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Abstract

Gene Set Enrichment Analysis (GSEA) aims at identifying essential pathways, or more generally, 

sets of biologically related genes that are involved in complex human diseases. In the past, many 

studies have shown that GSEA is a very useful bioinformatics tool, which plays critical roles in the 

innovation of disease prevention and intervention strategies. Despite its tremendous success, it is 

striking that conclusions of GSEA drawn from isolated studies are often sparse, and different 

studies may lead to inconsistent and sometimes contradictory results. Further, in the wake of next 

generation sequencing technologies, it has been made possible to measure genome-wide isoform-

specific expression levels, calling for innovations that can utilize the unprecedented resolution. 

Currently, enormous amounts of data have been created from various RNA-seq experiments. All 

these give rise to a pressing need for developing integrative methods that allow for explicit 

utilization of isoform-specific expression, to combine multiple enrichment studies, in order to 

enhance the power, reproducibility and interpretability of the analysis. We develop and evaluate 

integrative GSEA methods, based on two-stage procedures, which, for the first time, allow 

statistically efficient use of isoform-specific expression from multiple RNA-seq experiments. 

Through simulation and real data analysis, we show that our methods can greatly improve the 

performance in identifying essential gene sets compared to existing methods that can only use 

gene-level expression.
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1 INTRODUCTION

To understand molecular mechanisms underlying complex human diseases, one important 

task in transcriptome studies is to identify groups of related genes that are combinatorially 

involved in such biological processes, mainly through Gene Set Enrichment Analysis 

(GSEA), where gene sets are pre-defined according to a variety of criteria (e.g., genes/

proteins participating in common pathways, sharing similar or closely related annotated 

functions and so on). Given a gene set, the goal of GSEA is typically to infer whether it is 

enriched by “essential” genes (i.e., genes associated with a phenotype of interest), where the 

set is defined to be enriched if it contains more essential genes than would be expected by 

chance. In the past, various statistical approaches have been developed for GSEA (see Song 

and Black 2008, Ackermann and Strimmer 2009 and Hung et al. 2012 for detailed review); 

and many biomedical studies have achieved spectacular successes with the aid of GSEA in 

the innovation of disease prevention and intervention strategies (e.g., Downward 2006; 

Wang 2011; Ullah et al. 2012; Farkas et al. 2011).

In the dawn of a big data era, however, there is an increasingly urgent need to perform 

integrative GSEA (iGSEA), i.e., integrating multiple relevant GSEA studies, to avoid 

indecisive or potentially conflicting conclusions from individual data and to leverage 

“wisdom of crowds” for more effective and reliable scientific discoveries. Typically, the 

integrative process is operated by meta-analysis, which uses a statistical approach to 

synthesize results from multiple studies. To our best knowledge, there are only two 

publications (Shen and Tseng, 2010; Chen et al., 2013) that develop meta-analysis methods 

for iGSEA. Shen and Tseng (2010) proposed three methods for Meta-Analysis of Pathway 

Enrichment (MAPE), based on the widely used GSEA algorithm proposed by Subramanian 

et al. (2005): the first method conducts meta-analysis by combining results from multiple 

studies at the gene level (MAPE_G), the second at the pathway level (MAPE_P), while the 

third further integrates end results from the first two methods (MAPE_I). All these methods 

rely on gross summary statistics such as the maximum, minimum or sum of the P-values 

from individual studies, which might cause substantial information loss and lead to poor 

performance. Chen et al. (2013) proposed a powerful Bayesian method to integrate multiple 

GSEA studies, which has been shown to work well with binary phenotypes. However, it 

cannot be used with other discrete or any continuous phenotypes. Also, it is computationally 

intensive and requires great effort in selecting starting points and detecting convergence if 

users do not choose the default setting.

The above existing methods were originally developed for microarray data analysis, 

requiring gene-level expression even when data are from Next Generation Sequencing 

(NGS) experiments. Advances in RNA-seq technologies have provided unprecedented 

resolution that enables researchers to identify novel transcripts and extract genome-wide 

isoform-specific expression. In the human genome, almost all multi-exon genes have more 
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than one mRNA isoform produced by alternative transcription initiation, splicing and 

termination (Pan et al., 2008; Wang et al., 2008). Transcript variants from a gene can 

generate protein isoforms with different structures, which have diverse and sometimes 

opposite functions (Pal et al., 2011, 2012). In addition, differentially expressed isoforms are 

widely observed in different tissue types and disease status. Recent studies have shown that 

(i) there exist many genes for which differential expression of transcript isoforms occurs in 

opposite directions, with some of the transcripts being up-regulated while others being 

down-regulated, resulting in insignificant expression differences at the gene level (Liu et al., 

2013; Zhang et al., 2013); (ii) aberrant expression of alternative gene isoforms is associated 

with various cancer formation and progression (Akgul et al., 2004; Rajan et al., 2009); (iii) 

isoform-level expression can provide better cancer signatures than gene-level expression 

(Zhang et al., 2013; Liu et al., 2013). Thus, explicitly utilizing isoform-level expression in 

GSEA may add new findings besides those from the common practice of examining gene-

level expression only.

