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Abstract

Recent years have seen an explosion of activity in the field of functional data analysis (FDA), in 

which curves, spectra, images, etc. are considered as basic functional data units. A central problem 

in FDA is how to fit regression models with scalar responses and functional data points as 

predictors. We review some of the main approaches to this problem, categorizing the basic model 

types as linear, nonlinear and nonparametric. We discuss publicly available software packages, and 

illustrate some of the procedures by application to a functional magnetic resonance imaging 

dataset.
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1 Introduction

Regression with functional data is perhaps the most thoroughly researched topic within the 

broader literature on functional data analysis (FDA). It is common (e.g., Ramsay and 

Silverman, 2005; Reiss et al., 2010) to classify functional regression models into three 

categories according to the role played by the functional data in each model: scalar 

responses and functional predictors (“scalar-on-function” regression); functional responses 

and scalar predictors (“function-on-scalar” regression); and functional responses and 

functional predictors (“function-on-function” regression). This article focuses on the first 

case, and reviews linear, non-linear, and nonparametric approaches to scalar-on-function 

regression. Domains in which scalar-on-function regression (hereafter, SoFR) has been 

applied include chemometrics (Goutis, 1998; Marx and Eilers, 1999; Ferraty et al., 2010), 

cardiology (Ratcliffe et al., 2002), brain science (Reiss and Ogden, 2010; Goldsmith et al., 
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2011; Huang et al., 2013), climate science (Ferraty et al., 2005; Baíllo and Grané, 2009), and 

many others. We refer the reader to Morris (2015) for a recent review of functional 

regression in general, and to Wang et al. (2015) for a broad overview of FDA.

In cataloguing the many variants of SoFR, we have attempted to cast a wide net. A major 

contribution of this review is our attempt not merely to describe many approaches in what 

has become a vast literature, but to distill a coherent organization of these methods. To keep 

the scope somewhat manageable, we do not attempt to survey the functional classification 
literature. We acknowledge, however, that classification and regression are quite closely 

related—especially insofar as functional logistic regression, a special case of the functional 

generalized linear models considered below in Section 5.3, can be viewed as a classification 

method. Our emphasis is more methodological than theoretical, but for brevity we omit a 

number of important methodological issues such as confidence bands, goodness-of-fit 

diagnostics, outlier detection and robustness.

In the “vanilla” data setting (Sections 2 to 4), we consider an independent, identically 

distributed (iid) sample of random pairs , i = 1, … , n, where yi is a real-valued scalar 

outcome and the predictor  belongs to a space  of real-valued functions on a finite 

interval . The most common choice for  seems to be the Hilbert space  with 

the usual inner product . Cuevas (2014) discusses more 

general spaces in which the functional data may “live”.

In the general practice of functional data analysis, functions  are observed 

on a set of discrete grid points that can be sparse or dense, regular or irregular, and possibly 

subject to measurement errors. Several “preprocessing” steps are typically taken before 

modeling the data. Aside from smoothing the functional data, in some cases it is appropriate 

to apply registration or feature alignment, or if the grid points differ across observations, to 

interpolate to a dense common grid. Measurement error is expected to be low in some (e.g., 

chemometric) applications, but when it is not it can have important effects on the regression 

relation. Some methods (e.g., James, 2002) account explicitly for such error. Here, in order 

to keep the focus on the various regression models, we shall mostly assume functional data 

observed on a common dense grid with negligible error.

The functional linear model (FLM) is a natural extension of multiple linear regression to 

allow for functional predictors. Many techniques have been developed to fit this model, and 

we review these in Section 2. Nonlinear extensions of this basic approach are presented in 

Section 3. In Section 4 we discuss nonparametric approaches to SoFR, which are based on 

distances among the predictor functions. For simplicity of exposition, these three sections 

consider only the most basic and most common scenario: a single functional predictor and 

one real-valued scalar response. Generalizations and extensions, including the inclusion of 

scalar covariates, multiple functional predictors, generalized response values, and repeated 

observations, are reviewed in Section 5. Section 6 presents some ideas on how to choose 

among the many methods. Available software for SoFR is described in Section 7, and an 

application to brain imaging data appears in Section 8. Some concluding discussion is 

provided in Section 9.
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2 Linear scalar-on-function regression

The scalar-response functional linear model can be expressed as

(1)

where β(·) is the coefficient function and errors εi are iid with mean zero and constant 

variance σ2.

The coeffcient function β(·) has a natural interpretation: locations t with largest |β(t)| are 

most influential to the response. In order to enforce some regularity in the estimate, a 

common general approach to fitting model (1) is to expand β(·) (and possibly the functional 

predictors as well) in terms of a set of basis functions. Basis functions can be categorized as 

either (i) a priori fixed bases, most often splines or wavelets; or (ii) data-driven bases, most 

often derived by functional principal component analysis or functional partial least squares. 

The next two subsections discuss these two broad alternatives.

2.1 Regularized a priori basis functions

One general class of methods for fitting equation (1) restricts the coefficient function β(·) to 

the span of an a priori set of basis functions, while imposing a penalty or a prior to prevent 

overfitting. Assume β(t) = b(t)Tγ where b(t) = [b1(t), … , bK(t)]T is a set of basis functions 

and . We estimate α and γ by finding

(2)

for some λ > 0 and some penalty function P (·). The estimate of the coefficient function is 

thus .

