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Abstract: Trauma and related sequelae result in disturbance of homeostatic mechanisms frequently leading to
cellular dysfunction and ultimately organ and system failure. Regardless of the type and severity of injury, gender
dimorphism in outcomes following trauma have been reported, with females having lower mortality than males,
suggesting that sex steroid hormones (SSH) play an important role in the response of body systems to trauma. In
addition, several clinical and experimental studies have demonstrated the effects of SSH on the clinical course and
outcomes following injury. Animal studies have reported the ability of SSH to modulate immune, inflammatory,
metabolic and organ responses following traumatic injury. This indicates that homeostatic mechanisms, via direct
and indirect pathways, can be maintained by SSH at local and systemic levels and hence result in more favourable
prognosis. Here, we discuss the role and mechanisms by which SSH modulates the response of the body to injury
by maintaining various processes and organ functions. Such properties of sex hormones represent potential novel
therapeutic strategies and further our understanding of current therapies used following injury such as oxandrolone

in burn-injured patients.
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Background
There has been increasing interest in the role of the
endocrine system in the pathophysiological response to
major trauma, with several studies suggesting that sex
steroid hormones (SSH) may influence the outcome
after injury. Survival differences have been reported be-
tween males and females after major trauma, with fe-
male victims having lower mortality than males [1, 2].
Morbidity is also affected by gender and as early as
1975, McGowan et al. reported a significantly higher in-
cidence of bacteraemic infections in male trauma pa-
tients compared to females, 58.5% vs 41.5% respectively
[3]. In addition, adults show a gradual decrease in sur-
vival after traumatic injury with age [4]. This further
suggests that the reduction in sex hormone, as a result
of menopause and andropause, may influence the re-
sponse to injury [5].

This review discusses the potential role of SSH in
explaining gender and age differences in mortality and
post-injury pathology and potential novel treatment
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strategies that target the endocrine response and may
improve outcomes following trauma.

Review

Impact of gender on outcomes after trauma

Despite advances in medical care, sepsis and subsequent
multiple organ failure (MOF) continue to be a major
cause of morbidity and mortality in trauma patients [6],
but there is evidence of gender differences for sepsis,
MOF and mortality. In a study of 681,000 trauma pa-
tients, females demonstrated significantly lower compli-
cations and mortality rates compared to males [1]. A
recent meta-analysis of 100,566 male and 39,762 female
trauma patients found male gender was associated with
higher incidence of complications, lengthier hospital stay
and increased mortality [7]. In addition, male gender has
been identified as a risk factor in the development of in-
fection and MOF [8-10] and males suffer from signifi-
cantly lower survival rates following sepsis when
compared to females, 31% vs 74% [11]. This suggests
that SSH may play a role in the maintenance of
immune-inflammatory function in the trauma setting.
This is further supported by the work of Haider et al.
who concluded that females aged 13—-64 exhibited sig-
nificantly lower mortality outcomes following trauma-

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s41038-017-0093-9&domain=pdf
http://orcid.org/0000-0002-1871-8219
mailto:kxa455@bham.ac.uk
mailto:J.M.Lord@bham.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Al-Tarrah et al. Burns & Trauma (2017) 5:29

associated shock when compared to males and that this
difference was abolished in the extremes of age when
the effects of sex hormones were either absent or dimin-
ished [12]. Trentzsch et al., who performed a matched-
pair analysis of 29,353 prospectively recorded trauma
cases, concluded that males were more susceptible to
MOF, sepsis and mortality [13].

Female patients appear to benefit from better physio-
logical reserves and thereby are more protected against
the consequences of trauma and shock. A prospective
clinical study reported that female trauma patients re-
quired less fluid resuscitation volumes (12 L vs 8 L,
P < 0.05), less Starling curve intervention (42% vs 15%,
P < 0.05) to maintain oxygen delivery index and less ino-
trope and/or vasopressor support (36% vs 10%, P < 0.05)
compared with similarly injured male patients and a
standardized management protocol [14]. Another pro-
spective clinical study involving more than 4000 patients
reported that premenopausal women exhibited lower
serum lactate levels and required less blood transfusion
despite having more severe injuries [15].

However, the role of gender in modifying the response
to trauma is still not clear-cut, with multiple conflicting
clinical reports in the literature. Rappold et al. concluded
that the female gender offered no protection from the
development of acute respiratory distress syndrome,
pneumonia or sepsis nor was it associated with de-
creased mortality rates post-trauma [16]. This finding
was replicated by other studies which have demonstrated
equivalent mortality rates in both genders following
traumatic injury [17-19]. Other studies have suggested
that female gender is a risk factor in trauma patients and
is associated with increased complication and mortality
rates [20-22]. These conflicting findings may be attrib-
uted to many factors such as study sample size, triage,
treatment speed, and management protocol.

