Skip to main content
. 2017 Jul 24;13(9):4452–4466. doi: 10.1021/acs.jctc.7b00092

Table 3. Average Number of Molecules and Density at Equilibrium for Different Reactions for Different Methodsa.

Reaction NA NProduct 1 NProduct 2 ⟨ρtot Efficiency Method
  200.00(4) 200.00(4)   0.433(0) 0.077 Conventional
A ⇌ B 200.0(2) 200.0(2)   0.431(0) 0.095 Parallel Rx/CFC
  200.01(8) 199.99(8)   0.432(0) 0.26 Serial Rx/CFC
  226.48(4) 173.52(4)   0.392(0) 0.068 Conventional
A ⇌ C 226.4(2) 173.6(2)   0.390(0) 0.079 Parallel Rx/CFC
  226.45(9) 173.55(9)   0.391(0) 0.26 Serial Rx/CFC
  273.05(5) 253.89(9)   0.433(0) 0.017 Conventional
A ⇌ 2D 272.8(2) 254.5(4)   0.430(0) 0.074 Parallel Rx/CFC
  272.8(2) 254.3(3)   0.431(0) 0.17 Serial Rx/CFC
  300.57(6) 198.9(2)   0.395(0) 0.011 Conventional
A ⇌ 2E 300.3(1) 199.4(2)   0.393(0) 0.059 Parallel Rx/CFC
  300.4(2) 199.3(3)   0.394(0) 0.17 Serial Rx/CFC
  177.73(5) 222.27(5) 222.27(5) 0.433(0) 0.017 Conventional
A ⇌ D + F 177.4(3) 222.6(3) 222.6(3) 0.431(0) 0.075 Parallel Rx/CFC
  177.5(2) 222.5(2) 222.5(2) 0.431(0) 0.17 Serial Rx/CFC
  197.92(7) 202.08(7) 202.08(7) 0.401(0) 0.014 Conventional
A ⇌ D + E 197.6(3) 202.4(3) 202.4(3) 0.399(0) 0.070 Parallel Rx/CFC
  197.6(2) 202.4(2) 202.4(2) 0.399(0) 0.17 Serial Rx/CFC
a

The efficiency is defined in Section 4. The reduced pressure and temperature are set to P = 1.0 and T = 2.0. Simulations are started with 400 molecules of type A. The interaction parameters of different molecules are listed in Table 1. The numbers between brackets denote the uncertainty in the last digit.