In spline approaches (e.g., Hastie and Mallows, 1993; Marx and Eilers, 1999; Cardot et al., 

2003), the penalty is generally a quadratic form γT Lγ which measures the roughness of β(t) 
= b(t)T γ, and hence (2) is a generalized ridge regression problem. When 

, as in Ramsay and Silverman (2005), the quadratic form 

equals  dt; cubic B-splines with a second derivative penalty (q = 2) are 

particularly popular. Alternatively, the P-spline formulation of Marx and Eilers (1999) takes 

L = DTD where D is a differencing matrix. Higher values of λ enforce greater smoothness in 

the coefficient function. Standard methods for automatic selection of λ include restricted 

maximum likelihood and generalized cross-validation (Craven and Wahba, 1979; Ruppert et 

al., 2003; Reiss and Ogden, 2009; Wood, 2011). While B-splines are the basis functions 

most often combined with roughness penalties, other bases are possible. For example, 

Fourier bases may be employed when the functions are periodic. Marx and Eilers (1999) 

discuss smoothing of the curves  when evaluating the integral in (2) in practice.
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While splines and roughness penalties are a natural choice when the coefficient function is 

expected to be smooth, in some applications β(·) may be irregular, with features such as 

spikes or discontinuities. Wavelet bases (e.g., Ogden, 1997), which provide sparse 

representations for irregular functions, have received some attention in recent years. In the 

framework of (2), Zhao et al. (2012) propose the wavelet-domain lasso, which combines 

wavelet basis functions b(·) with the ℓ1 penalty  in (2). Other sparsity 

penalties for wavelet-domain SoFR are considered by Zhao et al. (2015) and Reiss et al. 

(2015). Not all sparse approaches rely on wavelet bases; see, for example, James et al. 

(2009) and Lee and Park (2011).

More flexible, albeit potentially more complex, models can be built by replacing the penalty 

with an explicit prior structure in a fully Bayesian framework. Spline approaches of this type 

are developed by Crainiceanu and Goldsmith (2010) and Goldsmith et al. (2011); wavelet 

approaches based on Bayesian variable selection include those of Brown et al. (2001) and 

Malloy et al. (2010).

2.2 Regression on data-driven basis functions

Alternatively, the coefficient function in (1) can be estimated using a data-driven basis. The 

most common choice is the eigenbasis associated with the covariance function 

, i.e., the orthonormal set of functions ϕ1(t), ϕ2(t), … such that 

for each j and all ,  for eigenvalues λ1 ≥ λ2 ≥ ⋯ ≥ 0. 

Expressing each of the functional predictors by its truncated Karhunen-Loève expansion

(3)

and the coefficient function  using the same basis, the integral in (1) 

becomes

reducing (1) to the ordinary multiple regression model

(4)

(Cardot et al., 1999). In practice, the eigenfunctions are estimated by functional principal 

component analysis (FPCA; Rice and Silverman, 1991; Silverman, 1996; Yao et al., 2005) 

and treated as fixed in subsequent analysis.
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The number A of retained components acts as a tuning parameter that controls the shape and 

smoothness of β(·). Ways to choose A as a part of the regression analysis include explained 

variability, bootstrapping (Hall and Vial, 2006), information criteria (Yao et al., 2005; Li et 

al., 2013), and cross-validation (Hosseini-Nasab, 2013).

Data-driven bases other than functional principal components can also be utilized, such as 

functional partial least squares (FPLS; Preda and Saporta, 2005; Escabias et al., 2007; Reiss 

and Ogden, 2007; Aguilera et al., 2010; Delaigle and Hall, 2012) and functional sliced 

inverse regression (Ferré and Yao, 2003, 2005).

2.3 Hybrid approaches

A number of papers combine the data-driven basis and a priori basis approaches of the 

previous two subsections. For example, Amato et al. (2006) employ so-called sufficient 

dimension reduction methods for component selection, but implement them in the wavelet 

domain. The functional principal component regression method referred to as FPCRR in 

Reiss and Ogden (2007) restricts the coefficient function to the span of leading functional 

principal components, but fits model (1) by penalized splines (see also Horváth and 

Kokoszka, 2012; Araki et al., 2013). Goldsmith et al. (2011) use FPCA to pre-process 

predictor functions and penalized splines to model the coefficient function. The 

regularization strategy of Randolph et al. (2012) incorporates information from both the 

predictors and a linear penalty operator.

2.4 Functional polynomial regression

We conclude the discussion of FLMs with functional polynomial models. These are linear in 

the coefficients but not in the predictors, in contrast to the models of the next two sections, 

which are not linear in either sense.

The functional quadratic regression model of Yao and Müller (2010) can be expressed as

(5)

Here we have both linear and quadratic coefficient functions, β(t) and γ(s, t); when the latter 

is zero, (5) reduces to the FLM (1). By expressing elements of (5) in terms of functional 

principal components, responses can be regressed on the principal component scores. 

Adding higher-order interaction terms results in more general functional polynomial 

regression models.

