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PURPOSE. Corneal epithelial (CE) homeostasis requires coordination between proliferation and
differentiation. Here we examine the role of cell proliferation regulator Krüppel-like factor 5
(Klf5) in adult mouse CE homeostasis.

METHODS. Klf5 was ablated in a spatiotemporally restricted manner by inducing Cre
expression in 8-week-old ternary transgenic Klf5

LoxP/LoxP
/Krt12

rtTA/rtTA/Tet-O-Cre (Klf5
D/DCE)

mouse CE by administering doxycycline via chow. Normal chow-fed ternary transgenic
siblings served as controls. The control and Klf5

D/DCE corneal (1) histology, (2) cell
proliferation, and (3) Klf5-target gene expression were examined using (1) periodic acid Schiff
reagent-stained sections, (2) Ki67 expression, and (3) quantitative PCR and immunostaining,
respectively. The effect of KLF4, KLF5, and OCT1 on gastrokine-1 (GKN1) promoter activity
was determined by transient transfection in human skin keratinocyte NCTC-2544 cells.

RESULTS. Klf5 expression was decreased to 23% of the controls in Klf5
D/DCE corneas, which

displayed increased fluorescein uptake, downregulation of tight junction proteins Tjp1 and
Gkn1, desmosomal Dsg1a, and basement membrane Lama3 and Lamb1, suggesting defective
permeability barrier. In transient transfection assays, KLF5 and OCT1 synergistically
stimulated GKN1 promoter activity. Klf5

D/DCE CE displayed significantly fewer cell layers
and Ki67þ proliferative cells coupled with significantly decreased cyclin-D1, and elevated
phospho(Ser-10) p27/Kip1 expression. Expression of Krt12, E-cadherin, and b-catenin
remained unaltered in Klf5

D/DCE corneas.

CONCLUSIONS. Klf5 contributes to adult mouse CE homeostasis by promoting (1) permeability
barrier function through upregulation of Tjp1, Gkn1, Dsg1a, Lama3, and Lamb1, and (2) basal
cell proliferation through upregulation of cyclin-D1 and suppression of phospho(Ser-10) p27/
Kip1, without significantly affecting the expression of epithelial markers Krt12, E-cadherin,
and b-catenin.
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desmosome

The cornea is the outermost transparent tissue layer of the
eye. It provides a bulk of the refractive power of the eye

while protecting the rest of the eye from external insults.
Structurally, the mouse cornea consists of an anterior stratified
corneal epithelium (CE) that is continuously renewed through-
out life, central collagenous stroma populated by keratocytes,
and a posterior endothelial monolayer. Diverse factors includ-
ing abundantly expressed corneal crystallins,1,2 uniformly
ordered stromal collagen fibrils,3 and active mechanisms that
ensure corneal angiogenic and immune privilege4–7 contribute
toward corneal transparent and refractive properties. The
mature mouse CE consists of six to eight cell layers composed
of the innermost columnar basal cells, suprabasal and medial
wing cells, and outermost superficial cells, each with distinct
properties.8 The structural integrity of the CE depends on a
diverse range of cell junction complexes. While the most

superficial cells display tight junctions that provide a barrier
against foreign substances, wing cells are connected by
adherens junctions and desmosomes, and the basal cells are
anchored on a basement membrane consisting of randomly
arranged collagen fibrils and laminins through hemidesmo-
somes.8

During development, CE cell proliferation, migration, and
differentiation are tightly regulated by a network of transcrip-
tion factors.9 Once formed, the CE is continuously renewed as
the most superficial cells are lost by sloughing. Mature CE
homeostasis depends on diverse proteins, such as neurokinin-1
receptor, Aldh3a1, clusterin, Shp2, Tsp-1, and Wnt7a, and is
regulated by transcription factors, such as Lhx2, Pax6, AP2,
EHF, Klf4, and Klf5.9–19 Disruptions in CE homeostasis are
associated with ocular surface disorders, such as dry eye
disease, Meesmann’s dystrophy, and ocular cicatricial pemphi-
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goid.20–22 Despite its central role in ensuring corneal
transparence and refractive properties, molecular mechanisms
that coordinate the mature CE homeostasis are not completely
understood.

