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Summary

We propose a method for analyzing data which consist of curves on multiple individuals, i.e., 

longitudinal or functional data. We use a Bayesian model where curves are expressed as linear 

combinations of B-splines with random coefficients. The curves are estimated as posterior means 

obtained via Markov chain Monte Carlo (MCMC) methods, which automatically select the local 

level of smoothing. The method is applicable to situations where curves are sampled sparsely 

and/or at irregular time points. We construct posterior credible intervals for the mean curve and for 

the individual curves. This methodology provides unified, efficient, and flexible means for 

smoothing functional data.
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1. Introduction

In recent years, nonparametric analysis of longitudinal data has received an increasing 

amount of attention. This acceleration gained impetus after the publication of Ramsay and 

Silverman (1997), which popularized the term “functional data analysis” (FDA; coined in 

Ramsay and Dalzell, 1991) to describe nonparametric analyses of longitudinal data which 

focus on the curves themselves as the basic unit of data. Goals for a given FDA may include, 

for example, describing the major modes of functional variation in the data, exploring the 

individual variation of curves from overall mean trajectories, and characterizing the 

dependence of curves on covariates. For these purposes, methods such as functional 

principal components analysis (FPCA) and functional linear models, among others, have 

also been developed and applied (Ramsay and Silverman, 1997, 2002; Rice, 2004; Müller, 

2005).
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An important first step with many FDA techniques is smoothing the data to obtain individual 

curves for each subject. Initially, FDA encompassed mostly data which were frequently and 

regularly sampled across individuals (e.g., Rao, 1958; Besse and Ramsay, 1986; Rice and 

Silverman, 1991). However, FDA has been increasingly applied to data which may be 

sampled at time points differing in both number and timing across individuals. Moreover, 

some individual curves may be sampled at only a few time points. Such data are called 

“sparse” functional data. This article focuses primarily on developing a Bayesian 

nonparametric method appropriate for smoothing noisy, sparse functional data. This method 

can also be used, however, for smoothing functional data which are not sparse.

Many methods have been proposed for smoothing functional data. One approach, sometimes 

called the “direct method”, smooths each curve individually. This often works well when 

there are an equal number of frequently sampled time points for each individual under study. 

However, problems arise when attempting this direct method on sparse functional data. For 

example, individuals with few sampled time points will have unreliable curve estimates, 

especially if the data are noisy. Moreover, subsequent analyses utilizing the smoothed curves 

often give equal weight to curves which may in fact be estimated with varying levels of 

precision. In this situation, it would be desirable to borrow strength across individuals when 

estimating individual curves and also to adjust the levels of certainty to reflect both the 

variation within an individual and the variation across individuals in the sample.

One of the first methods aimed at smoothing irregularly sampled curves was formulated by 

Brumback and Rice (1998); these authors proposed a penalized smoothing spline mixed 

model, which was a generalization of the work of Kimmeldorf and Wahba (1970) to multiple 

curve estimation. Closely related approaches include varying coefficient models (Hoover et 

al., 1998), mixed effects smoothing splines (Wang, 1998), the functional mixed effects 

models of Guo (2002), and various methods employing B-splines for modeling functional 

data (Shi, Weiss, and Taylor, 1996; Rice and Wu, 2000; James, Hastie, and Sugar, 2001; 

James and Sugar, 2003). A recently developed adaptive smoothing methodology employing 

piecewise linear models and knot selection through reversible-jump MCMC (Holmes and 

Mallick, 2001) is given in Bigelow and Dunson (2005a,b).

Many of the approaches listed above require a separate model selection procedure distinct 

from parameter estimation to choose the level of smoothing in the model. Inference 

following parameter estimation often also requires an additional procedure (e.g., 

bootstrapping), and is conditional on the “best” model selected. This can lead to 

unrealistically low estimates of the level of variability in curve estimates. One remedy to 

these difficulties which is appropriate for sparse functional data and which elegantly handles 

many of the issues mentioned above is to use a Bayesian mixed effects model with a B-

spline basis, employing an unknown number and locations of breakpoints. We use Markov 

chain Monte Carlo (MCMC) methods to sample from the posterior distribution of the model 

parameters. The model includes latent indicators which determine whether a given 

breakpoint is included in the model. Our strategy is to start with a large number of 

breakpoints and hence a large number of B-spline basis functions and then allow that each of 

these breakpoints may be excluded from the model with a nonzero probability. This method 

builds on previous work on nonparametric estimation of a single function (Smith and Kohn 
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1996; Kohn, Smith, and Chan, 2001). Our model also allows for straightforward 

computation of pointwise Bayesian posterior credible regions for both the mean curve and 

the individual curves. The individual posterior credible regions automatically adjust for the 

level of sparseness with which the given curve is sampled.