3 Nonlinear scalar-on-function regression

In many applications, the assumption of a linear relationship between  and y is too 

restrictive to describe the data. In this section we review several models that relax the 

linearity assumption; Section 4 will describe models (usually termed “nonparametric”) that 

are even more flexible than those described here.
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3.1 Single-index model

We begin by presenting the functional version of the single-index model (Stoker, 1986):

(6)

which extends the FLM by allowing the function h(·) to be any smooth function defined on 

the real line. Fitting this model requires estimation of both the coefficient function β(·) and 

the unspecified function h(·) and is typically accomplished in an iterative way. For given 

β(·), h(·) can be estimated using splines, kernels or any technique for estimating a smooth 

function; for given h(·), β(·) can be estimated in a similar fashion; and the process is iterated 

until convergence. Several of the methods described in Section 2 for estimating an FLM 

have been combined with a spline method for estimating h(·) in (6) (e.g., Eilers et al., 2009). 

Alternatively, a kernel estimator can be used for h(·) (e.g., Ait-Säidi et al., 2008; Ferraty et 

al., 2011).

3.2 Multiple-index model

A natural extension of model (6) is to allow multiple linear functionals of the predictor via 

the multiple-index model

(7)

Models of this kind, which extend projection pursuit regression to the functional predictor 

case, are developed by James and Silverman (2005), Chen et al. (2011), and Ferraty et al. 

(2013).

Setting βj(t) = ϕj(t), the jth FPC basis function, reduces (7) to , where 

we use xij to denote FPC scores as in (3). Müller and Yao (2008) refer to this as a 

“functional additive model,” generalizing the FLM of Section 2.2 which reduced to the 

multiple regression model (4) with respect to the FPC scores. An extension of this method, 

incorporating a sparsity-inducing penalty on the additive components, is proposed by Zhu et 

al. (2014).

3.3 Continuously additive model

Müller et al. (2013) and McLean et al. (2014) propose the model

(8)

where f(·, ·) is a smooth bivariate function that can be estimated by penalized tensor product 

B-splines. As an aid to interpretation, note that if sℓ = s0 + ℓΔs, ℓ = 1, … , L, and , 

then for large L, (8) implies
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where gℓ(x) = f(x, sℓ)Δs. The expression at right shows that (8) is the limit (as L → ∞) of an 

additive model—or in the generalized linear extension considered by McLean et al. (2014), 

of a generalized additive model (Hastie and Tibshirani, 1990; Wood, 2006). Hence McLean 

et al. (2014) employ the term “functional generalized additive model.”

4 Nonparametric scalar-on-function regression

The monograph of Ferraty and Vieu (2006) has popularized a nonparametric paradigm for 

SoFR, in which the model for the conditional mean of y is not only nonlinear but essentially 

unspecified, i.e.,

(9)

for some operator . Note that mathematically the FLM can also be formulated as 

an operator, but as one that is linear—whereas Ferraty and Vieu (2006) focus primarily on 

nonlinear operators m. (For further discussion of the terms nonlinear and nonparametric 
SoFR, see Section 9.)

Approaches to estimating m extend traditional nonparametric regression methods (Ḧardle et 

al., 2013) from the case in which the  are scalars or vectors to the case of function-valued 

. For example, the most popular nonparametric approach, which we consider next, 

generalizes the Nadaraya-Watson (NW) smoother (Nadaraya, 1964; Watson, 1964) to 

functional predictors.

4.1 Functional Nadaraya-Watson estimator

The functional NW estimator of the conditional mean  is

(10)

where K(·) is a kernel function, which we define as a function supported and decreasing on 

[0, ∞); h > 0 is a bandwidth; and d(·, ·) is a semi-metric. Here we define a semi-metric on 

as a function  that is symmetric and satisfies the triangle inequality, 

but d(f1, f2) = 0 does not imply f1 = f2. (Such a function is often called a “pseudo-metric”; 

our terminology has the advantage of implying that a semi-norm ∥·∥ on  induces a semi-

metric d(f1, f2) = ∥f1 − f2∥.) Smaller values of  imply larger  and 

thus larger weight assigned to yi.
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Ideally, the bandwidth h should strike a good balance between the squared bias of 

(which increases with h) and its variance (which decreases as h increases) (Ferraty et al., 

2007). Rachdi and Vieu (2007) consider a functional cross-validation method for bandwidth 

selection, and prove its asymptotic optimality. Shang (2013, 2014a,b, 2015) and Zhang et al. 

(2014) propose a Bayesian method for simultaneously selecting the bandwidth and the 

unknown error density, and show that it attains greater estimation accuracy than functional 

cross-validation.

Observe that if the fixed bandwidth h in (10) is replaced by hk(X), the kth-smallest of the 

distances , then we instead have a functional version of (weighted) k-

nearest neighbors regression (Burba et al., 2009).

4.2 Choice of semi-metric

The performance of the functional NW estimator can depend crucially on the chosen 

semimetric (Geenens, 2011). Optimal selection of the semi-metric is discussed by Ferraty 

and Vieu (2006, Chapters 3 and 13) and is addressed using marginal likelihood by Shang 

(2015).

For smooth functional data, it may be appropriate to use the derivative-based semi-metric

where  being the qth-order derivative of . In practice q = 2 is a popular choice (e.g., 

Goutis, 1998; Ferraty and Vieu, 2002, 2009). The use of B-spline approximation for each 

curve allows straightforward computation of the derivatives.

For non-smooth functional data, it may be preferable to adopt a semi-metric based on FPCA 

truncated at A components,

where the last expression uses truncated expansions defined as in (3). A semi-metric based 

on functional partial least squares components (Preda and Saporta, 2005; Reiss and Ogden, 

2007) can be defined analogously. Chung et al. (2014) introduced a semi-metric based on 

thresholded wavelet coefficients of the functional data objects.