Previously, we demonstrated that the Krüppel-like factors
Klf4 and Klf5, abundantly expressed in the mouse cornea,23

play critical nonredundant roles in the ocular surface and are
important nodes in the network of transcription factors that
regulate ocular surface maturation.24,25 Klf4 and Klf5 possess
similar DNA-binding domains, yet exert opposing influence on
cell proliferation.26,27 In addition, Klf4 and Klf5 regulate
diverse functions, such as cell cycle progression, stem cell
maintenance, epidermal and corneal barrier formation, epithe-
lial-mesenchymal transition (EMT), and differentiation of
diverse tissues.27–29 In our earlier studies,24,25 we employed
Le-Cre transgene30 for conditional ablation of Klf4 and Klf5.
However, Le-Cre-driven ablation of Klf4 and Klf5 is not useful
for studying their role in maintenance of the normally formed
adult mouse CE. Moreover, hemizygous Le-Cre eyes are prone
to develop abnormalities even in the absence of LoxP sites.31

We overcame these concerns by ablating Klf4 in a spatiotem-
porally regulated manner within the CE using ternary
transgenic Klf4

LoxP/LoxP/Krt12
rtTA/rtTA/Tet-O-Cre (Klf4

D/DCE)
mice and discovered that Klf4 promotes CE cell fate by
suppressing EMT.32,33 In this report, we employ a similar
approach using ternary transgenic Klf5

D/DCE (Klf5
LoxP/LoxP/

Krt12
rtTA/rtTA/Tet-O-Cre) mice to test the hypothesis that the

pro-proliferative activities of Klf5 are essential for maintaining
adult CE cell homeostasis. The results obtained from this
approach suggest that Klf5 contributes to adult CE homeostasis
by promoting proliferation in basal cell layers and permeability
barrier function in superficial cell layers.

MATERIALS AND METHODS

Spatiotemporal Ablation of Klf5 and Barrier
Permeability Assessment

Ternary transgenic Klf5
LoxP/LoxP/Krt12

rtTA/rtTA/Tet-O-Cre mice
(Klf5

D/DCE) were bred on a mixed background by mating
Klf5

LoxP/LoxP mice with Krt12
rtTA/rtTA/Tet-O-Cre mice as be-

fore.32–35 Cre expression was induced in adult Klf5
D/DCE mice

by doxycycline administered through chow and intraperitoneal
injections (once every 2 weeks) for a duration of at least 1
month. Ternary transgenic littermates fed with normal chow
were used as controls. CE permeability was assessed by
staining with 2 lL 1% sodium fluorescein for 2 minutes, rinsing
with PBS, and imaging under blue light on a slit-lamp
biomicroscope equipped with a digital camera. All animal
testing was performed in accordance with guidelines set forth
by the Institutional Animal Care and Use Committee of the
University of Pittsburgh and the ARVO Statement for the Use of
Animals in Ophthalmic and Vision Research. The data
presented in this report represent at least three independent
experiments.

Histology

Klf5
D/DCE and control mice were euthanized via carbon

dioxide asphyxiation and cervical dislocation, and their eyes
were immediately fixed in 4% paraformaldehyde (Electron
Microscopy Sciences, Hatfield, PA, USA) in PBS (pH 7.4) for 24
hours at room temperature (RT). Whole globes were embed-
ded in paraffin, and central corneal 5-lm sections were stained
with hematoxylin and eosin (H&E) or periodic acid Schiff (PAS)
reagent following standard protocols. Sections were viewed
with an Olympus BX60 microscope (Olympus America, Inc.,

Allentown, PA, USA) and captured using a Spot digital camera
(Spot Diagnostics Instruments, Inc., Sterling Heights, CA, USA).
All images were processed similarly using Adobe Photoshop
and Illustrator (Adobe Systems, San Jose, CA, USA).

Isolation of Total RNA, cDNA Synthesis, and Real-
Time Quantitative PCR (QPCR)

Total RNA was isolated from dissected control and Klf5
D/DCE

corneas using EZ-10 Spin Columns (Bio Basic, Inc., Amherst,
NY, USA). Approximately 1 lg RNA was used to synthesize
cDNA using mouse moloney leukemia virus reverse transcrip-
tase (Promega, Madison, WI, USA). Transcript levels for target
genes were quantified in triplicate using TaqMan or SYBR
Green chemistries in an ABI StepOne Plus thermocycler with
standardized gene-specific probes and primers. Pyruvate
carboxylase (Pcx) and Gapdh served as endogenous controls,
respectively. The sequence of oligonucleotide primers used for
SYBR Green-based QPCR is provided in Supplementary Table
S1.