This apparent lack of agreement in the literature high-
lights the need for further studies in better controlled
environments, comparing similar types of injury and tak-
ing age and gender into account in order to obtain more
conclusive data. In addition, there remains a paucity of
data on the mechanisms that may underlie gender differ-
ences in humans, with the majority of such research
done in animal models of trauma. In this review, we
therefore discuss the potential impact of gender and
SSH on different aspects of the response to trauma, and
we have made it clear where the data rely almost entirely
on animal studies.

Effect of SSH on the immune and inflammatory response
to trauma

Various clinical and experimental studies have demon-
strated that gender influences both humoral and cell-
mediated immune responses and SSH receptors have been
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identified in multiple lymphoid tissues such as the bone
marrow, spleen and thymus, as well as in different im-
mune cells including lymphocytes, mast cells, granulo-
cytes and macrophages [23]. Trauma has been shown to
lead to immune dysfunction which, in turn, is associated
with increased susceptibility to sepsis, MOF and mortality
[24-27]. The processes driving immuneparesis after
trauma are complex and include the cytokine storm elic-
ited by tissue damage, which includes concomitant release
of pro- and anti-inflammatory cytokines and the suppres-
sion of a variety of cell-mediated immune responses,
which we have reviewed previously [5]. This immune sup-
pression is mediated largely by the effects of cortisol re-
leased as a result of activation of the hypothalamic-
pituitary-adrenal axis, but there is evidence that sex hor-
mones represent an additional influence.

Wichmann et al. reported significant gender differences
in B lymphocyte, T lymphocyte and natural killer (NK) cell
counts following surgery despite comparable preoperative
cell counts [28], with men showing reductions in cell
numbers for up to 5 days. In addition, women exhibited a
more pronounced pro-inflammatory response, with ele-
vated circulating interleukin (IL)-6 levels, post-operatively
[28]. Conversely, other studies have observed increased
levels of IL-6, tumour necrosis factor-alpha (TNF-a) and
procalcitonin in male trauma patients compared to fe-
males [29, 30]. What may be pertinent are the ratio of
pro- to anti-inflammatory cytokines and the chronicity of
the response: a profound initial inflammatory response
may favour prevention of infection, but if inflammation is
not resolved promptly, this can prevent wound healing
and lead to organ damage.

Experimental studies in animal models of trauma have
shown the modulation of immune responses by sex hor-
mones. Overall testosterone appears to have anti-
inflammatory and immunosuppressive effects, promot-
ing synthesis of anti-inflammatory cytokines such as IL-
10 by murine macrophages [31], reducing NK cell activ-
ity and the synthesis of pro-inflammatory cytokines,
such as TNF-q, via the inhibition of nuclear factor kappa
B (NFxB) [32, 33]. Testosterone has also been associated
with decreased expression on macrophages and mono-
cytes of toll-like receptor 4 (TLR4) which is involved in
the activation of the innate immune system and produc-
tion of inflammatory cytokines [34] by damage-
associated molecular patterns (DAMPs).

Progesterone also exerts an immunosuppressive effect
by inhibiting the activation of NFkB and increasing the ex-
pression of suppressor of cytokine signalling protein 1
(SOCS1) [35]. In addition, progesterone reduces the activ-
ity of macrophages and NK cells, as well as the synthesis
of antibodies by B cells [36—39]. Elevated levels of proges-
terone during pregnancy have been associated with de-
creased development of pro-inflammatory helper T cell
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type 1 (Thl) immune responses while promoting the im-
mune responses of Th2 including the synthesis of anti-
inflammatory cytokines such as IL-4, IL-5 and IL-10 [40].

In contrast, estradiol has typically been shown to en-
hance cell-mediated and humoral immune responses. It
augments NK cell cytotoxicity, as well as stimulating the
production of pro-inflammatory cytokines including IL-
1B, IL-6 and TNF-«a [38, 41] and inhibits the synthesis of
anti-inflammatory cytokines such as IL-10 [42]. In
addition, oestrogens have been shown to increase sur-
vival and prevent apoptosis of immune cells [43, 44].
The balance of sex hormones in the circulation may thus
be a key modulator of immune responses to trauma and
tissue injury in humans.