Given a set of possible semi-metrics with no a priori preference for any particular option, 

one can select the one that minimizes a prediction error criterion such as a cross-validation 

score; more generally one can adopt an ensemble predictor (see Section 6.2.2 and Fuchs et 

al., 2015).

4.3 Functional local linear estimator

The functional NW estimator (10) can also be written as
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As an alternative to this “local constant” estimator, Baíllo and Grané (2009) consider a 

functional analogue of local polynomial smoothing (Fan and Gijbels, 1996), specifically a 

local (functional) linear approximation

for  near X, where  and . This motivates the minimization problem

whose solution yields the functional local linear estimate . Barrientos-Marin et al. 

(2010) propose a compromise between the NW (local constant) and local linear estimators, 

while Boj et al. (2010) offer a formulation based on more general distances.

4.4 A reproducing kernel Hilbert space approach

A rather different nonparametric method (Preda, 2007) is based on the notion of a positive 

semidefinite kernel  (Wahba, 1990; Schölkopf and Smola, 2002), which can 

roughly be thought of as defining a similarity between functions ; the Gaussian 

kernel  for some σ > 0 is an example. Briefly, any 

such k(·, ·) (not to be confused with the univariate kernel function K(·) of (10)) defines a 

reproducing kernel Hilbert space (RKHS)  of maps , equipped with an inner 

product . Preda (2007) considers more general loss functions, but for squared error 

loss his proposed estimate of m in (9) is

(11)

where λ is a non-negative regularization parameter, as in criterion (2) for the FLM. A key 

RKHS result, the representer theorem (Kimeldorf and Wahba, 1971; Schölkopf et al., 2001), 

leads to a much-simplified minimization in terms of the Gram matrix 

: (11) can be written as , where γ = (γ1, 

… , γn)T minimizes
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with y = (y1, … , yn)T.

Note that this nonparametric formulation is distinct from the RKHS approach of Cai and 

Yuan (2012) to the functional linear model (1)—in which the coefficient function β(·), rather 

than the (generally nonlinear) map , is viewed as an element of an RKHS—as 

well as from the RKHS method of Zhu et al. (2014).

Expression (11) is a functional analogue of the criterion minimized in smoothing splines 

(Wahba, 1990), much as (10) generalizes the NW smoother to functional predictors. We 

believe that, just as the RKHS-based smoothing spline paradigm has spawned a very flexible 

array of tools for non- and semiparametric regression (Ruppert et al., 2003; Wood, 2006; Gu, 

2013), there is great potential for building upon the regularized RKHS approach to 

nonparametric SoFR and thereby, perhaps, connecting FDA with machine learning.

As a further link between the (reproducing) kernel approach of Preda (2007) and other 

nonparametric approaches (such as the NW estimator) that are based on (semi-metric) 

distances among functions, we note that there is a well-known duality between kernels and 

distances (e.g., Faraway, 2012, p. 410). Since both kernels and distances can be defined for 

more general data types than functional data, the nonparametric FDA paradigm is readily 

extensible to “object-oriented” data analysis (Marron and Alonso, 2014).

5 Generalizations and extensions

Although many of the references cited in the previous three sections have considered more 

general scenarios, our presentation thus far has considered only the simplest situation: a 

single functional predictor and a real-valued response. However, situations that arise in 

practice often require various extensions, including scalar covariates, multiple functional 

predictors, and models appropriate for responses that arise from a general exponential family 

distribution. In this section we describe some of these generalizations and extensions.

5.1 Including scalar covariates

Including scalar covariates in the FLM (1) is fairly straightforward. For methods based on 

penalization, covariates can be included by simply applying the penalty only to the spline 

basis coefficients. When using a data-driven basis, as noted above, the FLM reduces to the 

ordinary multiple regression model (4), so adding scalar covariates is even more routine. 

With nonlinear and nonparametric strategies, however, incorporating scalar covariates can be 

somewhat more challenging. For example, Aneiros-Pérez and Vieu (2006, 2008) and 

Aneiros-Pérez et al. (2011) considered semi-functional partial linear models of the form

(12)

which include linear effects of scalar covariates zi, estimated using weighted least squares, 

and effects of functional predictors , estimated nonparametrically via NW weights.
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5.2 Multiple functional predictors

A number of recent papers have considered the situation in which the ith observation 

includes multiple functional predictors , possibly with different domains 

. The FLM (1) extends naturally to the multiple functional regression model

Penalized or fully Bayesian approaches to selecting among candidate functional predictors 

have been proposed by Zhu et al. (2010), Gertheiss et al. (2013) and Lian (2013).

One can also consider two types of functional interaction terms. An interaction between a 

scalar and a functional predictor (e.g., McKeague and Qian, 2014) is formally similar to 

another functional predictor, whereas an interaction between two functional predictors (e.g., 

Yang et al., 2013) resembles a functional quadratic term as in (5).

The “functional additive regression” model of Fan et al. (2015) extends the functional 

single-index model (6) to the case of multiple predictors.

In the nonparametric FDA literature, Febrero-Bande and González-Manteiga (2013) 

consider the model

(13)

where η can be a known function, or estimated nonparametrically; the mr(·)’s are nonlinear 

partial functions of . Model (13), like model (8), is referred to by the authors as a 

“functional generalized additive model.” Lian (2011) studied the “functional partial linear 

regression” model

(14)

which combines linear and nonparametric functional terms. Note that both predictors in (14) 

are functional, whereas the linear terms in the “semi-functional” model (12) are scalars.