The outline for the remainder of the article is as follows. In Section 2, we describe the 

application data set obtained from the Massachusetts Institute of Technology (MIT) Growth 

and Development Study. In Section 3, we describe the proposed model, while Section 4 

outlines the sampling scheme for this model. In Section 5, we analyze the data from the MIT 

Growth and Development Study. Section 6 provides the results of a simulation study. 

Finally, in Section 7, we present a short discussion and suggest areas of further development.

2. MIT Growth and Development Study

To demonstrate the proposed method, we apply it to the MIT Growth and Development 

Study (Bandini et al., 2002; Phillips et al., 2003) taken from Fitzmaurice, Laird, and Ware 

(2004). The data consist of body fat measurements on a cohort of 162 girls. The goal of the 

analyses in Fitzmaurice et al. (2004) is to examine the changes in body fat percentage before 

and after menarche. All of the girls were followed roughly annually from up to 6 years prior 

to menarche until 4 years afterward. An average of 6.4 measurements exist per individual 

but the actual number of measurements for each girl varies from 3 to 10. A plot of the body 

fat percentage measurements versus time can be observed in Figure 1. In this plot, time (in 

years) is centered at the onset of menarche, which corresponds to an average actual age of 

12.8 years. In Fitzmaurice et al. (2004), a LOWESS curve is fit to the data to determine 

plausible models for the mean response. The LOWESS curve reveals an increase in the rate 

of body fat accretion after menarche; these authors subsequently fit a piecewise linear 

mixed-effects regression model with a single breakpoint at the onset of menarche.

This piecewise linear model effectively captures the change-point in overall mean slope of 

body fat accretion pre- and postmenarche. However, the data also provide evidence 

suggesting that the rate of accretion somewhat slows again after 1 year postmenarche. This 

potentially more complex functional form for the overall mean is not captured by the 

piecewise linear model of Fitzmaurice et al. (2004). Moreover, some individual girls have 

trajectories which exhibit strong variation from the overall mean. One of the goals in an 

analysis of these data may be to estimate individual trajectories or to identify those 

trajectories which exhibit significantly unusual behavior. The piecewise linear model of 

Fitzmaurice et al. (2004) does not allow for sizeable variation in the shapes of the individual 

trajectories and hence is not well adapted to these types of analyses. For these reasons, it 

may be advantageous to examine the changes in body fat percentage before and after 

menarche via a more flexible smoothing methodology. In Section 5, we flexibly estimate 

and provide posterior credible intervals for the overall mean and individual girl body fat 

trajectories. Furthermore, we explore the major modes of functional variation and correlate 

these with age of onset of menarche by employing an eigenanalysis (FPCA) on the 

estimated covariance function of the random effects.
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3. The Model and Prior Specification

3.1 The Model

Suppose we observe n individuals. The response yi(t) for individual i as a function of time t 
is assumed to be independent of responses from other individuals and to arise from the 

model

(1)

Here, μ(·) is the mean function for all individuals under study and gi(·) is the systematic 

departure of subject i from μ(t). We assume that the error function εi(·) is a zero mean 

Gaussian white-noise process with constant variance  and is uncorrelated with μ(t) or gi(t). 
Other authors have considered models with serial correlation on the error terms. For 

simplicity, we do not consider such a case here.

