Skip to main content
. 2017 Jul 24;13(9):4452–4466. doi: 10.1021/acs.jctc.7b00092

Table 2. Average Number of Molecules and Density at Equilibrium for Different Reactions for Different Methodsa.

Reaction NA NProduct 1 NProduct 2 ⟨ρtot Efficiency Method
  200.00(3) 200.00(3)   0.162(0) 0.40 Conventional
A ⇌ B 199.99(7) 200.01(7)   0.161(0) 0.11 Parallel Rx/CFC
  199.98(6) 200.02(6)   0.161(0) 0.30 Serial Rx/CFC
  206.62(2) 193.38(2)   0.155(0) 0.37 Conventional
A ⇌ C 206.63(3) 193.37(2)   0.154(0) 0.098 Parallel Rx/CFC
  206.62(5) 193.38(5)   0.155(0) 0.30 Serial Rx/CFC
  192.59(6) 414.8(2)   0.162(0) 0.26 Conventional
A ⇌ 2D 192.27(6) 415.5(2)   0.161(0) 0.097 Parallel Rx/CFC
  192.36(4) 415.27(8)   0.161(0) 0.25 Serial Rx/CFC
  202.75(5) 394.5(1)   0.153(0) 0.21 Conventional
A ⇌ 2E 202.35(6) 395.3(2)   0.152(0) 0.086 Parallel Rx/CFC
  202.47(4) 395.06(8)   0.152(0) 0.25 Serial Rx/CFC
  91.52(3) 308.48(3) 308.48(3) 0.162(0) 0.26 Conventional
A ⇌ D + F 91.22(9) 308.78(9) 308.78(9) 0.161(0) 0.097 Parallel Rx/CFC
  91.33(3) 308.67(3) 308.67(3) 0.161(0) 0.25 Serial Rx/CFC
  95.57(3) 304.43(3) 304.43(3) 0.156(0) 0.23 Conventional
A ⇌ D + E 95.28(4) 304.72(4) 304.72(4) 0.155(0) 0.094 Parallel Rx/CFC
  95.39(2) 304.61(2) 304.61(2) 0.155(0) 0.25 Serial Rx/CFC
a

The efficiency is defined in Section 4. The reduced pressure and temperature are set to P = 0.3 and T = 2.0, respectively. Simulations are started with 400 molecules of type A. The interaction parameters of different molecules are listed in Table 1. The numbers between brackets denote the uncertainty in the last digit.