5.3 Responses with exponential family distributions

In all models considered to this point, the response variable has been a continuous, real-

valued scalar. In many practical applications the response is discrete, such as a binary 

outcome indicating the presence or absence of a disease. Many of the above methods have 

been generalized to allow responses with exponential-family distributions, including both 

linear (Marx and Eilers, 1999; James, 2002; Müller and Stadtmüller, 2005; Reiss and Ogden, 

2010; Goldsmith et al., 2011; Aguilera-Morillo et al., 2013) and nonlinear (James and 

Silverman, 2005; McLean et al., 2014) models. For a single functional predictor and no 
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scalar covariates, the functional generalized linear model can be written as 

, where  and g is a known link function. 

Estimation for this model is analogous to the methods described in Section 2: using a data-

driven basis recasts the functional model as a standard generalized linear model, and 

regularized basis expansion methods can be implemented using penalization methods for 

GLMs. Scalar covariates and multiple functional predictors can be incorporated as in 

Sections 5.1 and 5.2.

5.4 Multilevel and longitudinal SoFR

In recent years it has become more common to collect repeated functional observations from 

each subject in a sample. In these situations the data are  for observations j = 1, 

… , Ji within each of subjects i = 1, … , n. A relevant extension of the FLM is

with random effects  used to model subject-specific effects. Goldsmith et al. 

(2012) directly extended the spline-based estimation strategy described in Section 2.1 for 

this model, and Gertheiss et al. (2013) use longitudinal FPCA (Greven et al., 2010) to 

construct a data-driven basis for coefficient functions. Crainiceanu et al. (2009) considered 

the related setting in which the functional predictor is repeatedly observed but the response 

is not, and estimate the coefficient function using a data-driven basis derived using 

multilevel FPCA (Di et al., 2009).

5.5 Multidimensional functional predictors

While most methodological development of SoFR has focused on one-dimensional 

functional predictors as in (1), a growing number of authors have considered two- or three-

dimensional signals or images as predictors in regression models. While this extension is 

relatively straight-forward conceptually (replacing the single integral in (1) with a double or 

triple integral), it can involve significant technical challenges, including higher “natural 

dimensionality”, the need for additional tuning parameter values and correspondingly 

greater computational requirements.

Within the linear SoFR model framework, Marx and Eilers (2005) extend their penalized 

spline regression to handle higher dimensional signals by expressing the signals in terms of a 

tensor B-spline basis and applying both a “row” and a “column” penalty. Reiss and Ogden 

(2010) consider two-dimensional brain images as predictors, expressing them in terms of 

their eigenimages and enforcing smoothness via radially symmetric penalization. Holan et 

al. (2010) and Holan et al. (2012) reduce the dimensionality of the problem by projecting the 

images on their (2D) principal components. Guillas and Lai (2010) apply penalized bivariate 

spline methods and consider two-dimensional functions on irregular regions. Zhou et al. 

(2013) and Zhou and Li (2014) propose methods that exploit the matrix or tensor structure 

of image predictors; Huang et al. (2013) and Goldsmith et al. (2014) develop Bayesian 

regression approaches for three-dimensional images; and Wang et al. (2014) and Reiss et al. 

(2015) describe wavelet-based methods.
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5.6 Other extensions

Our stated goal in this paper has been to describe and classify major areas of research in 

SoFR, and we acknowledge that any attempt to list all possible variants of SoFR would be 

futile. In this subsection we very briefly mention a few models that do not fit neatly into the 

major paradigms discussed in Sections 2 through 4 or in their direct extensions in Sections 

5.1 through 5.5, knowing this list is incomplete.

5.6.1 Other non-iid settings—This review has focused on iid data pairs ( ), with the 

exception of Section 5.4. Other departures from the iid assumption have received some 

attention in the SoFR literature. For example, Delaigle et al. (2009) considered 

heteroscedastic error variance, while Ferraty et al. (2005) studied α-mixing data pairs.

5.6.2 Mixture regression—A data set may be divided into latent classes, such that each 

class has a different regression relationship of the form (1). This is the model considered by 

Yao et al. (2011), who represent the predictors in terms of their functional principal 

components and apply a multivariate mixture regression model fitting technique. Ciarleglio 

and Ogden (2016) consider sparse mixture regression in the wavelet domain.

5.6.3 Point impact models—In some situations it may be expected that only one point, 

or several points, along the function will be relevant to predicting the outcome. The model 

(1) could be adapted to reflect this by replacing the coefficient function β by a Dirac delta 

function at some point θ. This is the “point impact” model considered by Lindquist and 

McKeague (2009) and McKeague and Sen (2010), who consider various methods for 

selecting one or more of these points. Ferraty et al. (2010) consider the same situation but 

within a nonparametric setting.

5.6.4 Derivatives in SoFR—Derivatives have been incorporated in SoFR investigations 

in two completely different senses. The first is ordinary (first or higher-order) derivatives of 

functional observations with respect to the argument t. Some types of functional data may 

reflect vertical or linear shifts that are irrelevant to predicting y (Goutis, 1998). A key 

example is near-infrared (NIR) spectroscopy curves, which are used by analytical chemists 

to predict the contents of a sample: for example, a wheat sample’s spectrum may play the 

role of a functional predictor, with protein content as the response. It is sometimes helpful to 

remove such shifts by taking first or second differences (approximate derivatives) of the 

curves as a preprocessing step. For the same reason, derivative semi-metrics (see above, 

Section 4.2) can be more useful than the L2 metric for nonparametric SoFR with 

spectroscopy curves (Ferraty and Vieu, 2002).