We further suppose that model (1) can be closely approximated by expressing μ(·) and gi(·) 
as linear combinations of basis functions. We develop the case where the basis functions are 

chosen as B-splines of order p. In general, however, this method is easily generalizable to 

other types of basis functions, e.g., radial bases for bivariate surface estimation (Kohn et al., 

2001). Let {B1(·), …, BK ()} be a given K-dimensional B-spline basis of order p spanning 

the range of time values [0, T]. Thus, we express model (1) as

(2)

Here, the coefficients βk correspond to the mean functional outcomes for all individuals 

under study, whereas the random coefficients bi = (bi1, …, biK)′ correspond to the “large-

scale” deviation of the ith individual’s functional outcome from the mean. In Section 3.2, 

these random coefficients are modeled as independent random variables with covariance Σb. 

Along with the white-noise process εi(·), the covariance matrix Σb of the random effects 

determines the covariance structure of the within-individual functional observations.

Of course, only a finite number of observations, say mi, are made on each individual; the 

number and times of occurrence of these observations may vary considerably from one 

subject to another. Suppose that the ith individual has measurements at time points 

. Using (2), the observed outcomes yij are modeled as

(3)

Let Xi be the design matrix of dimensions mi × K for the ith subject with the jkth entry given 

by Bk(tij). Then (3) can be expressed in matrix form as
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(4)

This is a random effects model with a within-subject covariance structure given by cov 

. Thus, if we condition the model on the choice of basis functions and 

treat the design matrix as fixed, parameter estimation can proceed using standard techniques, 

either Bayesian or non-Bayesian.

In practice, however, the number and placement of breakpoints determining the B-spline 

basis are seldom known a priori. One way to handle this in a Bayesian framework is to start 

with a large pool of potential breakpoints and include latent indicator variables in the model, 

with one for each breakpoint (Smith and Kohn, 1996; Kohn et al., 2001). A given indicator 

equals one if the corresponding breakpoint is to be included in the model and zero 

otherwise. Note that inclusion or exclusion of a breakpoint not only adds or deletes one basis 

function but also modifies those B-spline functions immediately surrounding it. Thus, the 

addition or deletion of breakpoints does not simply correspond to the addition or deletion of 

basis functions in model (4).

Let γ be the vector of indicator variables, and let  be the qγ B-spline 

basis functions determined by the breakpoints selected in γ. Also, let Xγ,i denote the mi × 
qγ design matrix for subject i corresponding to these selected basis functions evaluated at 

time points ti. Then, model (4) conditional on γ becomes

(5)

The parameters βγ and  are qγ-dimensional vectors corresponding to the model 

implied by the indicators γ. The relationship between the regression parameters conditional 

on γ and the regression parameters in the full model (4) is detailed in the Web Appendix. 

Note that we have formulated model (5) so that all subjects have the same basis functions. 

This implies that all individual trajectories can be well approximated by curves with the 

same level of smoothness. We indicate one way of relaxing this assumption in Section 7, 

where we also discuss the possible inclusion of covariates in model (5).

3.2 Prior Specification

We use a B-spline basis of order p over the range [0, T], where T is at least as large as the 

largest time point in the data. In our simulations and example, we use p = 4, thus generating 

piecewise cubic functions which are twice continuously differentiable at each breakpoint. 

One breakpoint is placed at each endpoint and at L interior points. The interior breakpoints 

can be placed on a fine regular grid or at prespecified quantiles of sampled time points. With 

L interior breakpoints, there are K = L + p basis functions of order p. Let γ = (γ1, …, γL)′ 
be the vector of latent indicator variables γl for inclusion of the lth interior breakpoint. The 

breakpoints at the endpoints are included with probability one. Thus, the model dimension 

conditional on γ is qγ = γ′γ + p.
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Let  be the regression and variance parameters of model (5) 

conditional on γ, with . For convenience when deriving the sampling 

scheme given in Section 4, we assume that the prior mean of the random effects bγ,i is βγ 
and re-express model (5) as

The prior specification is hierarchical with the priors on the parameters ζγ conditional on the 

indicators γ. The random effects bγ,i, i = 1, …, n are assumed a priori independent of 

multivariate normal distributions

where βγ is a qγ × 1 vector and Σb,γ is a qγ × qγ covariance matrix. The prior distribution of 

βγ is multivariate normal

(6)

where 0γ is a qγ vector of zeros and Iγ is the qγ × qγ identity matrix. The multiplier c is a 

prespecified constant; large values of c correspond to a vague prior for βγ.