Several murine studies have shown depressed immune
responses in males as well as oophorectomized and aged
females following trauma, haemorrhage and sepsis
[45, 46]. Interestingly, pretreatment of female mice with
5-dihydrotestosterone (DHT) prior to trauma-haemorrhage
resulted in depressed macrophage function and reduced
levels of cytokines comparable to that seen in males
[47, 48]. Moreover, castration and depletion of male sex
hormones prior to trauma-haemorrhage resulted in en-
hanced immune responses [49-51]. In contrast, female
sex hormones are associated with enhanced cell-mediated
immune responses to trauma. Elevated systemic levels of
estradiol in proestrus female mice played a pivotal role in
post-trauma and haemorrhage immunocompetence [52].
Furthermore, administration of 17(-estradiol (E2) was
associated with improved survival rates in animal models
of sepsis [53]. A single dose of estradiol following trauma-
haemorrhage and resuscitation was shown to restore
depressed immune responses [54].

In animal studies, the effect of SSH on splenic im-
mune response has been evaluated with studies demon-
strating that E2 played a critical role in restoring splenic
macrophage and immune functions post-injury by de-
pressing pro-inflammatory cytokine production [52, 55].
Furthermore, Knoferl et al. reported that splenocyte
proliferation and the release of IL-2, IL-3 and interf
eron-gamma (IFN-y) were suppressed in oophorecto-
mised females following trauma-haemorrhage to levels
comparable to those observed in males [52]. Moreover,
castration prior to injury attenuated the depression of
major histocompatibility complex (MHC) II (Ia) expres-
sion in mice, thereby improving cell-mediated immunity
[56]. Oestrogen enhances splenic macrophage (TNF-a
and IL-6) and T lymphocyte (IL-2 and IL-6) cytokine
secretion following trauma [57-59]. In addition, E2 and
estrogen receptor alpha (ER-a) agonist prevented the
apoptosis of splenic dendritic cells and attenuated the
depression of splenic dendritic cell cytokine production,
co-stimulating factors and MHC II expression as well as
antigen presentation capacities [60]. These effects of E2
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on splenic function appear to be predominantly medi-
ated via ER-a [59, 60]. This protective role of female
sex hormones is associated with significantly increased
survival rates in animal models [52].

Clinical studies investigating the effect of SSH on the
immune-inflammatory cascade following trauma are
more limited. Male patients of virtually all age groups
have been reported to have higher incidence of sepsis
following trauma and haemorrhagic shock suggesting
the immunosuppressive effect of testosterone [61]. In
addition, Zolin et al. reported that early elevations and
increasing levels of testosterone over the initial 24-h
period after injury were associated with an exaggerated
inflammatory response and significantly increased risk of
nosocomial infections and MOF. Interestingly, high cir-
culating levels of estradiol at 24 h were associated with a
fourfold greater risk of developing MOF [62]. Another
study observed negative correlations between estradiol
levels and TNF-a on day 1 and day 2 following trauma.
However, no significant relationships were identified be-
tween SSH levels and IL-6, IL-8 or leukocyte counts
[63]. Moreover, Lopez et al. concluded that while there
is sexual dimorphism in the leukocyte genomic response
following severe injury that are associated with more se-
vere and prolonged organ failure, these differences were
not in sex-linked genes or linked to differences in sys-
temic levels of cytokines and therefore do not translate
into sex-specific organ dysfunction or 28-day inhospital
mortality [64].

The overall picture in relation to the impact of gender
of the immune-inflammatory response to trauma and
potential impact on outcomes such as sepsis, is one of a
protective immune-enhancing role of oestrogens and a
contrasting immunosuppressive effect of androgens. How-
ever, most data are derived from animal studies with very
few studies in humans, and there is thus a need for clinical
research and RCTs to determine benefits of SSH in main-
taining immune competence after trauma.

Effects of SSH on body systems after trauma

The actions of androgens, oestrogens and progestins are
mediated through genomic and non-genomic pathways.
The widespread expression of SSH receptors in tissues
means that they have very broad effects on tissue and
organ function, which may explain gender differences in
trauma outcomes such as MOF (Table 1).