A second type of derivative, studied by Hall et al. (2009), is the functional (Gâteaux) 

derivative of the operator m in the nonparametric model (9). Roughly speaking, for a given 

, the functional derivative is a linear operator mX such that for a small increment 

 we have m(X + ΔX) ≈ m(X) + mX(ΔX). In the linear case, the functional 

derivative is given by the coefficient or slope function, i.e.,  for all 

X and all g. In the nonparametric case, functional derivatives allow one to estimate 

functional gradients, which are in effect locally varying slopes. Müller and Yao (2010) 
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simplify the study of functional derivatives and gradients by imposing the additive model 

framework of Müller and Yao (2008) (see above, Section 3.2).

5.6.5 Conditional quantiles and mode—Up to now we have been concerned with 

modeling the mean of y (or a transformation thereof, in the GLM case), conditional on 

functional predictors. Cardot et al. (2005) propose instead to estimate a given quantile of y, 

conditional on , by minimizing a penalized criterion that is similar to (2), but with the 

squared error loss in the first term replaced by the “check function” used in ordinary quantile 

regression (Koenker and Bassett, 1978). Chen and Müller (2012), on the other hand, 

estimate the entire conditional distribution of y by fitting functional binary GLMs with I(y ≤ 

y0) (where I(·) denotes an indicator) as response, for a range of values of y0. Quantiles can 

then be inferred by inverting the conditional distribution function. Ferraty et al. (2005) also 

estimate the entire conditional distribution, but adopt a nonparametric estimator of a 

weighted-average form reminiscent of (10). That paper and a number of subsequent ones 

have studied applications in the geosciences, such as an extreme value analysis of ozone 

concentration (Quintela-del-Río and Francisco-Fernández, 2011). The mode of the 

nonparametrically estimated conditional distribution serves as an estimate of the conditional 

mode of y, whose convergence rate is derived by Ferraty et al. (2005).

6 Which method to choose?

Sections 2 through 5 have presented a perhaps overwhelming variety of models and methods 

for SoFR. How can a user decide which is the appropriate method in a given situation? We 

offer here a few suggestions, which may be divided into a priori and data-driven 

considerations.

6.1 A priori considerations

Some authors have questioned whether the flexibility of the general nonparametric model 

(9) is worth the price paid in terms of convergence rates. The small-ball probability 

 typically converges to 0 exponentially fast as u → 0, and 

consequently the functional NW estimator (10) converges at a rate that is logarithmic, as 

opposed to a power of 1/n (Hall et al., 2009). Geenens (2011) succinctly interprets the 

problem as a function-space “curse of dimensionality,” but shows that a well-chosen semi-

metric d increases the concentration of the functional predictors and thus allows for more 

favorable convergence of the NW estimator to m.

Aside from asymptotic properties, choice of a method may be guided by the kind of 

interpretation desired, which may in turn depend on the application. As noted in Section 2, 

the FLM offers a coefficient function, which has an intuitive interpretation. Nonlinear and 

especially nonparametric model results are less interpretable in this sense. But for 

applications in which one is interested only in accurate prediction, this advantage of the 

FLM is immaterial.

Regarding the FLM, we noted in Section 2.1 that smoothness of the data is an important 

factor when choosing among a priori basis types, such as splines vs. wavelets. Among data-

driven basis approaches to the FLM (Section 2.2), those that rely on a more parsimonious set 
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of components may sometimes be preferred, again on grounds of interpretability. In this 

regard, FPLS has an advantage over FPCR, as emphasized by Delaigle and Hall (2012). On 

the other hand, if one is interested only in the coefficient function, not in contributions of the 

different components, then the relative simplicity of FPCR is an advantage over FPLS. A 

key advantage of FPCR over spline or wavelet methods is that it is more readily applied 

when the functional predictors are sampled not densely but sparsely and/or irregularly 

(longitudinal data).

We tend to view a wide variety of methods as effective in at least some settings, but one 

method for which we have limited enthusiasm is selecting a “best subset” among a large set 

of FPCs, as opposed to regressing on the leading FPCs. Whereas leading FPCs offer an 

optimal approximation in the sense of Eckart and Young (1936), if one is not selecting the 

leading FPCs then it is not clear why the FPC basis is the right one to use at all. Another 

basis that is by construction relevant for explaining y, such as FPLS components, may be 

more appropriate. This view finds support in the empirical results of Febrero-Bande et al. 

(2015).

Other considerations in choosing among methods include conceptual complexity, the 

number of tuning parameters that must be selected, sensitivity to how preprocessing is done, 

and computational efficiency. In practice, a primary factor for many users is the availability 

of software that is user-friendly and has the flexibility to handle data sets that may be more 

complex than the iid setup of the Introduction. Available software is reviewed in Section 7, 

and the real-data example presented in Section 8 highlights the need for software that is 

flexible.

6.2 Data-driven choice

Relying on one’s a priori preference is unlikely to be the best strategy for choosing how to 

perform SoFR. Next we discuss two ways to let the data help determine the best approach.