We assume a priori that Σb,γ conditional on γ follows the “default conjugate prior” proposed 

by Kass and Natarajan (2006). In particular, this prior is the inverse Wishart, IW(ηb, ηbSγ), 

whose density is given by

To achieve vagueness, the degrees of freedom parameter is taken to be small (ηb = qγ), and 

the scale matrix Sγ is a minimally informative prior guess of Σb,γ. More specifically, Kass 

and Natarajan (2006) argue that  represents vague knowledge on Σb,γ but 

because this choice varies with i, they suggest replacing it with its harmonic mean over the 

subjects, resulting in . We modify this slightly by replacing 

with a precalculated, data-dependent (e.g., REML) estimate . This is done to preserve the 

simplicity of the Gibbs sampling implementation of the MCMC algorithm in Section 4. 

Although this prior is data dependent, Kass and Natarajan (2006) note that it has 

asymptotically negligible effect on the posterior. The prior on  is inverse gamma (IG)
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where cε and dε are specified constants; values close to zero result in relatively vague priors.

Finally, we place a prior distribution on γ. The indicators γl, l = 1, …, L, are assumed a 

priori independent Bernoulli with parameter π, that is,

The hyperprior on π is beta(cπ, dπ), where cπ and dπ can be chosen to give a specified a 

priori expectation and standard deviation of the number of breakpoints included in the model 

(see Kohn et al., 2001). In our experience, the choice of cπ and dπ has minimal effect on the 

breakpoint selection when implementing the sampling scheme outlined in the next section.

4. Bayesian Inference

4.1 The Sampling Scheme

In this section, we outline the sampling scheme for our proposed model. More details on the 

sampling scheme and the posterior conditional distributions of the parameters are provided 

in the Web Appendix. Suppose that  are the current draws for the 

parameters of model (5). Note that π has been integrated out, so that drawing π is 

unnecessary. The sampling scheme in the following iteration is as follows:

Step 1: Sample s distinct values l = {l1, …, ls} (for predetermined 1 ≤ s ≤ L) from {1, 

…, L} without replacement such that each such vector is equally probable. This step 

determines which latent indicator variables  will be drawn in Step 2.

Step 2: Sample  from , where 

is the vector of indicators in γ0 not indexed by l. The parameters 

 are sampled simultaneously to obtain a more efficient 

algorithm, because these parameters tend to be highly correlated with each other. Step 

2 is carried out in three substeps:

Step 2(a): Sample  from 

, where u ranges 

over all s-dimensional vectors of zeros and ones, and Lu and Θu are given by (A.

3) and (A.4) of the Web Appendix.

Step 2(b): Sample  from , 

where , and μβ|· and Σβ|· are given by (A.5) of the Web 

Appendix.
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Step 2(c): Sample  from 

, where  and 

are given by (A.6) of the Web Appendix.

Step 3: Sample  from  with cε|· and 

dε|· given in (A.7) of the Web Appendix.

Step 4: Sample  from . The posterior 

conditional distribution of Σb,γ is inverse Wishart, IW(Sb|·, ηb|·), where Sb|· and ηb|· 

are given by (A.8) of the Web Appendix. We combine  with  to form 

, as detailed in the Web Appendix following (A.8).

Note that in Step 2, the conditional posterior  depends on Σb 

through Σb,γ(u), where Σb,γ(u) is the qγ(u) × qγ(u) covariance matrix corresponding to the 

indicators equal to one in γ(u) = {u, γ(l)}, with γ(l) held constant. Removing or including 

breakpoints by varying u over all s-dimensional zero-one vectors not only changes the 

number of B-splines but also changes the surrounding B-spline basis functions (see, e.g., 

deBoor, 2001). For example, B-splines of order p span up to p + 1 contiguous breakpoints. 

Therefore, removing a breakpoint eliminates one B-spline and modifies up to p surrounding 

basis functions. Thus, we cannot just obtain Σb,γ(u) by selecting the correct submatrix of Σb, 

the K × K covariance matrix (where K = L + p) for the full model with all L interior 

breakpoints. We can, however, obtain Σb,γ(u) from Σb by using the technique described in the 

Web Appendix following (A.8). This slight difficulty could be avoided by using a truncated 

polynomial basis for the splines instead of a B-spline basis. The advantages of using a B-

spline basis over a truncated polynomial basis, however, include increased computational 

speed and decreased numerical instabilities (Ramsay and Silverman, 1997, p. 49).