Antibodies

All antibodies have been previously shown to be cross-reactive
to mouse and specific to the desired antigen. A list of
antibodies used can be found in Supplementary Table S2.

Immunofluorescent Staining

Eyes from Klf5
D/DCE and control mice were embedded in

optimal cutting temperature (OCT) medium (Fisher Health-
Care, Houston, TX, USA). Thin (8 lm) sections were fixed in
4% paraformaldehyde for 15 minutes, washed twice for 5
minutes in PBS, permeabilized in 0.25% Triton X-100 in PBS for
20 minutes, washed twice for 5 minutes in PBS, treated with
0.1 M glycine in PBS for 30 minutes, washed thrice for 5
minutes with PBS, blocked samples in 10% goat or donkey
serum, incubated in primary antibodies diluted in 10% serum
overnight at 48C, washed thrice for 5 minutes in PBS, incubated
in appropriate secondary antibody, washed twice for 5 minutes
in PBS þ 0.1% Tween-20 (PBS-T), counterstained with 40,6-
diamidino-2-phenylindole (DAPI) for 10 minutes, washed twice
for 5 minutes in PBS-T, and mounted with AquaMount
(Thermo-Fisher Scientific, Pittsburgh, PA, USA). Confocal
images were taken on an Olympus IX81 microscope (Olympus
America, Inc.). Using Olympus FluoView and Adobe Photo-
shop and Illustrator, background was identically removed.
Proliferative index (PI) was calculated by dividing the number
of Ki67þ cells by the total cell count, as well as by dividing the
Ki67þ cells by the length of the base of the CE in one
microscopic field. The relative fluorescence intensity was
quantified using MetaMorph software (Molecular Devices, LLC,
Sunnyvale, CA, USA) in multiple fields from different sections
stained independently. Results presented are representative of
at least three independent experiments.

Whole-Mount Corneal Staining

The control and Klf5
D/DCE eyes were fixed in 4% paraformal-

dehyde in PBS for 40 minutes at 48C and washed twice for 20
minutes in PBS. Corneas were dissected and blocked in 2%
bovine serum albumin (BSA) and 3% goat serum for 1 hour,
washed once for 10 minutes in PBS, incubated in primary
antibodies diluted in 2% BSA in PBS overnight at 48C, washed
thrice for 10 minutes in PBS, incubated in secondary antibody
diluted in 2% BSA in PBS for 2 hours, adding 1 lg/mL DAPI after
the first hour, and washed twice for 20 minutes in PBS. Radial
slits were cut, and corneas were mounted with AquaMount.
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Images are of the anterior-most 30 lm of the cornea obtained
and processed in a similar manner to sectioned immunofluo-
rescent samples.

Western Blotting and Gel Staining

Dissected control and Klf5
D/DCE corneas were lysed in

radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris-
HCl, 150 mM NaCl, 0.5% sodium deoxycholic acid, 1% Triton
X-100, and protease inhibitors) or urea (8.0 M urea, 0.8% Triton
X-100, 0.2% SDS, 3% b-mercaptoethanol, and protease inhib-
itors) buffer. Lysates were centrifuged to remove debris, and
equal volume of supernatant was separated on 4% to 12%
gradient polyacrylamide gels using 3-(N-morpholino)propane-
sulfonic acid (MOPS) buffer. For staining, gels were washed in
water for 1 hour, stained in EZ-Run Protein Staining Solution
(Fisher BioReagents, Fair Lawn, NJ, USA) for 2 hours, de-stained
in water overnight, and imaged on an Epson 4490 Photo
scanner (Epson America, Inc., Long Beach, CA, USA). For
Western blotting, gels were transferred to polyvinylidene
difluoride (PVDF) membranes, blocked in Odyssey Blocking
Buffer (LI-COR Biosciences, Lincoln, NE, USA) for 1 hour,
washed thrice for 5 minutes in PBS-T, incubated in primary
antibodies diluted in blocking solution and PBS-T overnight at
48C, washed thrice for 5 minutes in PBS-T, incubated in
fluorescently labeled secondary antibodies, washed thrice for 5
minutes in PBS-T, washed once for 5 minutes in PBS, and
imaged on an Odyssey scanner (LI-COR Biosciences). Densito-
metric analyses were performed using Image-J software
(National Institutes of Health, Bethesda, MD, USA). b-actin
served as loading control for normalization.