6.2.1 Hypothesis testing—Hypothesis testing is an appropriate paradigm when one 

wishes to compare a simpler versus a more complex SoFR model, with strong evidence 

required in order to reject the former in favor of the latter. By now there are enough articles 

on tests of SoFR-related hypotheses to justify a separate review paper; here we offer just a 

few remarks. Many papers have proposed tests for the FLM (1). Some methods test the null 

hypothesis β(t) ≡ 0 in (1) versus the alternative that β(t) ≠ 0 for some  (e.g., Cardot et 

al., 2003; Lei, 2014). The (restricted) likelihood ratio test of Swihart et al. (2014) can be 

applied either to that zero-effect null or, alternatively, to the null hypothesis that β(t) is a 

constant—a hypothesis that, if true, allows one to regress on the across-the-function average 

rather than resorting to functional regression. McLean et al. (2015) treat the linear model (1) 

as the null, to be tested versus the additive model (8), while García-Portugués et al. (2014) 

consider testing against a more general alternative. Horváth and Kokoszka (2012) and Zhang 

et al. (2014) investigate hypothesis testing procedures to choose the polynomial order in 

functional polynomial models such as the quadratic model (5). Delsol et al. (2011) propose a 

test for the null hypothesis that m in the nonparametric model (9) belongs to a given family 

of operators.
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6.2.2 Ensemble predictors—In most practical cases, there are not just two plausible 

models—a null and an alternative—but many reasonable options for performing SoFR, and 

it is impossible to know in advance which model and estimation strategy will work best for a 

given data set. Because of this, Goldsmith and Scheipl (2014) extended the idea of model 

stacking (Wolpert, 1992) (or superlearning, van der Laan et al., 2007) to SoFR. A large 

collection of estimators is applied to the data set of interest and are evaluated for prediction 

accuracy using cross-validation. These estimators are combined into an “ensemble” 

predictor based on their individual performance. These authors found that multiple 

approaches yielded dramatically different relative performance across several example data 

sets—underlining the value of trying a variety of approaches to SoFR when possible.

7 Software for scalar-on-function regression

Several packages for R (R Core Team, 2015) implement SoFR. The function fRegress in 

the fda package (Ramsay et al., 2009) fits linear models in which either the response and/or 

the predictor is functional. The fda.usc package (Febrero-Bande and Oviedo de la Fuente, 

2012) implements an extensive range of parametric and nonparametric functional regression 

methods, including those studied by Ramsay and Silverman (2005), Ferraty and Vieu (2006) 

and Febrero-Bande and González-Manteiga (2013). The refund package (Huang et al., 

2015) implements penalized functional regression, including several variants of the FLM 

and the additive model (8), and allows for multiple functional predictors and scalar 

covariates, as well as generalized linear models. Optimal smoothness selection relies on the 

mgcv package of Wood (2006). The mgcv package itself is one of the most flexible and user-

friendly packages for SoFR, allowing for the whole GLASS structure of Eilers and Marx 

(2002) plus random effects; see section 5.2 of Wood (2011), which incidentally was the 

second paper to use the term “scalar-on-function regression”. In mgcv, functional predictor 

terms are treated as just one instance of “linear functional” terms (cf. the “general spline 

problem” of Wahba, 1990). The refund.wave package (Huo et al., 2014), a spinoff of 

refund, implements scalar-on-function and scalar-on-image regression in the wavelet 

domain.

In MATLAB (MathWorks, Natick, MA), the PACE package implements a wide variety of 

methods by Müller, Wang, Yao, and co-authors, including a versatile collection of functional 

principal component-based regression models for dense and sparsely sampled functional 

data. From a Bayesian viewpoint, Crainiceanu and Goldsmith (2010) have developed tools 

for functional generalized linear models using WinBUGS (Lunn et al., 2000).

8 A brain imaging example

Our work has made us aware of the expanding opportunities to apply SoFR in cuttingedge 

biomedical research, a trend that we expect will accelerate in the coming years. For such 

applications to be feasible, one must typically move beyond the basic model (1) and 

incorporate scalar covariates and/or multiple functional predictors, allow for non-iid data, 

and consider hypothesis tests for the coefficient function(s). The following example 

illustrates how FLMs can incorporate some of these features (thanks to flexible software 

implementation, as advocated in Section 6.1), and can shed light on an interesting scientific 
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question. For comparisons of linear as well as nonlinear and nonparametric approaches 

applied to several data sets, we refer the reader to Goldsmith and Scheipl (2014).

Lindquist (2012) analyzed functional magnetic resonance imaging (fMRI) measures of 

response to hot (painful) and warm (non-painful) stimuli applied to the left volar forearm in 

20 volunteers. Here we apply SoFR to examine whether the blood oxygen level dependent 

(BOLD) response measured by fMRI in the lateral cerebellum predicts the pain intensity, as 

rated after each stimulus on a scale from 100 and 550 (with higher values indicating more 

pain). Each trial consisted of thermal stimulation for 18 seconds; then a 14-second interval 

in which a fixation cross was presented on a screen; then the words “How painful?” 

appeared, and after another 14-second interval the participant rated the pain intensity. The 

BOLD signal was recorded at 23 2-second intervals. There were Ji = 39–48 such trials per 

volunteer, and 940 in total. As shown in Figure 1(a), the lateral cerebellum BOLD signal 

tends to be higher in the hot trials, but only during the fixation cross interval.