4.2 Posterior Inferences

Suppose the sampling scheme after a burn-in period produces R iterates 

, 1 ≤ r ≤ R. The mean function μ() at a given time point t is 

obtained by averaging over the draws:

(7)

where  is the -dimensional vector of basis functions evaluated at t. By varying t 

on a fine grid on the interval [0, T], we produce an estimate  of the mean function. The 

estimated functional response fi(·) for the ith individual at time t is given by
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(8)

A pointwise credible interval for the mean function μ() evaluated at t with approximate 

probability content (1 − α) is obtained by determining the α/2 and 1 − α/2 quantiles of the R 

draws . Posterior credible intervals for the ith individual curve are obtained in a 

similar fashion, using instead the R draws . Because (7) and (8) average over 

iterations with different selected subsets of breakpoints, these posterior credible intervals 

automatically account for levels of uncertainty in the placement and the number of the 

breakpoints. In contrast, many frequentist methods for function estimation condition 

inferences on the “best” subset of breakpoints, usually selected by cross-validation or 

covariance penalty methods such as AIC or BIC.

Often, the goal of an FDA is the characterization of “large-scale” variation in functional 

outcomes across individuals. This can be accomplished by examining the eigenstructure of 

the within-individual covariance matrix of the random effects (Rice and Wu, 2000; James et 

al., 2001). Let t be a fine grid of τ time values on the interval [0, T], and let Xτ,γ be the τ × 
qγ matrix of B-splines selected by γ and evaluated at the time points in t. We obtain the 

posterior mean for the large-scale within-individual covariance Στ by

(9)

The first few eigenvectors of  are used to explore the major modes of functional 

variation. The corresponding eigenvalues determine the percentage of large-scale variation 

accounted for by each of the eigenvectors. This methodology is demonstrated in Section 5.

5. Data Analysis

We now present an analysis of data taken from the MIT Growth and Development Study, as 

described in Section 2. Model (5) was fitted to the data using the sampling scheme of 

Section 4, implemented in Matlab Version 7 on a Linux platform. Breakpoints were placed 

at the endpoints and at every 5th quantile of the observed time values, with an extra 

breakpoint placed at time zero. B-spline basis functions of order 4 (i.e., cubic) were used. 

Hyperparameters were specified to give relatively uninformative priors; specifically, in (6) 

we set c equal to 103, the prior for σ2 was set to IG(10−3, 10−3), and the prior on π was set 

to beta(1.7, 2), which corresponds to a prior belief of nine breakpoints on average with a 

standard deviation of 5. The results of these analyses are substantially similar to other 

analyses we have performed (not reported here) using a variety of other values for cπ and 

dπ. The latent indicators corresponding to two randomly selected breakpoints (i.e., s = 2 in 

Step 1) were sampled at each iteration of the algorithm.
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The algorithm was run for 50,000 iterations with a burn-in period of 10,000. The overall 

mean trajectory, estimated by (7), is pictured in Figure 1. From this figure, it appears that the 

mean trajectory of body fat percentage begins trending upward on or slightly before 

menarche. It appears, however, that the mean rate of increase starts gradually slowing again 

sometime after 1 year postmenarche. Thus, unlike the piecewise linear analyses presented in 

Fitzmaurice et al. (2004), our method was able to detect this second inflection point in the 

data.

The 95% pointwise posterior credible intervals for the mean trajectory are also plotted in 

Figure 1. The credible intervals for the mean are fairly narrow except at the ends, where few 

data points exist. (We limit subsequent analyses to the period between 5 years before and 4.1 

years after menarche, which contains 98% of the time points in the data set.) The trajectories 

for the individual girls, however, show a significant degree of variation from the overall 

mean. Note that the piecewise linear model of Fitzmaurice et al. (2004) is not flexible 

enough to effectively capture this individual smooth variation from the overall mean. Figure 

2 presents the data on four girls, along with their estimated individual trajectories calculated 

as in (9) and 95% pointwise posterior credible intervals. Because observations on individual 

girls are correlated across time, information is borrowed from periods where data have been 

collected to effectively estimate a trajectory in periods with little or no data. The pointwise 

credible intervals for the individual functions adjust for the timing of data points contained 

within each curve so that periods with little or no data have wider pointwise intervals.