So far, no existing approach has addressed the problem of iGSEA based on isoform 

expression data. In this article, we develop and evaluate iGSEA methods based on two-stage 

procedures, which allow statistically efficient use of isoform-specific expression from 

multiple RNA-seq experiments. In the first stage, we adapt meta-analysis approaches based 

on fixed-effect (FE) (Hu et al., 2013b) and random-effects (RE) models (Tang and Lin, 

2014), newly developed for metaanalysis of genome-wide association studies (GWAS), into 

iGSEA, for association testing using isoform-specific expression based on generalized linear 

models (GLMs). In the second stage, set enrichment analysis is conducted using size-

adjusted Kolmogorov–Smirnov statistics based on the ordering of P-values from the first 

stage. Through simulation and a data example, we illustrate the advantages of our new 

procedures over existing iGSEA methods.

2 METHODS

Suppose we wish to combine K independent RNA-seq studies, and there are Sk samples in 

study k, k = 1, …, K. Suppose gene g has Ig ≥ 1 isoforms for g = 1, …, G, where G is the 

total number of genes involved in these K studies. Each gene does not need to be present in 

all the K studies so we define an indicator variable: Tkg = 1 if gene g is present in study k; 
Tkg = 0, otherwise. Given Tkg = 1, let Xksgi denote the expression level of isoform i of gene 

g for sample s in study k. Let Y ks be the phenotype of interest for sample s in study k, 

which is assumed to follow an exponential family distribution so that it can be either discrete 

or continuous. A pathway database matrix {Zgp} (1 ≤ g ≤ G, 1 ≤ p ≤ P) represents the gene 

membership information of P pathways, where Zgp = 1 when gene g belongs to pathway p 
and Zgp = 0 otherwise. For a list of important notation used in this paper, see Section S1 in 

Supplementary Material.

Figure 1 presents the framework of iGSEA methods that utilize isoform-level expression 

from multiple RNA-seq studies. There are three key steps in our two-stage procedures, 

where the first two steps belong to the first stage. Step I is to conduct gene-wise analysis of 

isoform expression in each study k and calculate gene-level statistics, a score statistic Ukg 

and its covariance matrix Vkg, for each gene g. In Step II, meta-analysis is performed to 
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combine the results of component studies, using gene-level statistics  from 

Step I. Step III is to conduct set enrichment analysis. For a gene set (or more specifically, a 

pathway) of interest, based on the P-values of combined gene-level statistics Qgs, we 

calculate the enrichment score (ES), and estimate its statistical significance. Given a 

database of pathways, we further adjust the P-value of each ES for multiple testing, and 

report pathways achieving a fixed level of significance as enriched.

2.1 Stage I: meta-analysis of isoform expression analysis

In step I, for each gene g that appears in study k, we build a GLM to model the relationship 

between isoform-specific expression levels of gene g and the phenotype Y, calculate the 

corresponding score statistic Ukg, and estimate its covariance matrix Vkg. Given Tkg = 1, the 

isoform expression vector of gene g for sample s in study k is represented by Xksg = (Xksg1, 

…, XksgIg). We relate Yks to Xksg through a GLM by specifying the following relationship:

(1)

where h(·) is a link function, αkg is the intercept, and βkg = (βkg1, …, βkgIg)T is a vector of 

the regression parameters; that is, βkgi stands for the effect of the ith isoform of gene g on Y. 

Further, we express the density function of Yks given Xksg and Tkg = 1 by

where a(·), b(·), and c(·) are specific functions that jointly determine the distribution type of 

Yks; and θksg is the unknown canonical parameter satisfying θksg = b′−1 ·h−1(αkg +Xksgβkg) 

under (1), and ϕkg is the dispersion parameter.

To test gene g’s association with the phenotype Y in study k, the null hypothesis is H0: βkg = 

0, and rejecting the null hypothesis concludes that the gene is isoform-active; that is, at least 

one of βkgis are not equal to 0, meaning that the expression from at least one isoform of gene 

g is associated with the phenotype Y in study k. Under the commonly used canonical link h 
= b′−1(·), for each gene g with Tkg = 1, the score statistic Ukg under the null hypothesis of 

study k is given by  where α̂
kg and ϕ̂kg are the 

restricted maximum likelihood estimators (MLEs) of αkg and ϕkg under H0. The asymptotic 

null distribution of Ukg is Ig-variate normal with mean 0 and covariance matrix estimated by 

.

In step II of Figure 1, meta-analysis is performed to combine the results of the K 
independent RNA-seq studies, and a quadratic statistic Qg (1 ≤ g ≤ G) is produced at the 

gene level based on either an FE or RE model.