We fitted the model

(15)

in which yij is the log pain score for the ith participant’s jth trial,  is an indicator for a hot 

stimulus, the αi’s are iid normally distributed random intercepts,  is the time interval of 

the trial, and the εij’s are iid normally distributed errors with mean zero. Unsurprisingly, the 

expected difference in log pain score between hot and warm trials is found to be hugely 

significant ( , p < 2·10−16). The coefficient function is also very significantly 

nonzero, based on the modified Wald test of Wood (2013) or the likelihood ratio test of 

Swihart et al. (2014).

In particular, Figure 1(b) shows that  is clearly positive for the same time points that 

evince a warm/hot discrepancy in Figure 1(a). One could venture a “functional collinearity” 

explanation for this, in view of the high correlation (0.28) between the indicator variable 

and the functional predictor term . In other words, one might suspect that 

the highly positive values of  around the 20- to 28-second range are just an artifact of the 

higher BOLD signal in that range for hot versus warm trials. But that seems incorrect, since 

 looks very similar even when we fit separate models with only the warm or only the hot 

trials (Figure 1(c)). A more cogent explanation is that brain activity detected by the BOLD 

signal partially mediates the painful effect of the hot stimulus, a causal interpretation 

developed in depth by Lindquist (2012).

The SoFR implementations of Wood (2011) in the R package mgcv and of Goldsmith et al. 

(2011) in the refund package—which were used to create Figure 1(b) and (c), respectively— 

make it routine to include scalar covariates and random effects, and to test the significance 

of the coefficient function, as we have done here. It is also straightforward to test for a 

“scalar-by-function” interaction between stimulus type and BOLD signal (found to be non-
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significant); or to include multiple BOLD signal predictors. Besides the lateral cerebellum, 

the data set includes such functional predictors for 20 other pain-relevant regions. Several of 

these have significant effects on pain, even adjusting for the lateral cerebellum signal, but the 

associated increments in explained variance are quite small.

9 Discussion

This paper has emphasized methodological and practical aspects of some widely used SoFR 

models. Just a few brief words will have to suffice regarding asymptotic issues. For 

functional (generalized) linear models (see Cardot and Sarda, 2011, for a survey), 

convergence rates have been studied both for estimation of the coefficient function (e.g., 

Müller and Stadtmüller, 2005; Hall and Horowitz, 2007; Dou et al., 2012) and for prediction 

of the response (e.g., Cai and Hall, 2006; Crambes et al., 2009); see Hsing and Eubank 

(2015) for a succinct treatment, and Reimherr (2015) for a recent contribution on the key 

role played by eigenvalues of the covariance operator. A few recent papers (e.g., Wang et al., 

2014; Brunel and Roche, 2015) have derived non-asymptotic error bounds for FLMs. In 

nonparametric FDA, only prediction error is considered, with small-ball probability playing 

a central role. Ferraty and Vieu (2011) review both pointwise and uniform convergence 

results. A detailed analysis of the functional NW estimator’s asymptotic properties was 

recently provided by Geenens (2015).

Regarding the term nonparametric in the FDA context, Ferraty et al. (2005) explain: “We use 

the terminology functional nonparametric, where the word functional refers to the infinite 

dimensionality of the data and where the word nonparametric refers to the infinite 

dimensionality of the model.” But some would argue that, since the coefficient function in 

(1) lies in an infinite-dimensional space, this nomenclature makes even the functional linear 

model “nonparametric”. While a fully satisfying definition may be elusive, we find it most 

helpful to think of nonparametric SoFR as an analogue of ordinary nonparametric 

regression, i.e., as extending the nonparametric model (9) to the case of functional 

predictors.

Our use of the term nonlinear in Section 3 can likewise be questioned, since that term 

applies equally well to nonparametric SoFR. But we could find no better term to encompass 

models that are not linear but that impose more structure than the general model (9). Note 

that in non-functional statistics as well, nonlinear usually refers to models that have some 

parametric structure, as opposed to leaving the mean completely unspecified.

Other problems of nomenclature have arisen as methods for SoFR have proliferated. We 

have seen that “functional (generalized) additive models” may be additive with respect to 

FPC scores (Müller and Yao, 2008; Zhu et al., 2014); points along a functional predictor 

domain (Müller et al., 2013; McLean et al., 2014); or multiple functional predictors with 

either nonlinear (Fan et al., 2015) or nonparametric (Febrero-Bande and González-Manteiga, 

2013) effects. Likewise, authors have considered every combination of scalar linear (SL), 

functional linear (FL) and functional nonparametric (FNP) terms, so that “partial linear” 

models may refer to any two of these three: SL+FL (Shin, 2009), SL+FNP (Aneiros-Pérez 

and Vieu, 2008), or FL+FNP (Lian, 2011). Finally, some of the nonlinear approaches of 
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Section 3 are sometimes termed “nonparametric” since they incorporate general smooth link 

functions. One of our aims here has been to reduce terminological confusion.

We hope that, by distilling some key ideas and approaches from what is now a sprawling 

literature, we have provided readers with useful guidance for implementing scalar-on-

function regression in the growing number of domains in which it can be applied.
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Figure 1. 
(a) Overall mean lateral cerebellum BOLD signal at each of the 23 time points, with 

approximate 95% confidence intervals, for warm- and hot-stimulus trials. (b) Estimated 

coefficient function, with approximate pointwise 95% confidence intervals, for model (15). 

(c) Coeffcient function estimate for the full data set (as in (b)) compared with those obtained 

with only the hot or only the warm trials.
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