Cardiovascular system

Trauma and haemorrhage are known to induce myocar-
dial dysfunction, decreasing cardiac output and blood
flow [65, 66]. This effect is exacerbated in male mice,
and castration 2 weeks prior to trauma and haemorrhage
attenuates the depression of myocardial function [67].
Furthermore, treatment of male mice subjected to
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Table 1 Summary of the effects of oestrogen and testosterone on various organs

Organ Oestrogen Testosterone
Effect References Effect References
Heart - Improved left ventricular function [70-79] « Depressed myocardial function [80-82]
« Improved cardiac output - Suppression of Akt anti-apoptotic
« Enhanced p38MAPK, Akt, pathways
eNOS and HSP « Reduced expression of Bcl-2
expression - Chronic administration
« Reduction in IL-6, NFkB improves function
and TNF-a and reduces tissue damage
Lungs - Decreased lung congestion, [87,105-110, 159] « Increased lung permeability [45]
oedema and and inflammation
inflammation « Increased nitric oxide levels
+ Decreased emphysematous changes
« Enhanced eNOS/PKG expression
- Decreased KDC, MIF, TLR-4 and
ERK expression
« Reduction in IL-6, TNF-q, ICAM-1,
CINC-1 and MIP-2
Liver + Reduction in liver congestion, portal [68, 71, 87-96] « Reduced hepatic microvascular [97]
inflammation and focal necrosis blood flow
« Enhanced Kupffer cell function « Diminished hepatocellular
« Reduction in IL-6, TNF-q, function
MIP-1a and MIP-2
« Increased expression of Bcl-2
« Reduced ET-1 response
Spleen - Stimulation of splenocyte proliferation [52, 55-60] « Reduces MHC Il expression [56]
« Increased IL-2 and IL-3 « Depressed cell-mediated
« Improved splenic macrophage immune response
and T lymphocyte function
« Prevented apoptosis of splenic
dendritic cells
- Improved splenic dendritic cell function
« Enhanced MHC I expression
Intestines + Reduced ET-1 response [101-104] « Enhances local pro-inflammatory [45, 97, 98]
- Enhanced p38MAPK and Akt expression response
+ Reduction in MPO, ICAM-1, CINC-1,
CINC-3, MIP-2 and IL-6
Brain/Nerves + Reduced iNOS expression [113-117] « Inhibition of caspase-3, MPO [118-120]
+ Reduction in hypothalamic TNF-a and XO activity
« Preservation of blood brain « Reduction in malondialdehyde
barrier integrity « Increased catalase levels
« Inhibition of MMP-2 and MMP-9 « Maintains cellular and
structural integrity
- Preserves neural function
Kidneys « Enhanced Akt and eNOS expression [127,128] + Reduced NOS, Akt and ERK expression [125, 126]

« Reduction in neutrophil infiltration

« Low doses: increased IL-10
and reduction in T cell infiltration

MAPK Mitogen-activated Protein Kinase; eNOS endothelial Nitric Oxide Synthase; HSP Heat Shock Protein; IL Interleukin; NFkB Nuclear Factor Kappa B;

TNF-a Tumour Necrosis Factor-alpha; PKG Protein Kinase G; KDC Keratinocyte-derived Chemokines; MIF Migration Inhibitory Factor; TLR Toll-like Receptor;
ICAM Intracellular Adhesion Molecule; CINC Cytokine-induced Neutrophil Chemoattractant; MIP; Macrophage Inflammatory Protein; Bcl-2 B-cell lymphoma-2;
ET Endothelin; MHC Major Histocompatibility Complex; MPO Myeloperoxidase; iNOS inducible Nitric Oxide Synthase; MMP Matrix Metalloproteinase

trauma and blood loss with an androgen receptor antag-
onist resulted in improved cardiovascular function [68].
In contrast, proestrus females have shown better regula-
tion of cardiac function and blood volumes following
trauma-haemorrhage when compared to males, with sig-
nificant improvements in cardiac output and perform-
ance as well as increased circulating blood volume [69].
This effect may explain the improved restoration of
organ function seen in proestrus female mice subjected
to such injury [70].

In rodent studies, administration of E2 following
trauma and haemorrhage significantly improved left ven-
tricular function and cardiac output and prevented the
increase of plasma IL-6 levels [71]. Furthermore,

oestrogen has been shown to decrease IL-6 and NF«B in
cardiomyocytes post-injury via inhibiting the expression
and activity of hypoxia-inducible factor (HIF)-1a, result-
ing in improved cardiac function [72]. This inverse cor-
relation between cardiomyocyte IL-6 levels and cardiac
function was also reported by Yang et al. [73]. In
addition, administration of E2 following trauma and
haemorrhage increased the expression and activity of
heme oxygenase (HO)-1 [74], mediated via the p38
mitogen-activated protein kinase (MAPK) pathway and
subsequent phosphorylation of HSP-27 and af-crystallin
[75]. Heat shock proteim (HSP)-27 and af-crystallin are
known to prevent apoptosis during periods of stress, and
Kan et al. showed that p38MAPK activation exerted
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further tissue protective effects through the increased
expression and phosphorylation of endothelial NO syn-
thase (eNOS) [76]. Furthermore, the cardioprotective
properties of HO-1 post-oestrogen administration can
also be achieved through Akt phosphorylation [77],
which is also associated with inhibition of cardiomyocyte
apoptosis [78, 79].