Li et al. Page 4

Genet Epidemiol. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



An FE model assumes that the effects of gene g’s isoforms on the phenotype are common 

among different studies, namely βkg = μg, where μg = (μg1, …, μgIg) represents the overall 

isoform effects of gene g across studies. In meta-analysis, testing whether gene g is isoform-

active or not becomes testing H0: μg = 0 under the FE model. The quadratic statistic for 

testing H0: μg = 0 can be defined as (Lin and Zeng, 2010; Hu et al., 2013a)

(2)

where . Under H0, Ug is asymptotically Ig-variate 

normal with mean 0 and estimated covariance matrix Vg; and Qg has an asymptotic chi-

square distribution  with Ig degrees of freedom. Lin and Zeng (2010) showed that when 

effect sizes are constant across studies, the meta-analysis approach based on the FE model 

has the best statistical efficiency in testing H0: μg = 0; and it can reach the same efficiency as 

mega-analysis (i.e., joint analysis of raw individual-level data from multiple studies) without 

information loss.

In some practical situations, the assumption that the isoform effects are the same/similar in 

all component studies is restrictive. To accommodate between-study heterogeneity, a 

standard analytical strategy is to specify βkg as a vector of random effects with mean μg, and 

then test H0: μg = 0. The corresponding RE model can be given by

(3)

where ξkg = (ξkg1, …, ξkgIg) is a set of random terms representing the study-specific 

deviations from the overall effect μg, and ξkg is assumed to follow a multivariate normal 

distribution with mean 0 and covariance matrix Σg. Surprisingly, researchers in GWAS (Han 

and Eskin, 2011; Thompson et al., 2011) have found that, when both FE and RE methods are 

applied to the same data, RE tends to give substantially less significant P-values, and so 

cannot find anything new from those already identified by FE. Recently, the reasons for this 

paradox were revealed by Han and Eskin (2011) and an innovative RE approach, namely, 

testing H0: μg = 0 and Σg = 0, was proposed to achieve higher efficiency than the FE model 

when the heterogeneity is large in meta-analysis of GWAS (Han and Eskin, 2011; Tang and 

Lin, 2014).

Under the RE model in (3), we adapt the above null hypothesis H0: μg = 0 and Σg = 0 into 

our iGSEA, which represents that gene g is isoform-active in none of the K studies. 

Following Tang and Lin (2014), to avoid estimating a large number of unknown parameters 

in the covariance matrix, we express Σg = σgBg, where σg is an unknown constant, and Bg is 

a Ig×Ig pre-specified matrix with a commonly used structure (e.g., independent, 

autoregressive, compound symmetry). Because σg = 0 is equivalent to Σg = 0, the null 
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hypothesis becomes H0: μg = 0 and σg = 0. Then the test statistic under the RE model can be 

defined as

(4)

where , and tr stands for the trace. 

Approximately, the limiting null distribution of Qg is chi-square with Ig + 1 degrees of 

freedom, if ignoring the correlation of the two additive components in (4). Our empirical 

evidence shows that this approximation seems to be adequate (see Section S2 in the 

Supplementary Material).

Using either (2) or (4) to combine multiple studies requires that Ukgs (and Vkgs) have the 

same dimensionality in all K studies. Thus, we should only include the isoforms that are 

present in all the studies in our analysis; or we can set Tkg = 0 if gene g’s isoform 

information is not complete in study k but complete in other studies. However, this would 

not be a general issue as quantifying isoform-specific expression requires raw sequencing 

data in FASTQ or BAM format. When raw data from all individual studies are available, we 

are then able to align raw reads to the human reference genome using the same isoform and 

gene annotation files across different studies. Thus, the set of isoforms for any specific gene 

is the same in every component study. This is the case in our data example.

2.2 Stage II: set enrichment analysis

In Step III, the pathway enrichment score ωp is calculated for each pathway p in the pathway 

database, 1 ≤ p ≤ P. Let Cp and Dp denote the P-values of random genes within and out of 

pathway p based on the gene-level statistics Qgs, respectively. Let cp and dp denote the 

numbers of genes within and out of pathway p, respectively, satisfying dp = G − cp. Let F̂
Cp 

(x) and F̂
Dp (x) denote the corresponding empirical distribution functions of Cp and Dp. The 

enrichment score, defined as the one-sided Kolmogorov–Smirnov (OKS) statistic for testing 

Cp ≼st Dp (Shen and Tseng, 2010) (i.e., pathway p is enriched with genes with small P-

value), is the maximum deviation from F̂
Dp (x) to F̂

Cp (x), i.e. . 

Then the P-value that reflects the statistical significance of ωp, denoted by p(ωp), is 

computed through permuting gene labels in and out the pathway.

The distribution of the OKS statistic ωp is obviously affected by the corresponding pathway 

size. Previous work (e.g. Subramanian et al. 2005, Shen and Tseng 2010) did not consider 

the effect of varying set sizes when testing multiple gene sets from a pathway database. 

Here, we use a corrected version of ωp, , which is based on the asymptotic 
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result in Gail and Green (1976): when cp and dp are sufficiently large, 

 for z > 0. From simulation, we find that when min(cp, dp) > 

30, the above asymptotic distribution works very well so that the distribution of  becomes 

virtually independent of the set sizes. Note that for a single pathway, the proposed correction 

does not affect its statistical significance; that is, .