Transient Cotransfection Assays

Gastrokine-1 (GKN1)-Luc reporter plasmids, wherein �479/
þ16 bp, �185/þ16 bp, or �113/þ16 bp GKN1 promoter
fragments drive luciferase gene expression, were generated by
cloning the corresponding PCR-amplified promoter fragments
in pGL3-Basic (Promega). Expression vectors pCI, pCI-KLF4,
pCI-KLF5, and pCI-OCT1 were from Open Biosystems (Hunts-
ville, AL, USA). Human skin NCTC-2544 epithelial cells36 were
grown in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum in humidified air
with 5% CO2 at 378C. NCTC cells in midlog phase of growth
were cotransfected with 1.83 lg plasmids (0.6 lg GKN1-Luc
reporterþ 0.4 lg pCI-KLF4, pCI-KLF5, and/or pCI-OCT1, along
with 0–1.2 lg pCI as filler to keep the total amount of plasmid
used constant, and 30 ng pRL-SV40 plasmid for normalizing the
transfection efficiency) using 6 lL FuGENE-6 (Roche Molecular
Biochemicals, Indianapolis, IN, USA). After 2 days of transfec-
tion, the cells were washed with cold PBS, lysed with 500 lL
passive lysis buffer (Promega), and 100 lg lysate was analyzed
using a dual luciferase assay kit (Promega and Biotek Synergy-II
microplate reader (Biotek, Winooski, VT, USA), integrating the
measurement over 10 seconds with a delay of 2 seconds.

RESULTS

Klf5 Is Ablated in a Spatiotemporal Manner in
Klf5D/DCE CE

To determine the role of Klf5 in adult mouse CE homeostasis,
Klf5 was ablated in 8-week-old Klf5

D/DCE CE using a
doxycycline-induced ternary transgenic Tet-On system.34,35

Klf5 transcript level within the Klf5
D/DCE corneas was

decreased to 23% of that in the control, indicating efficient
ablation of Klf5 after 1 month of doxycycline administration

(Fig. 1A). While the control and the Klf5
D/DCE eyes appeared

similar upon visual examination, Klf5
D/DCE eyes displayed

increased fluorescein staining, indicating decreased permeabil-
ity barrier function (Fig. 1B). Histological examination of PAS-
stained sections revealed fewer cell layers in Klf5

D/DCE CE than
in control CE, as well as a disrupted CE basement membrane
(Fig. 1C). On average, the Klf5

D/DCE CE possessed 4.25 cell
layers compared with 6.0 in the age-matched controls (n¼ 8; P

¼0.00013). Examination of the soluble protein profile from the
control and the Klf5

D/DCE corneas revealed no striking
difference, with the expression of corneal crystallins Aldh3a1
and Tkt remaining unaltered (Fig. 1D). Together, these results
suggest that though the Klf5

D/DCE corneas display decreased
number of cell layers, their epithelial properties may remain
unperturbed.

Cell Proliferation Rate Is Decreased in Adult Klf5D/DCE

CE

Considering that (1) the Klf5
D/DCE CE harbored fewer cell

layers (Fig. 1C) and (2) Klf5 is known to promote cell
proliferation in multiple tissues,37–40 we tested if cell
proliferation is perturbed within the Klf5

D/DCE CE. Immuno-
fluorescent stain with anti-Ki67 antibody revealed a significant
decrease in the number of proliferating cells in the Klf5

D/DCE

CE compared with that in the control (Fig. 2A). The PI, defined
as the number of Ki67þ cells per total number of cells in each
microscopic field or unit length of the cornea, was significantly
lower for Klf5

D/DCE corneas than the control (Fig. 2B). This
correlates well with the Klf5

D/DCE CE histology, which shows
decreased cell layers (Fig. 1C). As Klf5 regulates human bladder
cancer cell proliferation through cyclin-D1,27,38 we next tested
if cyclin-D1 expression is altered in the Klf5

D/DCE CE.
Immunofluorescent staining for cyclin-D1 indicated decreased
expression in the absence of Klf5 (Fig. 3A). Consistent with
these results, the expression of phospho(S-10)-p27/Kip1 was
upregulated in the Klf5

D/DCE CE (Fig. 3B). Together, these
results suggest that the decreased Klf5

D/DCE cell proliferation is
a consequence of downregulation of cyclin-D1 and upregu-
lation of phospho(S-10)-p27/Kip1.