Testosterone has demonstrated both protective and
detrimental cardiac effects following ischemic reperfu-
sion insult in rodents. Acute testosterone replacement
had adverse effects on myocardial function following in-
jury, thought to be secondary to the inhibition of signal
transducers and activators of transcription 3 (STAT-3)
and suppression of cytokine signalling 3 (SOCS-3) anti-
apoptotic pathways, as well as downregulation of Akt
anti-apoptotic pathways that results in depressed myo-
cardial function [80, 81]. In contrast, chronic testoster-
one therapy at physiological doses was effective at
reducing infarct size, improving cardiac contractility, re-
ducing arrhythmias, and improving myocyte viability as
well as enhancing autonomic myocardial regulation fol-
lowing injury [82].

In addition to their effects on the myocardium, SSH
has also been reported to modulate coagulation within
the vasculature. A plethora of studies have implicated
hormone replacement therapy and hormone-based con-
traceptives with promoting coagulation [83, 84]. Interest-
ingly, female trauma patients were reported to be
hypercoagulable on day 1 following injury compared to
male trauma patients [85]. Furthermore, Gee et al. re-
ported that early circulating estradiol-progesterone ratio
levels positively correlated with thromboelastographic
parameters and partial thromboplastin times and hence
favouring a hypercoagulable state [63]. This early hyper-
coagulable state may in part explain why females pre-
senting with acute traumatic coagulopathy following
injury have been reported to have significantly poorer
outcomes and twofold higher independent risk of mor-
tality [86].

The influence of SSH on the human cardiovascular
system following trauma is still poorly understood. Even
though the observations from animal models appear
promising, large-scale observational studies investigating
various cardiovascular and hormone parameters of both
genders as an initial step may prove insightful about the
role of SSH on the human response to injury.

Gastrointestinal system

Following sepsis, female rats show less systemic endo-
toxemia and liver tissue damage than males and treat-
ment with oestrogen and progesterone reduced liver
congestion, portal inflammation and focal necrosis [87].
Administration of estradiol or androgen antagonist fluta-
mide was associated with improved hepatocellular
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function following shock [68, 71]. This may be partly ex-
plained by the effect E2 exerts on Kupffer cells (KC).
KCs are a major source of pro-inflammatory cytokines
in the liver. Estradiol has been reported to enhance KC
phagocytic capacity and depress cytokine production in-
cluding IL-6, TNF-a, macrophage inflammatory protein
(MIP)-1a and MIP-2 [88-91]. This is achieved via down-
regulation of TLR4-dependent p38MAPK and NF«B
phosphorylation, while stimulating Akt activation and
enhancing HO-1 expression [90, 92—-94]. These benefi-
cial effects of E2 on KC functions are mediated predom-
inantly through ER-a [95], though a role for G protein-
coupled receptor (GPR)-30, which activates protein kin-
ase A (PKA) and increases expression of anti-apoptotic
protein B-cell lymphoma-2 (Bcl-2) has been shown [96].
In contrast, testosterone had a deleterious effect follow-
ing gut injury by producing pro-inflammatory and tissue
toxic effects in mesenteric lymph nodes [97]. This nega-
tive impact of androgens is further supported by studies
demonstrating that testosterone depletion ameliorated the
magnitude of gut injury in animal models [45, 97, 98].

Maintenance of organ perfusion is essential to ensure
organ vitality. The response to endothelin (ET)-1, a po-
tent vasoconstrictor, is enhanced following shock, which
subsequently further impairs circulation and induces
organ damage. Estradiol administration post-injury at-
tenuated ET-1 responses improving liver and intestinal
perfusion [99, 100]. In addition, estradiol attenuated in-
testinal injury by modulating myeloperoxidase activity,
TNF-«, IL-6, intracellular adhesion molecule (ICAM)-1,
cytokine-induced neutrophil chemoattractant (CINC)-1,
CINC-3 and macrophage inflammatory protein (MIP)-2
levels by enhancing p38MAPK and Akt pathways [101,
102]. Interestingly, treatment with the androgen antag-
onist flutamide exerted similar effects [103, 104].

There are currently no human studies investigating
the influence of SSH on the gastrointestinal system fol-
lowing trauma.

