Skip to main content
. 2017 Jul 24;13(9):4452–4466. doi: 10.1021/acs.jctc.7b00092

Table 5. Average Number of Molecules and Density at Equilibrium for Different Reactions for Different Methodsa.

Reaction NA NProduct 1 NProduct 2 ⟨ρtot Efficiency Method
  199.8(3) 200.2(3)   0.766(0) 1 × 10–3 Conventional
A ⇌ B 199(1) 201(1)   0.764(0) 0.096 Parallel Rx/CFC
  200.1(4) 199.9(4)   0.766(0) 0.20 Serial Rx/CFC
  298.5(5) 101.5(5)   0.718(0) 9 × 10–4 Conventional
A ⇌ C 298.5(8) 101.5(8)   0.716(0) 0.079 Parallel Rx/CFC
  298.6(4) 101.4(4)   0.718(0) 0.20 Serial Rx/CFC
  372.5(3) 54.9(6)   0.766(0) 3 × 10–5 Conventional
A ⇌ 2D 372.1(4) 55.8(7)   0.764(0) 0.063 Parallel Rx/CFC
  372.4(2) 55.2(4)   0.765(0) 0.11 Serial Rx/CFC
  390.6(3) 18.8(5)   0.757(1) 6 × 10–6 Conventional
A ⇌ 2E 390.6(2) 18.9(3)   0.755(0) 0.048 Parallel Rx/CFC
  390.5(2) 19.0(4)   0.756(0) 0.11 Serial Rx/CFC
  345.2(5) 54.8(5) 54.8(2) 0.766(0) 3 × 10–5 Conventional
A ⇌ D + F 345.4(6) 54.6(6) 54.6(6) 0.764(0) 0.067 Parallel Rx/CFC
  345.3(6) 54.7(6) 54.7(6) 0.765(0) 0.12 Serial Rx/CFC
  368.1(6) 31.9(6) 31.9(6) 0.752(0) 1 × 10–5 Conventional
A ⇌ D + E 368.2(4) 31.8(4) 31.8(4) 0.749(1) 0.063 Parallel Rx/CFC
  368.1(5) 31.9(5) 31.9(5) 0.751(0) 0.11 Serial Rx/CFC
a

The efficiency is defined in Section 4. The reduced pressure and temperature are set to P = 5.0 and T = 2.0, respectively. Simulations are started with 400 molecules of type A. The interaction parameters of different molecules are listed in Table 1. The numbers between brackets denote the uncertainty in the last digit.