CE Basement Membrane Is Disrupted in Klf5D/DCE

Corneas

As histological examination of the PAS-stained sections
suggested a disruption in the Klf5

D/DCE CE basement mem-
brane (Fig. 1C), we next examined the expression of basement
membrane laminins. Immunofluorescent stain with a pan-
laminin antibody (raised against laminins from sarcoma, and
known to detect basement membrane laminins41) detected
robust expression of laminins in the control basement
membrane but not the Klf5

D/DCE, demonstrating that the
Klf5

D/DCE CE basement membrane is disrupted (Fig. 4A).
Consistent with these results, Lama3 and Lamb1-1 transcript
levels were significantly decreased in the Klf5

D/DCE compared
with the control corneas (Fig. 4B), while the other laminin
monomers tested were not altered.

Dsg1a Expression Is Downregulated in the Klf5D/DCE

CE

To determine if inefficient cell–cell adhesion led to enhanced
cell sloughing resulting in the observed Klf5

D/DCE CE thinning
(Fig. 1C), we next evaluated the expression of desmosomal
components. Dsg1a transcripts were significantly decreased to
9% of the control levels, while the transcripts encoding several
other desmosomal components were moderately affected in
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the Klf5
D/DCE CE (Fig. 5A). Consistent with these results,

immunoblots and immunofluorescent stain revealed downreg-
ulation of Dsg1 expression (Figs. 5B, 5C). Taken together, these
results suggest that the downregulation of Dsg1a likely
contributes to the altered Klf5

D/DCE CE barrier function.

Klf5 Maintains Tight Junction in the Adult Mouse
CE

To further determine the molecular basis for disrupted barrier
function in Klf5

D/DCE corneas, we evaluated the expression of
tight junction-associated proteins. QPCR demonstrated a
significant decrease in uroplakin (Upk)1b, Upk3b, Gkn1,

and Tjp1 transcript levels in the Klf5
D/DCE (Fig. 6A). This

decrease in Tjp1 and Gkn1 in Klf5
D/DCE corneas was also

evident in whole-mount immunofluorescent staining (Fig. 6B).
In addition, Tjp1 and Gkn1 colocalized to the control corneal
tight junctions, suggesting potential interaction between these
proteins.

To resolve if downregulation of Gkn1 in the Klf5
D/DCE CE is

a direct consequence of the absence of Klf5, we performed in
vitro transient transfection assays in NCTC epithelial cells36

wherein reporter plasmids with different GKN1 promoter
fragments regulating the luciferase reporter gene were
cotransfected with plasmids overexpressing KLF4, KLF5, and/
or OCT1. The �479/þ16 bp GKN1 promoter activity was
stimulated 7.6-, 19- and 2.75-fold by overexpression of KLF4,

FIGURE 1. Adult mouse CE-specific ablation of Klf5 results in fewer cell layers and disrupted barrier function. (A) QPCR results demonstrate that
Klf5 transcripts are downregulated to 23% of the control in Klf5

D/DCE after 1 month of doxycycline administration (n¼ 8). Error bars represent 1
SEM. (B) Fluorescein staining revealed green patches in Klf5

D/DCE but not control corneas, indicating a loss in Klf5
D/DCE barrier function (n¼5). (C)

PAS-stained Klf5
D/DCE corneal sections show fewer CE layers as compared to control (n¼5). PAS stain also reveals intact basement membrane in the

control (arrows) but not the Klf5D/DCE (arrowheads) corneas. (D) Coomassie blue-stained SDS-PAGE profile of soluble protein from two control and
Klf5D/DCE corneas each revealed no appreciable change in corneal crystallins Aldh3a1 and Tkt.