When testing multiple pathways, we estimate the adjusted P-value based on , the so-called 

Q-value, denoted by , for each pathway p, p = 1, … P. Usually, to control the false 

discovery rate within a pre-specified threshold δ, all pathways with a Q-value< δ are 

reported as enriched.

3 ALGORITHMS

We have two algorithms outlined below, and the difference lies in how to estimate the P-

value p(Qg). In Algorithm 1, we use the (approximate) asymptotic reference distribution of 

Qg under the FE or RE model for association testing, which requires regularity conditions of 

the central limit theory. In Algorithm 2, we calculate p(Qg) via permutation, which is usually 

more robust than asymptotic testing in practical situations. But Algorithm 1 is noticeably 

faster.

We mention that an adaptive permutation procedure can be used to improve the 

computational efficiency of Algorithm 2, where the number of permutations can vary from 

gene to gene. Since we are mainly interested in identifying isoform-active genes, we may 

use less permutations for genes with relatively large P-values. We first estimate P-values 

based on a small number of permutations (say N0 = 200) only. Given gene g, if the estimated 

p(Qg) is smaller than a threshold C0 (say 0.1–0.2, to be conservative), we perform an 

additional large number of permutations (say N+ = 2, 000) and update accordingly. This 

adaptive procedure is much more efficient in computing when the number of isoform-active 

genes is small compared to the total number of genes G.

Algorithm 1

Procedure with P-values of gene-level statistics computed via asymptotic testing

I. For each study k, compute the gene-level statistics based on association testing via GLM using 
isoform-specific expression:

1. Given Tkg = 1, compute the score statistic Ukg and its estimated covariance matrix Vkg for 
each gene g in study k. If Tkg = 0, simply set the corresponding Ukg and Vkg to 0.

II. Meta-analysis:

1. For the FE approach, compute the gene-level statistic Qg using (2) for 1 ≤ g ≤ G, whose 
asymptotic reference distribution is χ2 with df = Ig. For the RE approach, estimate Bg from 
data and compute Qg using (4), whose asymptotic reference distribution is approximately χ2 

with df = Ig + 1.

2. Estimate P-values of each Qg, denoted by p(Qg), based on asymptotic testing.

III. Set enrichment analysis:

1.
For each pathway p, compute the corrected OKS statistic  based on the rankings of 

, 1 ≤ p ≤ P.
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2.
Permute gene labels N times and calculate the permuted statistics , 1 ≤ n ≤ N, 1 ≤ p ≤ P.

3. Estimate the P-value of pathway p: 

, 1 ≤ p ≤ P, where T(·) is the 
indicator function.

4. Estimate the Q-value of pathway p using a smoothing method (Storey and Tibshirani, 2003) 
implemented in an R package named qvalue (Dabney et al., 2011). Pathways with 

 are claimed to be enriched.

Algorithm 2

Procedure with P-values of gene-level statistics computed via permutation

I. For each study k, compute the gene-level statistics: same as Step I of Algorithm 1.

II. Meta-analysis:

1. Within study k, randomly permute Ykss M times, and calculate the permuted statistics 

 for 1 ≤ m ≤ M and 1 ≤ k ≤ K.

2. For each study k, randomly choose one pair of permuted statistics from the M pairs obtained 

in Step 1, and denote the selected pair by . In the RE model, calculate the 

corresponding . Repeat this process N times to obtain  for 

the FE model or  for the RE model, where n = 1, …, N. 
Note that we usually choose N ≫ M for computational efficiency, but require N ≪ MK to 
remove the effect of repeatedly using the same M permutations for each study (e.g., for K = 5, 
set M = 50, and N = 1000).

3.
Compute Qg for the original data and  for the N sets of K permuted studies, based 
on the FE model or RE model.

4. Estimate P-values of by the permutation for 1 ≤ g ≤ G: 

.

III. Set enrichment analysis: same as Step III of Algorithm 1.

4 SIMULATION

We evaluate the performance of the proposed methods (iGSEAi-FE and iGSEAi-RE for the 

approaches based on the FE and RE models, respectively, where the “i” after iGSEA stands 

for “isoform”) and compare them with the existing MAPE methods in Shen and Tseng 2010 

(i.e., MAPE_G, MAPE_P, MAPE_I). Currently, none of the existing methods can handle 

isoform-specific expression. So we supply the three MAPE methods with gene-level 

expression mapped from simulated isoform-level expression. We conduct two sets of 

simulation studies, one for discrete phenotypes and the other for continuous phenotypes. For 

each set of simulation, we compare the type I error and power under a single-pathway 

simulation model; and we further evaluate the FDR and compare the sensitivity and 

specificity using Receiver Operating Characteristic (ROC) curves under a multiple-pathway 

simulation model.
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All numerical results reported in this paper are based on Algorithm 1; and for iGSEAi-RE, 

we simply set Bg as an identity matrix. This is because we find via preliminary simulation 

that (1) there was not much difference in the overall performance between Algorithms 1 and 

2, but Algorithm 1 is much faster, as mentioned before; and (2) other common choices of Bg 

did not provide better performance but slowed down the RE procedure and made it less 

numerically stable. We note that the similar performance between Algorithms 1 and 2 in 

identifying enriched pathways is mainly due to the following reasons (i) the chi-square 

approximation to the null distribution of Qg is adequate, as shown in simulation; and (ii) 

although Algorithm 2 is better than Algorithm 1 in estimating P-values based on Qgs (see 

Section S3 of Supplementary Material for detail), the subsequent enrichment analysis only 

relies on the orderings of these P-values, and so whether the permutation or asymptotic 

approach is used in the first stage would not matter much.