We explore the major modes of variation in body fat trajectories by performing an 

eigenanalysis of the within-individual covariance of the smoothed functions (James et al., 

2001). The covariance function estimated using (9) is pictured in Figure 3, along with the 

corresponding correlation function. Within-girl correlation is fairly high across all time 

points; for example, the correlation between body fat percentages at 4 years premenarche 

and body fat percentages 3 years postmenarche is approximately 0.7. The covariance 

function shows higher variability in premenarche body fat percentages, with a gradual 

decrease postmenarche.

The first two eigenfunctions of the covariance function are pictured in the left-hand panel of 

Figure 4. The first eigenfunction, accounting for almost 81% of the individual variation from 

the mean in the smoothed functional outcomes, describes sustained deviation from the mean 

over the entire time course of the study. The second eigenfunction, accounting for 8% of the 

smoothed variation, describes individual variation from the mean which peaks at about 3 

years premenarche and again at approximately 2 years postmenarche but with an opposite 

sign. These eigenfunctions can also be used to identify individual curves which are unusual 

with respect to typical patterns of large-scale variation from the mean. For example, the 

right-hand panel of Figure 4 shows the two girls who had the largest positive scores 

corresponding to the projection of the individual functions onto the two eigenfunctions.

As a referee pointed out, the results of this analysis must be interpreted carefully, in that age 

at menarche is not accounted for. Age at menarche may be associated with the shape of body 

fat trajectories centered at time of menarche. One way of accounting for age at menarche 
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would be to include it as a continuous predictor in a functional linear model. While we do 

not do this here, we indicate one way of doing this in Section 7.

6. Simulation Study

In this section, we evaluate the proposed methodology by performing a small simulation 

study. In the study, 100 data sets were generated from the model

(10)

Here, the Xi are ni × 7 design matrices of B-splines with interior breakpoints given by {0.2, 

0.4, 0.6, 0.8} and evaluated at time values on the unit interval. The number of observations 

ni for a given individual was distributed as Poisson(6)+2; thus, a minimum of two and a 

mean of eight observations per individual curve were generated. The time points ti 
conditional on ni were uniformly distributed on the unit interval. The errors εi were 

generated as independent normals with zero mean and variance equal to 10. The random 

effects  were generated as i.i.d. variates from an AR-1 model with mean β = (50, 70, 

−70, 70, 0, 20, 20)′ and correlation ρ = 0.9. The mean curve along with one simulated data 

set of 50 curves is pictured in the left-hand panel of Figure 5. The true within-individual 

covariance surface of the error-free (smooth) curves is pictured in the right-hand panel of 

Figure 5.

For each data set, a pool of 30 equally spaced interior breakpoints was specified, and the 

beta prior on π was set to give an a priori expected number of 10 breakpoints with standard 

deviation 5. Other hyperparameters were set to the same values used in the example 

presented in Section 5. The sampling procedure of Section 4 was used on each data set to 

produce 10,000 iterates with a burn-in period of 2000. Nominal pointwise 95% credible 

intervals were evaluated on a fine grid for each of the 100 simulated data sets. The left-hand 

panel of Figure 6 plots the proportion of times that these posterior credible intervals 

contained the true mean curve. Over all time points, the true mean curve was contained 

within the intervals 96% of the time, with a minimum coverage of 91% and a maximum 

coverage of 100% across individual time points. Figure 6 (right-hand panel) also plots the 

average posterior probabilities of breakpoint inclusion for all 100 simulated data sets. The 

posterior probabilities of the indicator variables are highest in the regions of high curvature 

(with a maximum of 66%) and lowest in regions of low curvature.