FIGURE 2. Decreased cell proliferation in Klf5
D/DCE. (A) Immunoflu-

orescent stain with anti-Ki67 antibody revealed an abundance of
proliferating cells in the central CE of the control (arrows) but not the
Klf5D/DCE (arrowheads) corneas. (B) PI calculated as either number of
Ki67þ cells per total number of CE cells, or number of Ki67þ cells per
unit length of the central cornea, reveals a significant decrease in PI in
Klf5

D/DCE corneas (n ¼ 13). Error bars represent 1 SEM.
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KLF5, and OCT1, respectively (Fig. 7). A synergistic effect was
observed with cotransfection of OCT1 and KLF5, but not KLF4
and KLF5, or OCT1 and KLF4. Although the extent of
stimulation by KLF5 was decreased to 5.5- and 8-fold with
shorter �185/þ16 bp and �113/þ16 bp GKN1 promoter
fragments, similar synergism was observed with cotransfection
of KLF5 and OCT1, suggesting that the KLF5- and OCT1-
responsive elements are present within the �113/þ13-bp
proximal promoter (Fig. 7). Inclusion of KLF4 erased the
synergistic effect observed with KLF5 and OCT1, suggesting
that KLF4 competes for the same binding site as KLF5, but does
not cooperate with OCT1 (Fig. 7).

Ablation of Klf5 Does Not Significantly Alter the
Expression of CE Markers

In view of our recent finding that the spatiotemporally
regulated ablation of the related factor Klf4 in adult CE results
in EMT,32 it was imperative that we evaluate the status of the
Klf5

D/DCE epithelial identity. Toward this, we examined the
expression of keratin-12, E-cadherin, vimentin, and b-catenin.
QPCR revealed insignificant change in Klf4, Krt12, E-cadherin,
and vimentin transcript levels (Fig. 8A). Consistent with these
results, immunoblots demonstrated that Klf4, Krt12, E-cadher-
in, and b-catenin protein levels were largely unaltered in the
Klf5

D/DCE corneas (Fig. 8B). Additionally, immunofluorescent
staining with anti-Krt12, anti-E-cadherin, and anti-b-catenin
antibodies revealed no significant change in their expression
levels or subcellular localization in Klf5

D/DCE compared with
the control corneas (Fig. 8C). Taken together, these results
suggest that the expression of keratin-12, E-cadherin, vimentin,
and b-catenin is relatively unperturbed in Klf5

D/DCE, despite

FIGURE 3. Klf5
D/DCE corneas display altered expression of cyclin-D1 and phosphor-p27 Kip1. (A) Immunofluorescent stain with anti-cyclin-D1

antibody shows control basal epithelial cells display robust expression of cyclin-D1 that is missing in the Klf5
D/DCE corneas. Relative fluorescence

intensity measurement revealed a significant decrease in cyclin-D1 expression in Klf5
D/DCE corneas (n¼ 4). (B) Immunofluorescent stain with anti-

phospho(S-10)-p27/Kip1 antibody reveals that the control basal epithelial cells do not express phospho-p27/Kip1, unlike Klf5D/DCE CE. Relative
fluorescence intensity measurement revealed a significant increase in phospho-p27/Kip1 expression in Klf5D/DCE (n¼ 4). Error bars represent 1
SEM.

FIGURE 4. Klf5D/DCE corneas display disrupted basement membrane.
(A) Immunofluorescent staining of control and Klf5D/DCE corneas with
a pan-laminin antibody reveals that the Klf5

D/DCE basement membrane
is disrupted. Laminin expression was detected underneath the control
CE (arrows) but not in the Klf5

D/DCE (arrowheads), suggesting that the
Klf5D/DCE basement membrane is disrupted. (B) QPCR reveals a
decrease in Lama3 and Lamb1-1 transcripts, while other laminin
monomers tested remain unchanged (n ¼ 6). Error bars represent 1
SEM.
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decreased rate of proliferation and striking morphological
changes.

DISCUSSION

In this report, we provide evidence that Klf5 contributes to the
adult CE homeostasis by maintaining optimal rate of CE cell
proliferation and promoting cellular junctions based on the
results obtained by spatiotemporally regulated ablation of Klf5.
The Klf5

D/DCE epithelium displayed defective permeability
barrier, decreased proliferation coupled with fewer CE cell
layers, and a disrupted basement membrane. Consistent with
these results, the expression of tight junction components
Tjp1 and Gkn1, desmosomal protein Dsg1, and cell prolifer-
ation regulators cyclin-D1 and phospho(Ser-10)p27/Kip1 was
altered in the Klf5

D/DCE CE. Despite significant changes in
Klf5

D/DCE proliferation and barrier function, the expression of
Krt12, E-cadherin, and b-catenin remained relatively unaltered.
Thus, unlike Klf4

D/DCE, where CE cell proliferation rate was
elevated and epithelial properties were lost in favor of
mesenchymal features,32 the Klf5

D/DCE CE displays diminished
cell proliferation while retaining many of their epithelial
characteristics. Together, these results are consistent with a
functional dichotomy between the structurally related tran-
scription factors Klf4 and Klf5 that work in concert to maintain
CE homeostasis (Fig. 9).

