assignment, and 65% for phylum assignment.

Functional annotation of genes
The Kyoto Encyclopedia of Genes and Genomes (KEGG ortholo-
gous, v. April 2015; KEGG, RRID:SCR 012773) and evolutionary ge-
nealogy of genes: Non-supervised Orthologous Groups (eggNOG,
v. 4; eggNOG, RRID:SCR 002456) databases were used for func-
tional annotation of genes. Translated amino acid sequences of
genes were searched against these databases using USEARCH v.
8.0.1616 (evalue < 1e-5, query cov > 0.70) [50] with a minimum
similarity of 30%. Each protein was assigned a KEGG orthologue
(KO) or an eggNOG orthologue group (OG) based on the best-hit
gene in the database. Using this approach, 43.6% and 71.9% of
the genes in the combined gene catalogue could be assigned a
KO or an OG, respectively. As a final step, the abundance pro-
files of KEGG and eggNOG were calculated by summing up the
relative abundance of genes annotated to a feature.

Metagenome-wide association study

We used the metagenome-wide association study (MGWAS)
methodology to identify gene markers that showed significant
abundance differences between the GDM and control individu-
als. The MGWAS was performed using methodology developed
by Qin et al. [23]. Briefly, gene relative abundance profiles were
initially adjusted for population stratifications using the mod-
ified EIGENSTRAT method [51], which allows the use of covari-
ancematrices estimated from abundance levels instead of geno-
types. Then, a 2-tailed Mann–Whitney U test was performed in
the adjusted gene profiles, and the Benjamin–Hochberg proce-
dure [52] was subsequently used to correct the P-values to gen-
erate the false discovery rate (FDR, known as “q-value”) for each
gene.

Metagenomic linkage group analysis

Co-abundance genes were clustered into MLGs based on the
previously described methodology [23]. Taxonomic assignment
and abundance profiling of the MLGs were performed accord-
ing to the taxonomy and relative abundance of their constituent
genes, as previously described [23]. Briefly, assignment to a
species requires 90% of genes in an MLG to align with the
species’ genomewith 95% identity and 70% overlap of query. As-
signing anMLG to a genus requires 80% of its genes to align with
a genomewith 85% identity in both DNA and protein sequences.
MLGs were further interconnected according to Spearman’s cor-
relation coefficient (ρ > 0.4 or ρ < −0.4) between their abun-
dances in all GMD and control samples, and the co-occurrence
network of MLGs was visualized by Cytoscape 3.0.2 (Cytoscape,
RRID:SCR 003032) [53]. The direction of enrichment was deter-
mined by the Mann–Whitney U test (P < 0.05).

Statistical analysis

Statistical analysis was implemented using the R platform.
Distance-based redundancy analysis was performed using the
“vegan” package [54] based on the Bray–Curtis distances on nor-
malized taxa relative abundance matrices, then visualized us-
ing the “ggplot2” package. Permutational multivariate analysis
of variance was performed using the “vegan” package, and the
permuted P-value was obtained by 10 000 permutations.

The Random Forestmodel has been shown [6] to be a suitable
model for exploiting metagenomic data. Random Forest mod-
els were trained using the “randomForest” package (default pa-
rameters and 10 000 trees) to identify GDM status in a subset of
GDM patients and control group by using the abundance pro-
files of species and MLGs. Performance of the predictive model
was evaluated with cross-validation error. Variable importance
by mean decrease in accuracy was calculated for the Random
Forest models using the full set of species or MLGs. Based on
the rank of variables by importance, concise models were con-
structed that contained only the most important variables.

Receiver operator characteristic analysis was performed us-
ing the “pROC” package; we then computed the 95% confidence
interval of the AUCwith 10 000 bootstrap replicates to assess the
variability of the measure. Rarefaction analysis was performed
to assess the gene richness of metagenomic samples, imple-
mented by in-house Perl scripts.

Availability of supporting data and materials

All raw sequencing data have been deposited in the EBI Se-
quence Read Archive under accession number ERP020710. Fur-
ther supporting data is available in the GigaScience repository,
GigaDB [55].

Additional files

Supplemental File Figure S1. Density histogram showing the P-
value distribution between GDM patients and healthy pregnant
women for all genes tested. The horizontal line represents the
expected distribution of P-values, and the π0 value indicates the
proportion of genes under the null hypothesis.

Supplemental File Figure S2. Correlation between Enterobac-
teriaceae relative abundance and PBMI. Scatter plots of samples
are shown with lines indicating linear fit.

Supplemental File Figure S3. Classification of GDM status by
abundance of MLGs and PBMI. The 30 most discriminant MLGs
or PBMI in the models for classifying GDM and controls. The bar
lengths indicate the importance of the variable, and colors rep-
resent enrichment in GDM (red shades) or controls (blue shades).

Supplemental File Table S1: Characteristics of the study par-
ticipants (mean ± SD [range] or N/N(%/%)).

Supplemental File Table S2: Bacterial species that differed
significantly between 2 cohorts.

Supplemental File Table S3: Detailed information of 129
GDM-associated MLGs.
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index; CI: confidence interval; GDM: gestational diabetes
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pedia of Genes and Genomes; KO: KEGG group; LPS: lipopolysac-
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