Other body systems

Rodent studies have demonstrated gender dimorphism
in responses of various organs to injury. Caruso et al.
concluded that lung protection against injury was great-
est during the estrus and proestrus stages of the men-
strual cycle and decreased during the diestrus stage
[105]. Furthermore, oestrogen and progesterone admin-
istration attenuated emphysematous and inflammatory
changes in the lung as well as improved congestion and
oedema following sepsis [87]. Tominaga et al. showed
that oophorectomized animals displayed a 2.6-fold in-
crease in vascular permeability following ioxaglate treat-
ment (a contrast medium that increases vascular
permeability) compared to controls and that this effect
was blocked following estradiol administration [106].
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These effects may be secondary to the decreased expres-
sion of keratinocyte-derived chemokines (KDC), migra-
tion inhibitory factor (MIF) and TLR-4, which in turn
reduces cytokine/chemokine production and neutrophil
infiltration, reducing oedema formation and subsequent
organ damage [107, 108]. These protective properties of
E2 are mediated via the extracellular signal-regulated
protein kinase and eNOS pathways [109, 110]. In con-
trast, male rats displayed increased trauma-shock-
induced lung injury with increased nitrite/nitrate pro-
duction, hence demonstrating the potential injurious
role of male SSH [45].

Research in animal models has also indicated differen-
tial neuroendocrine-immune responses between genders
following neurotoxaemia. Administration of E2 abol-
ished most of the gender dimorphic responses including
hyperglycaemia, hypercorticosteronaemia and hypercyto-
kinaemia [111]. In addition, oestrogen has been sug-
gested to be beneficial in acute central nervous system
(CNS) injuries secondary to oxidative and/or excitotoxic
stress [112]. For instance, the synthesis of NO, which is
known to exert harmful effects on the CNS, is induced
via enhanced expression of inducible NOS following
CNS injury. E2 and progesterone inhibit the expression of
inducible nitric oxide synthase (iNOS) under such condi-
tions [113, 114], and E2 administration downregulates
microglial cell-mediated inflammatory responses follow-
ing trauma-haemorrhage [115]. Additionally, E2 treatment
may preserve the integrity of the blood-brain barrier by
inhibiting matrix metalloproteinases 2 and 9 activation
[116]. Interestingly, females display greater neuronal pres-
ervation than males after being subjected to injury such as
ischaemia [117].

In a rabbit model of ischaemia-reperfusion injury asso-
ciated with the spinal cord, testosterone exhibited neu-
roprotective  properties by reducing caspase-3,
myeloperoxidase [118] and xanthine oxidase [119] activ-
ities, as well as decreasing malondialdehyde levels and
increasing catalase concentrations [120]. These results
should be interpreted with caution as recent large ran-
domized controlled trials of SSH-based interventions
(Progesterone) failed to demonstrate significant benefits
following severe traumatic brain injury (TBI) despite
promising preclinical studies [121, 122]. Furthermore, a
meta-analysis of seven randomized control trials exam-
ining progesterone influence following moderate to se-
vere TBI concluded outcomes were not improved
compared with placebo [123]. Additionally, elevated sys-
temic levels of estradiol and testosterone following se-
vere TBI have been associated with increased mortality
and worse global outcomes for both males and females
[119]. Finally, a recently published Cochrane systematic
review has graded the quality of current evidence asses-
sing progesterone’s influence of TBI as low due to
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substantial inconsistencies across studies, concluding
present evidence do not support the proposal that pro-
gesterone reduces mortality or disability in TBI patients
nor was it associated with more adverse events, and ad-
vised that more precise classification of TBI and opti-
misation of progesterone dosage and scheduling would
benefit future trials [124].

Gender dimorphic renal responses to injury have also
been reported. Male mice were more prone to renal in-
jury. Park et al. showed that the presence of testosterone,
rather than the absence of oestrogen, inhibited the
activation of NOS/Akt/ERK pathway resulting in greater
infiltration of leukocytes exacerbating renal cell injury
and apoptosis following ischaemic insult [125]. Interest-
ingly, low-dose testosterone demonstrated a renal pro-
tective effect following injury through modulating
inflammation by enhancing intrarenal inflammatory
cytokine production such as IL-10, as well as suppress-
ing renal T cell infiltration. In contrast, high-dose testos-
terone displayed pro-inflammatory roles and failed to
improve renal function after injury [126]. Furthermore,
E2 prevented renal injury by stimulating the Akt path-
way and enhancing eNOS phosphorylation [127]. Inter-
estingly, Kasimay et al. investigated gender differences in
CRF-induced oxidative multiorgan failure and found that
males and oophorectomised females exhibited exagger-
ated systemic inflammatory responses. E2 treatment sig-
nificantly improved CRF-induced systemic inflammatory
outcomes in both male and female animals by modula-
ting cytokine release and depressing tissue neutrophil
infiltration [128].