Klf4 and Klf5 are among the most highly expressed
transcription factors in the mouse CE, where they play
essential nonredundant roles.23–25,42–46 Although Klf4 and

Klf5 possess similar DNA-binding domains, they exert oppos-
ing influence on cell proliferation.27,47 Klf4, an inhibitor of cell
proliferation, promotes corneal epithelial differentiation by
suppressing EMT,32 while the data presented in this report
reveal that Klf5 promotes basal CE cell proliferation. To
understand the basis for the nonredundant functions of Klf4
and Klf5 despite their similar DNA-binding domains, it is
necessary to determine the molecular constraints that establish
distinct DNA-binding sequence specificities on their target
gene promoters. Considering the divergent nature of the Klf4
and Klf5 N-terminal regulatory domains, it is conceivable that
Klf4- and Klf5-target site selection is influenced by the specific
cofactors that they interact with, and/or the sequences
flanking the core recognition sequence.

This report demonstrates that Klf5 contributes to the CE
permeability barrier function by regulating the expression of
tight junction components in superficial cells, desmosomal
components in wing cells, and laminins in the basement
membrane. Previously, we have shown that Klf5 is relatively
more abundant in the basal than the superficial CE cells.25,42

Disruption of tight junctions within the superficial Klf5
D/DCE

cells suggests a key role for residual Klf5 in the superficial
cell layers. Alternatively, this may reflect an indirect
outcome of their premature sloughing off—a possibility that
is consistent with the weaker desmosomes in the spinous
and wing cells. Defects in any of these components that
contribute to the structural integrity of the CE are
deleterious.48–50 A similar function was previously attribut-
ed to Klf5 in the mouse intestine, where the barrier function

FIGURE 5. Desmosomal components are altered in Klf5
D/DCE corneas. (A) QPCR shows slight decreases in transcript levels of several desmosomal

proteins in Klf5
D/DCE corneas, as compared to control (n¼5). (B) Immunoblot shows a decrease in Dsg1 protein expression, with b-actin serving as

a loading control for densitometric normalization. (C) Immunofluorescent stain with anti-Dsg1 antibody shows an altered expression pattern for
Klf5D/DCE corneas, with expression limited to the very anterior-most layers (n¼ 4). Error bars represent 1 SEM.
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was compromised in the absence of Klf5.14 Our results also
revealed downregulation of Gkn1, Upk-1b and -3b that serve
important gastrointestinal and urothelial permeability barri-
er functions.51–54 Gkn1, also known as AMP-18, is an 18-kDa
secreted protein that serves as a mitogen and helps maintain
intestinal epithelial barrier function by stabilizing tight

junction proteins occludin and Tjp1.53,55,56 Corneal func-

tions of Gkn1 remain to be tested though our finding that

Gkn1 colocalizes with Tjp1 at the control CE tight junctions

suggests a similar role for it in the CE as in the GI tract: to

maintain tight junctions.

In transient transfection assays, GKN1 promoter activity

was regulated synergistically by KLF5 and OCT1 in NCTC cells,

while KLF4 exerted little influence. OCT1 is a ubiquitously

expressed transcription factor that has been implicated in

regulating differentiation and preventing tumorigenesis.57–59

FIGURE 6. Klf5D/DCE corneas show decreased transcription and
expression of tight junction proteins. (A) QPCR detected significantly
less transcripts encoding tight junction-associated Upk1b, Upk3b,

Gkn1, and Tjp1 in Klf5
D/DCE than in control corneas (n¼6). Error bars

represent 1 SEM. (B) Whole-mount immunofluorescent staining
revealed a sharp decrease in Tjp1 and Gkn1 expression in Klf5D/DCE

corneas, compared with the control.