4.1 Discrete Case

Simulation I-1: comparing power—Here, we consider a binary Y as a typical example 

of the discrete case. Each simulated data set includes K = 6 independent studies, and in each 

study, there are 40 samples, where the first 20 are controls (i.e., Yks = 0), and the other 20 

are cases (i.e., Yks = 1).

Suppose there are 600 genes in the genome. In the single-pathway model, the first 150 genes 

are assigned to the pathway of interest, among which 150 × α genes are isoform-active. In 

the next 450 genes, there are 450×α0 isoform-active genes. Thus, if α > α0, the pathway is 

enriched. We fix α0 = 0.20, and set α ∈ {0.25, 0.30, 0.35} for a weak, median and strong 

enrichment signal, respectively. Recall that we use a binary variable Tkg to indicate whether 

the data for gene g are available in study k. We define the gene sampling rate by λ ≡ Pr(Tkg 

= 1), and use Bernoulli(λ) to generate a random number of genes present in study k, where 

we set λ ∈ {0.7, 0.8, 0.9, 1.0}. We set Ig ∈ {1, 2, 3, 4} and among the 600 genes, we set the 

number of genes with one isoform or four isoforms to be 100 each, and with two or three 

isoforms to be 200 each. Further, to compare the two proposed methods, we generate data 

based on the FE and RE models, respectively. For all non-active isoforms, we assume βkgi ≡ 
0 in both FE and RE models. For active isoforms, under the FE model, we allow βkgis to 

vary across genes randomly, but stay constant for any specific gene across studies; and we 

assume |βkgi| = |β.g.| ~ abs(N(v, 1)); under the RE model, we allow βkgis to vary among both 

genes and studies randomly; and we assume |βkgi| = |βkg.| ~ abs(N(v, 1)). We further set v ∈ 
{0.5, 0.75, 1} for varying strength of mean isoform effects.

Recent genome-wide studies suggest that more than half of human genes produce multiple 

protein isoforms through alternative splicing and alternative usage of transcription initiation 

and/or termination, and for the majority of human genes, the inclusion or exclusion of 

exonic sequences enhances the generation of transcript variants and/or protein isoforms with 

varying structures, which have diverse and sometimes opposite functions (Pal et al., 2011, 

2012), as mentioned in the introduction. For this reason, for 50% of the isoform-active 

genes, we set the number of positive isoforms (i.e., isoforms with βkgi > 0) and the number 

of negative isoforms (i.e., isoforms with βkgi < 0) approximately equal in the following way: 

we first use , which is generated from binomial(Ig, 0.5) (if , discard it and regenerate 
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a value until ), to decide the number of active isoforms within gene g; and then we 

generate  positive isoforms and  negative isoforms if  is odd; and the numbers of 

positive and negative isoforms are both  if  is even. For the rest 50%, we generate one 

active isoform (either positive or negative) first; and the sign of the other isoforms are 

randomly generated and can be positive, negative or non-active.

We simulate isoform expression levels xksgis of gene g from a multivariate normal 

distribution N(μkg, Σx.kg), where μkg = (ukg1, …, ukgIg) and Σx.kg is set to an identity matrix 

for simplicity. For all isoforms in the control samples, we set ukgi = 0. For the case samples, 

the mean expression levels of active isoforms are set to satisfy ukgi = βkgi. After generating 

isoform-level data for all studies, the gene-level expression  is obtained by summing up 

gene g’s corresponding isoform-level data.

In Section S4 of Supplementary Material, we evaluate the type I error of each method at the 

significance level 0.05 under the null hypothesis of no enrichment in the gene set. We find 

from Table SI that our iGSEA methods seem to be a bit conservative and so tend to reject the 

null less than expected; MAPE-P and MAPE-I seem to be a bit aggressive and so tend to 

reject the null more than expected while MAPE-G tends to be less biased than the others. 

Thus, for a fair comparison of power, we simulate 1000 datasets for each setting, fix the test 

significance level at 0.05 and control the actual type I error to be 0.05 for all the methods 

compared. That is, for each of the methods and each setting, we compute the critical value 

from the empirical distribution of the corresponding statistic using 1000 datasets generated 

for the null case by resetting α = α0 (i.e., the pathway is not enriched); then the power of 

each method is estimated by the proportion of the 1000 datasets in which the pathway is 

found to be enriched.