Burn injury and SSH

There are several features of the physiological response
to burn injury that differ from non-burn injury and re-
quire separate consideration in relation to gender di-
morphism of outcomes. Thermal injuries are associated
with augmented and prolonged hypermetabolic response
with resting energy expenditure up to 180% above nor-
mal values, which is more severe than other forms of
trauma [129, 130]. This, along with an overwhelming
immune-inflammatory response, exerts grievous effects
on various body systems characterized by increased oxy-
gen consumption, resting energy expenditure, fat and
protein catabolism as well as hyperinsulinemia and en-
hanced peripheral insulin resistance [131-135]. All of
which have a negative impact on organ/tissue function,
as well as on tissue mass to the extent that it may lead
to complications such as immune dysfunction, delayed
wound healing and severe sepsis, as well as growth re-
tardation [130, 136-139]. These hypermetabolic and
hyperinflammatory responses have been reported to po-
tentially endure for years post-injury [138, 140].
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There is growing evidence that SSH levels are a major
determinant of prognosis following burn injury. An 11-
year review of data in the UK Greater Manchester region
reported that the largest proportion of burn-related
deaths (24.8%) was among older individuals (=75 years
in age) and that the relative risk of mortality was ap-
proximately 1.5x higher in males [141]. An analysis of
the international burn injury database for England and
Wales (2003—2011) concurred that patients aged 65 years
or over suffered longer inhospital length of stay, as well
as the highest mortality rates among all other age
groups, 19.24%. Interestingly, in this analysis, mortality
was generally higher in females than males over the 8-
year period (1.86% vs 1.32%) and in each individual year
examined [142]. This was further supported by Moore
et al. who showed that risk of death in women admitted
to intensive care post-thermal injury was double when
compared with males, OR 2.35 [2]. Gender dimorphism
in burn injury thus appears to be the opposite to other
forms of injury. This is further supported by Summers
et al. who concluded female gender is associated with
poorer outcomes following severe thermal injury [143].
A systematic review of the literature published from
1965 till 2012 also identified female gender as a risk fac-
tor for hypertrophic scarring in patients who survived
their burn injury [144].

There are a limited number of clinical studies investi-
gating the impact of gender on outcomes following ther-
mal injury, though animal studies offer some insight into
potential mechanisms that may explain these epidemio-
logical findings. Anathakrishnan et al. described similar
responses in rats following burn injury (40% TBSA) and
trauma-haemorrhage, in which both acute lung and in-
testinal injury were potentiated by oophorectomy and
prevented by castration [45]. Wigginton et al. stated that
a single intravenous dose of E2 reduced burn injury se-
verity through regulation of the immuno-inflammatory
cascade, as well as its anti-oxidant and anti-apoptotic
properties [145], and other studies reported estradiol ad-
ministration, following severe thermal injury, attenuated
body mass loss associated with the hypermetabolic re-
sponse [146]. Gregory et al. suggested that gender di-
morphism relating to immune function following severe
thermal injury was mediated by oestrogen and its impact
on IL-6 production. This study reported that while intact
females, at day 10 post-burn, exhibited three times
higher levels of plasma IL-6, they also demonstrated
suppression of splenocyte proliferation and delayed type
hypersensitivity reactions [147]. In contrast, Gatson
et al. found administration of E2 after thermal injury at-
tenuated both brain inflammation and apoptotic signal-
ling by down-regulating TNF-a, IL-1p and IL-6 levels
within brain tissue [148]. Increasing concentrations of
estradiol, through castration or treatments with E2 or
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anti-androgens, post-burn was also associated with re-
duced remote organ inflammation [149].

The data concerning the involvement of oestrogens in
regulating the response to burn injury is thus mixed
even in animal models, with few studies involving hu-
man patients. Comparisons of burn injury outcomes in
pre- and post-menopausal women or those on HRT
would be beneficial in this respect.

Therapeutic potential of SSH

Anabolic androgenic steroids (AAS)

Oxandrolone is an AAS that is derived from testosterone
and has a high anabolic:androgenic ratio (10:1) [150].
Oxandrolone has been shown to improve prognosis of
various catabolic conditions including severe burns and
trauma [151]. It is the only AAS approved by the FDA
for weight restitution following extensive surgery and
severe trauma.