FIGURE 7. Transient cotransfections indicate the roles of KLF5 and
OCT1 in regulating GKN1 promoter activity. GKN1-Luc reporter
plasmids with varying GKN1 promoter fragment sizes were cotrans-
fected with expression vectors pCI-KLF4, -KLF5, and/or -OCT1.
Reporter assays revealed synergistically increased expression upon
cotransfection of KLF5 and OCT1. KLF4 and KLF5 appear to bind the
same cis-elements as their cotransfection did not result in any additive
or synergistic activation. A similar expression pattern was observed in
all the promoter fragments tested, suggesting that the KLF5- and OCT1-
responsive elements reside within the smallest promoter fragment
tested (n ¼ 3). Error bars represent 1 SEM.
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The synergistic effect of KLF5 and OCT1 on GKN1 promoter
activity demonstrates that in addition to its role in basal
epithelial cell proliferation, Klf5 is also important for main-
taining the properties of differentiated superficial cells. The
absence of this synergistic effect when KLF4 and KLF5 were
cotransfected suggests that they both compete for the same cis-
elements within the GKN1 proximal promoter. Whether Gkn1
is downregulated in the Klf5

�/� intestinal epithelium, and
intestinal expression of Gkn1 also is regulated by Klf5 in a
similar manner as in the CE, remains to be determined.
Identification of KLF5- and OCT1-target sites within GKN1

proximal promoter by chromatin immunoprecipitation, and
evaluation of their functional relevance by mutagenesis and
transgenic approach, would be necessary to provide conclu-
sive in vivo evidence for synergistic regulation of GKN1 by
KLF5 and OCT1.

Our data suggest that Klf5 promotes cell proliferation, in
part, by upregulating cyclin-D1 expression while suppressing
that of phospho(Ser-10)-p27/Kip1, facilitating G1 to S phase
transition in cell cycle. This inference, however, is purely
correlative, and definitive evidence for direct involvement of
KLF5 in regulating cyclin-D1 and p27 expression would
require demonstration of binding of KLF5 to the genes
encoding cyclin-D1 and p27 in CE, and the resultant change
in their corresponding promoter activities. In previous studies,
upon Le-Cre mediated pan-ocular surface ablation of Klf5 from
embryonic day 10, the Klf5CN CE displayed increased cell
proliferation,25 in contrast with the results presented here.
Corneal neovascularization and the influx of immune cells
evident within the Klf5CN corneas42 is absent in the present
Klf5

D/DCE corneas, suggesting that the increased cell prolifer-

ation in the Klf5CN corneas is an indirect outcome of the
inflammatory environment generated as a result of the pan-
ocular surface ablation of Klf5 from an early embryonic
stage.25,42 The decreased Klf5

D/DCE CE cell proliferation is
consistent with basal epithelial cell-preferred expression of
Klf5, and its well-established pro-proliferative activity in diverse
cell types.38,47,60

In summary, we have ablated Klf5 in the adult mouse CE
to better understand the role of this transcription factor in
maintaining corneal homeostasis. Our findings suggest Klf5
is essential for proper barrier function and CE cell
proliferation. Several studies report epithelial differentiation
is reliant on a balance between Klf5 and Klf4 both spatially
and temporally.29,61–63 In the intestinal epithelium, Klf5
localizes in crypts, where cells are actively dividing, and Klf4
is concentrated at the tops of intestinal villi, where cells are
differentiated.47,64,65 Similarly, corneal epithelial Klf5 is most
highly expressed in the basal cells, and Klf4 is relatively
more abundant in the superficial cells,25,33 Given the
decreased Klf5

D/DCE cell proliferation, it is reasonable to
speculate that Klf4 and Klf5 have similar functions in the CE
as they do in intestinal epithelium, regarding proliferation
and differentiation. Our results presented in this report,
coupled with previous data,32,33 reveal that the choice
between CE cell proliferation and differentiation is deter-
mined by the delicate balance between the anti- and pro-
proliferative activities of Klf4 and Klf5, respectively (Fig. 9).
When this balance is perturbed, CE homeostasis is disrupted
resulting in diseases, such as ocular surface squamous
metaplasia and neoplasia.

FIGURE 8. Expression of CE-specific markers remains relatively unchanged in Klf5D/DCE corneas. (A) QPCR analyses show little change in Klf4,
Krt12, E-cadherin, and vimentin transcripts between the control and Klf5

D/DCE CE (n¼8). (B) Immunoblots and their densitometric measurements
with b-actin as loading control show that Klf4, Krt12, E-cadherin, and b-catenin expression is relatively unchanged in Klf5

D/DCE corneas, compared
with the control. (C) Immunofluorescent staining and corresponding fluorescence intensity measurements reveal little change in expression of
Krt12, E-cadherin, and b-catenin between Klf5D/DCE and control (n¼ 3). Error bars represent 1 SEM.
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