Skip to main content
. 2017 Jul 24;13(9):4452–4466. doi: 10.1021/acs.jctc.7b00092

Table 4. Average Number of Molecules and Density at Equilibrium for Different Reactions for Different Methodsa.

Reaction NA NProduct 1 NProduct 2 ⟨ρtot Efficiency Method
  200.1(2) 199.9(2)   0.667(0) 7 × 10–3 Conventional
A ⇌ B 199.9(4) 200.1(4)   0.665(0) 0.096 Parallel Rx/CFC
  199.9(2) 200.1(2)   0.667(0) 0.20 Serial Rx/CFC
  268.7(2) 131.3(2)   0.614(0) 5 × 10–3 Conventional
A ⇌ C 268.8(2) 131.2(2)   0.612(0) 0.076 Parallel Rx/CFC
  268.7(2) 131.3(2)   0.614(0) 0.20 Serial Rx/CFC
  345.2(2) 109.5(4)   0.667(0) 3 × 10–4 Conventional
A ⇌ 2D 345.0(3) 110.0(5)   0.665(0) 0.066 Parallel Rx/CFC
  344.8(4) 110.5(8)   0.666(0) 0.11 Serial Rx/CFC
  373.0(2) 54.0(3)   0.646(0) 1 × 10–4 Conventional
A ⇌ 2E 372.9(2) 54.1(3)   0.643(0) 0.051 Parallel Rx/CFC
  372.9(2) 54.3(4)   0.645(0) 0.11 Serial Rx/CFC
  293.5(3) 106.5(3) 106.5(3) 0.667(0) 3 × 10–4 Conventional
A ⇌ D + F 293.1(6) 106.9(6) 106.9(6) 0.665(0) 0.068 Parallel Rx/CFC
  293.3(5) 106.7(5) 106.7(5) 0.666(0) 0.11 Serial Rx/CFC
  324.2(2) 75.8(2) 75.8(2) 0.641(0) 2 × 10–4 Conventional
A ⇌ D + E 324.2(5) 75.8(5) 75.8(5) 0.638(0) 0.064 Parallel Rx/CFC
  324.1(4) 75.9(1) 75.9(1) 0.639(0) 0.11 Serial Rx/CFC
a

The efficiency is defined in Section 4. The reduced pressure and temperature are set to P = 3.0 and T = 2.0, respectively. Simulations are started with 400 molecules of type A. The interaction parameters of different molecules are listed in Table 1. The numbers between brackets denote the uncertainty in the last digit.