7. Discussion

In this article, we have proposed a Bayesian model for sparse functional data. Most 

methodologies proposed to date for fitting sparse functional data have separate model 

selection and model fitting stages. Usually, the process is to select the “best” model 

according to some criterion and then estimate the model parameters conditional on this best 

model. This type of procedure can be computationally very expensive; for example, with 

only 10 breakpoints there are 210 possible models to select from. Another disadvantage of 

these approaches is that inferences on model parameters are also conditional on the best 
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model selected. Because this ignores any uncertainty in the number and placement of 

breakpoints, these inferences may be unrealistically optimistic. Furthermore, inferences on 

model parameters also typically require further computational effort, usually some type of 

bootstrapping procedure.

In contrast, the Bayesian model and sampling scheme that we have proposed in this article 

unify model selection, model fitting, and posterior inferences into one procedure. With latent 

indicator variables for breakpoint inclusion, model selection becomes an integral part of the 

model estimation procedure. Thus, model selection uncertainty is automatically included in 

the estimates of posterior means for other model parameters. Most other procedures which 

also implement a Bayesian method for determining the level of smoothing for sparse 

functional data put constraints on the covariance kernel and are not locally adaptive. In 

contrast, our procedure has no such constraints and is locally adaptive.

One potential drawback of our proposed method is that it selects the same basis functions for 

the overall mean curve and for each of the individual curves. This implies that all individual 

trajectories have the same underlying level of smoothness. In the sparse functional data 

setting, it is not generally feasible to use our method to select basis functions (breakpoints) 

for each individual curve separately.

Some aspects of this model could benefit from further development. For example, extending 

the model to include discrete and continuous covariates would be desirable. One approach to 

do so follows along the lines of Guo (2002). Let xi and zi be p × 1 and q × 1 vectors of 

covariates, respectively. Then, similar to Guo (2002) and Morris and Carroll (2006), we 

could generalize model (2) to include these covariates as follows:

where Br(t) is a vector of B-spline basis functions for the rth covariate xir (evaluated at time 

t) with the corresponding vector of fixed effects βr, and As(t) is a vector of B-spline basis 

functions for the sth covariate zis with corresponding random effects asi. This model reduces 

to (2) if xi = zi = 1 and Br = Ar. Breakpoint selection might be identical for all covariates or 

might be accomplished separately for each covariate. The latter, for example, would allow 

for differing levels of smoothness or location of curve features across groups defined by 

levels of a categorical covariate.

Another area for future research is the theoretical development of the asymptotic 

performance of functional estimates and posterior inferences and the impact that the prior 

specification has on these. Finally, constructing simultaneous posterior credible regions 

within which the entire mean or individual trajectories are contained with given probability 

would be useful. One possibility is to construct a highest posterior density region for the 

entire function (Tanner, 1996) based on the posterior distribution of {b, β, Σb, γ}.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
MIT Growth and Development Study: body fat percentages for 162 girls (dotted lines) and 

mean trajectory of body fat percentages with 95% posterior credible intervals (solid lines).
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Figure 2. 
Estimated individual trajectories with 95% posterior credible intervals for four girls. Circles 

indicate actual data points and dashed lines indicate overall mean trajectory.
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Figure 3. 
Left-hand panel: Contours of the covariance function for the body fat data. Right-hand 

panel: The corresponding correlation function.
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Figure 4. 
Top left-hand panel: The first eigenfunction of the covariance function of the body fat data. 

Bottom left-hand panel: The second eigenfunction of the covariance function. Top right-

hand panel: The estimated individual trajectory (solid line) and actual data (circles) of the 

girl with the highest score on the first eigenfunction; the overall mean trajectory (dashed 

line) is provided for reference. Bottom right-hand panel: The same for the girl with the 

highest score on the second eigenfunction.

Thompson and Rosen Page 18

Biometrics. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Left-hand panel: True mean trajectory (heavy solid line) and “observed” data from one 

realization of (10). Right-hand panel: Contours of true covariance function of noise-free 

curves simulated from (10).
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Figure 6. 
Left-hand panel: Estimated coverage probabilities for the pointwise nominal 95% posterior 

credible intervals from 100 data sets simulated from (10). Credible intervals and posterior 

coverage probabilities were computed at 100 equally spaced time points on the unit interval. 

The dashed line at 0.95 is included for reference. Right-hand panel: True mean curve (solid 

line) scaled to fit the plot, and average posterior probabilities of breakpoint inclusion 

(dashed line) for all 100 data sets simulated from (10).
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