Figure 2(a) shows results of power comparison for data generated from the FE model. We 

can see that the performance of iGSEAi-FE is comparable to that of iGSEAi-RE. In the 

cases with weak enrichment signal, the power of the proposed methods is pretty close to that 

of MAPE_P and MAPE_I. In all the other cases, both the proposed methods have higher 

power than the MAPEs and in some cases, the power is even doubled. Among the three 

MAPE methods, MAPE_G is the worst; and MAPE_P is slightly better than or comparable 

to MAPE_I. The power of all the methods tends to increase as the sampling rate λ or the 

mean isoform effect size ν or the enrichment signal α increases, as one may expect. But the 

power seems to be much more sensitive to the change of α than the change of λ or ν. As the 

enrichment signal gets stronger, the difference in power between the iGSEA and MAPE 

methods becomes larger; and for the strong signal, the proposed iGSEA methods have power 

close to 1. Figure 2(b) displays the results for data generated from the RE model. 

Conclusions are similar to those in Figure 2(a) except that the power of iGSEAi-RE is 

clearly better than that of the other methods for weak and median enrichment signals. For 

the strong signal, the power of the proposed methods is both close to 1.

Simulation I-2: comparing sensitivity and specificity—Here, we assume 1200 

genes in the genome, where the first 240 genes are isoform-active, and the remaining genes 

are not. To compare the sensitivity and specificity, a total of 500 pathways are generated 
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from the genome, where the first 100 are enriched with isoform-active genes, and the last 

400 are not. We use the median enrichment signal α = 0.30 in this simulation; that is, each 

of the first 100 enriched pathways includes 30% isoform-active genes, while the others 

include 20% as in the whole genome. We use Np, simulated from N (150, 20) left truncated 

at 0, to decide the size of pathway p, and in each pathway, genes are randomly selected from 

the genome according to the percentage of isoform-active genes. We also fix υ = 0.75 and λ 
= 1.0. Other simulation setups not mentioned above are similar to those in Simulation I-1.

The results of ROC comparison for data generated from the FE model are shown in Figure 

3(a), where each curve represents the median function over 50 replicate datasets. Both the 

proposed methods perform consistently better than the MAPEs and their ROC curves 

dominate those of MAPEs. The performance of iGSEAi-FE is slightly better than that of 

iGSEAi-RE. Figure 3(b) displays the results for data generated from the RE model. The 

curves of iGSEAi-FE and iGSEAi-RE are virtually overlapping, which, again, dominate the 

curves of MAPEs uniformly.

4.2 Continuous Case

Simulation II-1: comparing power—We use a normal response Y as a typical example 

of the continuous case, and assume Xksg and Yks are from a multivariate normal distribution 

with mean μx.kg = (μkg1, μkg2, …, μkgIg) and μy.k, and covariance matrix 

. Here, we first simulate the responses Yks’s from a normal 

distribution with μy.k ≡ 0 and . Then we simulate xksg using the conditional 

distribution , where 

and . Note that βkg is the vector of 

parameters for regressing Y on X, as defined in (1). For simplicity, we assume that Σx.kg is 

an identity matrix so that βkg = Σxy.kg. We also suppose all μkgi ≡ 0 for i = 1, 2, …, Ig. For 

each non-active isoform, we set the corresponding regression coefficient βkgi = 0 and 

generate xksgi from  directly. For active isoforms in the FE model, we set |βkgi| = |
β.g.| ~ abs(N (υ, 0.25)), but right truncated at 1.5; for active isoforms in the RE model, we 

set |βkgi| = |β.g. + εkg.|, where β.g. is the same as the FE model, and εkg. ~ N (0, 1) but |εkg.| is 

right truncated at 1. We still set υ ∈ {0.5, 0.75, 1} for varying strength of mean isoform 

effects. Again, we set K = 6 and the sample size of each study at 40.

Results for the type I error can be found in Table SI of Supplementary Material. The patterns 

observed are similar to those in the binary case, except that MAPE-P and MAPE-I tend to be 

slightly conservative in rejecting the null instead of being aggressive. Figure 4 reports the 

results of power comparison for the continuous case. Here, the proposed iGSEA methods are 

consistently better than the three MAPE methods and substantial gain in power can be 

obtained in many of the settings, no matter whether the data are from the FE or RE model. 

For data from the FE model, iGSEAi-FE seems to outperform iGSEAi-RE a bit; and for data 

from the RE model, the opposite occurs, but the difference is typically smaller. Recall that 
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for the discrete case, the difference between the two iGSEA methods for data from the FE 

model is not as noticeable but the difference for data from the RE model is more noticeable.

Simulation II-2: comparing sensitivity and specificity—We generate 500 pathways 

and set α = 0.30, υ = 0.75 and λ = 1.0, as in the binary case. The results of ROC comparison 

based on 50 replicate datasets are reported in Figure 5. Here, iGSEAi-FE/RE is slightly 

better than iGSEAi-RE/FE when data are generated from the FE/RE model; and both are 

substantially better than the MAPEs.

Finally, we mention that our iGSEA methods seem to outperform MAPEs in controlling the 

false discovery rate for both discrete and continuous cases, as shown in Section S5 of 

Supplementary Material; and our additional simulation for analysis of gene-level expression 

only, reported in Section S6, suggests that utilizing isoform-level expression may improve 

the power of the iGSEA methods.