To date, there has been one multicenter prospective
randomized double-blind trial investigating the effects of
oxandrolone in adult patients with severe burns. The au-
thors reported significantly shorter lengths of inhospital
stay in the oxandrolone group compared to placebo, and
this difference was strengthened when deaths were ex-
cluded and hospital stay indexed to burn size [152]. A
recent meta-analysis of 15 randomized controlled trials
reported that oxandrolone use was associated with
shorter inhospital length of stay by 3 days, reduced
donor site healing time by 4.4 days, and reduced time
between surgical procedures by 0.7 days, as well as re-
duced weight loss by 5 kg and nitrogen loss by 8.19 g/
day. Moreover, oxandrolone use in the rehabilitation
phase was associated with reduced weight loss by
0.86 kg/week and lean body mass by 5% as well as gain-
ing 3.99% and 10.78% lean body mass following severe
thermal injury by 6 and 12 months respectively [153].
Interestingly, oxandrolone and propranolol (B-blocker
used in burns for its anti-catabolic effects) attenuated
burn-induced growth arrest in paediatric patients follow-
ing thermal injury by shortening its duration by 84 days
and increased growth rate by 1.7 cm per year [154]. The
use of oxandrolone in paediatric burn patients up to
2 years is associated with greater improvements in bone
mineral content, bone mineral density and height vel-
ocity [155].

DHEA/DHEAS

DHEA, a major steroid hormone circulating in plasma, is
produced in response to stress and is an intermediate that
can be metabolized to both testosterone and oestrogen. It
has been reported to exhibit predominantly oestrogenic
effects in the male androgenic milieu [156]. In view of the
immuno-enhancing properties of oestrogen, studies have
investigated the effect of DHEA in animal models of
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trauma-haemorrhage and sepsis. Angele et al. demon-
strated that administration of DHEA attenuated depres-
sion of splenic and peritoneal macrophage function post-
injury and improved mortality rates from subsequent
sepsis in a rodent model [157]. Furthermore, DHEA, in
post-trauma-haemorrhage, restored splenocyte functions
by directly stimulating T cell functions and preventing
increases in serum corticosterone [158]. Interestingly,
DHEA has been shown to antagonize the immunosup-
pressive effects of glucocorticoids such as dexamethasone
on lymphocyte proliferation [159], and the sulphated form
of DHEA, DHEAS, has been shown to potentiate neutro-
phil function via direct activation of neutrophil nicotina-
mide adenine dinucleotide phosphat (NADPH) oxidase
and reactive oxygen species (ROS) generation [160].

There are no human trials of DHEA intervention in
trauma, and this androgenic hormone has mainly been
used in trials for Addison’s disease and some chronic in-
flammatory conditions including rheumatoid arthritis.
As the HPA axis is disrupted after trauma, we suggest
that supplementation with DHEA may offer a novel, safe
and inexpensive route in improving a range of outcomes
after injury.

Androgen receptor antagonists

Several animal studies have indicated that testosterone
depletion exerts numerous beneficial effects prior to any
systemic insult. Administration of flutamide following
trauma-haemorrhage and resuscitation normalized de-
pressed splenic and peritoneal macrophage cytokine
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release [161]. Angele et al. showed that flutamide admin-
istration for three consecutive days not only restored di-
minished immuno-inflammatory responses but also
decreased mortality rates associated with subsequent
septic challenge [162]. Lin et al. evaluated the use of flu-
tamide in animal models of heatstroke, reporting that
flutamide attenuated hypothermia; decreased the num-
ber of apoptotic cells within the hypothalamus, spleen,
liver and kidney; diminished the plasma index of toxic
oxidized radicals such as nitric oxide metabolites; atten-
uated systemic inflammatory responses including TNF-a
and IL-6 release; and reduced the infiltration of neutro-
phils into the lungs. All of which contributed to signifi-
cantly improved mortality rates [163]. Furthermore,
flutamide is frequently used in the clinical management
of testicular cancer over prolonged periods without
major adverse effects. Therefore, short-term use can be
considered safe and feasible. Again, there are currently
no human studies investigating administration of andro-
gen antagonists following trauma or burn injury.

Conclusions

The literature contains evidence of gender dimorphism
in response to injury, with outcomes better in females
than males for most injury types, one possible exception
being burn injury. SSH have demonstrated potential to
support homeostatic measures following injury by
modulating a wide range of processes including inflam-
mation, immune response and organ function (Figure 1).
However, at present, most of these data are derived from
in vitro or animal-based studies and conclusive clinical
trials of interventions with SSH are lacking. Further in-
vestigations are merited to ascertain the role of specific
SSH in post-injury pathology as their therapeutic poten-
tial may prove invaluable in reducing patient morbidity
and mortality in the clinical setting.
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