5 DATA EXAMPLE

Breast cancer is one of the most common types of cancer, with more than 249,000 new cases 

expected in the United States in 2016. Identifying essential genes and pathways involved 

breast cancer tumorigenesis, progression and prognosis is the key to improve patient care in 

breast cancer. GSEA provides a powerful way to identify new therapeutic targets and predict 

signatures for personalize treatment of breast cancer. One example is the identification of 

phosphatidylinosi-tol 3-kinase (PI3K) as a therapeutic target through pathway analysis 

(Baselga, 2011; Mukohara, 2015). In this study, we applied our proposed methods to 

identify the pathways that are associated with breast cancer to improve our understanding of 

the underlying molecular mechanisms of the disease. In order to increase the accuracy and 

reliability of resulting pathways, we combine multiple mRNA expression datasets measured 

by the RNA-seq platform and conduct iGSEA. The five RNA-seq datasets used in this study 

are summarized in Table I.

We first map all raw sequencing data in FASTQ files to the genome to get BAM files. Based 

on these BAM files, the software Cufflinks (Trapnell et al., 2010, 2012), one of the most 

popular packages for preprocessing RNA-seq data, is used to assemble transcriptomes and 

quantify both gene-level and isoform-level expression. We also apply log(x + 1) 

transformation, and median normalization to the isoform expression data so that all the 

isoforms have the same median zero across different samples and studies. Among 19838 

protein-coding genes, those with ≤ 20 isoforms are included in our analysis because genes 

with too many isoforms are considered as non-informational. In total, the five datasets 

contain 283 patients in which the expression levels of 18860 protein-coding genes were 

measured. The pathway database used is KEGG (Kanehisa et al., 2012) which belongs to the 

C2 collections of MSigDB (Liberzon, 2014) and contain 186 pathways. We only consider 

pathways that have > 15 but < 500 genes, and so we test 175 pathways in total. Five methods 

are applied to combine these datasets, including the three MAPE methods and the two 

proposed iGSEA methods. In addition, we simply pool all the five datasets into one super 

dataset and perform GSEA, and we label this method by “Pooling”. In order to objectively 

assess the performance of each method, we generate 50 positive control and 50 negative 
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control pathways. For each positive control pathway, 70% of the member genes are 

randomly selected from a list of genes which are known to be highly related to breast cancer, 

and the remaining 30% are from the genes neither in any KEGG pathway nor in the list, 

while for each negative control pathway, only 10% of the member genes are selected from 

the list. The performance of six different methods is summarized using ROC curves in 

Figure 6, and compared using AUC.

Figure 6 shows that iGSEAi-RE performs best (AUC = 0.960) in this application, but the 

performance of iGSEAi-FE is very close (AUC = 0.955). Both iGSEA methods perform 

significantly better than the MAPE methods, with AUC equal to 0.886, 0.884, and 0.854 for 

MAPE_G, MAPE_I and MAPE_P, respectively. Also, the ROC curves of the proposed 

methods are always higher than those of MAPEs; especially for the false positive rate 

smaller than 0.3, the gain is quite sizable. Among all, the pooling method is the worst, and 

its AUC is 0.649, much lower than the others, con-firming the known advantages of meta-

analysis over direct combination (e.g., Bravata and Olkin 2001; Cohn and Becker 2003.)

Table SIII in Section S7 of Supplementary Material summarizes the top pathways identified 

based on the Q-values determined by iGSEAi-RE, while iGSEAi-FE gives very similar 

results in this example. In this table, among the 28 top pathways, some are clearly cancer 

related (labelled by “X” in Table SIII), including PATHWAYS_IN_CANCER, 

CELL_CYCLE, COLORECTAL_CANCER, PANCREATIC_CANCER, CLIOMA, 

POSTATE_CANCER, CHRONIC_MYELOID_LEUKEMIA, ACUTE_MY 

ELOID_LEUKEMIA, and SMALL_CELL_LUNG_CANCER. In addition, some reported 

pathways are likely to be related to breast cancer (labelled by “+” in the table). For example, 

translational machineries are usually more active in cancer because of the increasing demand 

for biomass accumulation, RNA turnover and splicing, therefore RIBOSOME, 

RNA_DEGRADATION and SPLICEO-SOME are very likely to be altered in breast cancer. 

The ENDOCYTOSIS pathway is related to the process of internalizing cell surface proteins 

and sorting them to be degraded or recycled. Dys-regulated endocytosis could mediate 

growth signaling and cell motility and invasion (Mosesson et al., 2008). Furthermore, both 

FOCAL_ADHESION and ADHERENS_JUNCTION are related to the cell adhesion 

function. Loss of cell adhesion often occurs in tumor invasion and metastasis. The 

APOPTOSIS pathway is related to program cell death, which is a machinery that cancer 

cells need to escape from. In summary, many of the pathways identified by the proposed 

iGSEA methods are consistent with our current knowledge of breast cancer, but they are 

overlooked by the MAPE methods.

6 CONCLUSIONS AND DISCUSSIONS

We have proposed integrative GSEA methods, namely, iGSEAi-FE and iGSEAi-RE, for 

meta-analysis of gene set enrichment studies utilizing isoform-specific expression analysis. 

Through simulation and a data example, we have shown that, compared with the MAPE 

methods that only use gene-level expression, our iGSEAi-FE and iGSEAi-RE can 

significantly improve the power of detecting enriched gene sets for most conditions 

considered for both discrete and continuous phenotypes. As to the choice between iGSEAi-

FE and iGSEAi-RE, we prefer to using iGSEAi-RE for binary phenotypes since its power 
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can be much better than that of iGSEAi-FE when data are generated from the RE model but 

is almost as good as iGSEAi-FE when data are generated from the FE model. For 

continuous phenotypes, it is not surprising that each iGSEA method works the best under its 

own model. Thus, it would be reasonable to test the between-study heterogeneity of the 

isoform effects, to help determine which method to apply. In the worst situation when the 

test suggests the wrong model, there is typically not much to lose in power if either iGSEA 

method is used over MAPEs based on our numerical experience.

Due to the transcriptome complexity and limitations of previous experimental approaches, 

the current gene isoform annotation is still incomplete (Jiang and Wong, 2009), leading to 

possible loss of analysis power. For example, if the test concludes that gene g’s transcript 

expression is not significantly associated with the trait, potentially existing isoforms, if 

“active”, may reverse this conclusion. Nonetheless, even with the incomplete annotation, 

using isoform-specific expression improve the power over using gene-level expression. We 

anticipate that more RNA-seq data will be available in the near future for various tissues and 

cell types, coupled with novel detection methods (Guttman et al., 2010; Trapnell et al., 2010; 

Schulz et al., 2012; Hiller and Wong, 2013; Behr et al., 2013), making it feasible to discover 

most of the expressed isoforms.

The sequencing depth/coverage often varies from experiment to experiment, affecting the 

abundance estimation of isoforms. For example, in one study, an isoform can have zero or 

low read counts in some samples, and so its signal may not be separated from the 

background noise (especially when the sample size is small), while it can have a higher 

signal-to-noise ratio in another study with deeper sequencing or a larger sample size. To 

account for heterogeneity caused by varying depth of the coverage, sample sizes, platforms, 

etc., our iGSEA methods are built on FE and RE approaches, which can naturally down-

weight studies with low signal-to-noise ratios by estimating the variances of the 

corresponding effect sizes to be large. This is an advantage over existing MAPE methods 

that use gross summary statistics to combine results besides utilization of isoform-specific 

expression.

The availability of raw data from individual RNA-seq studies (either in FASTQ or BAM 

format) would ensure that all the data are processed using the same rigid quality-control 

criteria and estimating the same quantities. If raw data in some studies are not available, our 

methods are applicable if the same gene and isoform annotation files are used in component 

studies; or we can simply skip the isoform level and apply our methods to gene-level 

expression (given the same gene annotation file is used), a reduced case in which we pretend 

that each gene only has one isoform. For the same reason, our methods are applicable to 

combine multiple microarray GSEA studies, where only gene-level expression data are 

typically available.

Finally, we mention that when both microarray and RNA-seq studies are involved in iGSEA, 

there exists a mix of isoform-level and gene-level expression data; and score statistics are 

not directly combinable using either the FE or RE approach discussed in Section 2.1, due to 

different dimensionality involved. This is because for microarray studies Ukgs and Vkgs are 

all scalars while for RNA-seq studies, Ukgs are vectors and Vkg are matrices for genes with 
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more than one iso-form. Obviously, even for the same gene, (Ukg, Vkg) typically has 

different null distributions across studies from the different technologies, depending on the 

cardinality of Ukgs so that combining (Ukg, Vkg)s through the FE or RE model-based 

approaches would require major modifications. Further, analysis of microarray data tends to 

generate more extreme values of score statistics and P -values even for less important 

differences or associations due to much larger sample sizes (compared to RNA-seq studies). 

Thus, to integrate a mix of microarray and RNA-seq expression data, we recommend to 

develop rank-based meta-analysis approaches as a promising research direction in iGSEA.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A flow chart of proposed iGSEA procedures that utilize isoform-specific expression
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Figure 2. 
Simulation I-1 – power comparison for the discrete case.
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Figure 3. 
Simulation I-2 – ROC comparison for the discrete case
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Figure 4. 
Simulation II-1 – power comparison for the continuous case
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Figure 5. 
Simulation II-2 – ROC comparison for the continuous case
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Figure 6. 
Data example: ROC comparison of positive and negative control pathways.
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Table I

Data example: summary of breast cancer datasets used

Data Set Name Case, Control Number

GSE45419 (Kalari et al., 2013) 24,8

GSE47462 (Brunner et al., 2014) 47,25

GSE52194 (Eswaran et al., 2012) 16,3

GSE58135 (Varley et al., 2014) 122,3

GSE69240 (Abba et al., 2015) 25,10
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