Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jul 13;73(Pt 8):1162–1166. doi: 10.1107/S2056989017010179

A one-dimensional coordination polymer, catena-poly[[[[N-ethyl-N-(pyridin-4-ylmeth­yl)di­thio­carbamato-κ2 S,S′]zinc(II)]-μ2-N-ethyl-N-(pyridin-4-ylmeth­yl)di­thio­carbamato-κ3 S,S′:N] 4-methyl­pyridine hemisolvate]

Pavel Poplaukhin a, Hadi D Arman b, Edward R T Tiekink c,*
PMCID: PMC5598840  PMID: 28932428

The title compound, {Zn[S2CN(Et)CH2py]2.(4-methyl­pyridine)0.5}n, is a one-dimensional coordination polymer with a zigzag topology.

Keywords: crystal structure, coordination polymer, zinc, di­thio­carbamate, methyl­pyridine

Abstract

The title compound, {[Zn(C9H11N2S2)2]·0.5C6H7N}n, comprises two independent, but chemically similar, Zn[S2CN(Et)CH2py]2 residues and a 4-methyl­pyridine solvent mol­ecule in the asymmetric unit. The Zn-containing units are connected into a one-dimensional coordination polymer (zigzag topology) propagating in the [010] direction, with one di­thio­carbamate ligand bridging in a μ23 mode, employing one pyridyl N and both di­thio­carbamate S atoms, while the other is κ2-chelating. In each case, the resultant ZnNS4 coordination geometry approximates a square pyramid, with the pyridyl N atom in the apical position. In the crystal, the chains are linked into a three-dimensional architecture by methyl- and pyridyl-C—H⋯S, methyl­ene-C—H⋯N(pyrid­yl) and pyridyl-C—H⋯π(ZnS2C) inter­actions. The connection between the chain and the 4-methyl­pyridine solvent mol­ecule is of the type pyridyl-C—H⋯N(4-methyl­pyridine).

Chemical context  

The most recent surveys of the structural chemistry of the binary zinc-triad di­thio­carbamates, i.e. mol­ecules of the general formula M(S2CNRR′)2 for M = Zn, Cd and Hg, indicated that up to that point, R and R′ were generally restricted to alkyl groups, with only rare examples of R being an aryl group (Tiekink, 2003; Hogarth, 2005). However, since around that time there has been increasing inter­est in elaborating di­thio­carbamate ligands to enhance their functionality for systematic structural studies. This enhancement can be achieved in two ways utilizing their facile procedure of synthesis, i.e. the reaction of CS2 with an amine in the presence of base. Hence, the utilization of di­amines can lead to bis­(di­thio­carbamates), e.g. S2CN—R—CS2 , R = alk­yl/aryl (e.g. Cookson & Beer, 2007; Knight et al., 2009; Oliver et al. 2011). Alternatively, the chosen amine can carry a functional group capable of additional coordination to a metal cation, typically a pyridyl group (e.g. Barba et al., 2012; Singh et al., 2014) or groups capable of forming hydrogen-bonding inter­actions (e.g. Benson et al., 2007; Howie et al., 2008). It is the former class of ligand with a pyridyl substituent which forms the focus of the present contribution.

Previous structural studies have revealed a diversity of coordination modes in the zinc-triad elements coordinated by di­thio­carbamate ligands functionalized with pyridyl substituents. Thus, a two-dimensional architecture is found in centrosymmetric {Zn[S2CN(CH2ferrocen­yl)CH2py]2}n, with both pyridyl N atoms being coordinating (Kumar et al., 2016). In the cadmium analogue, isolated as a 1,10-phenanthroline (phen) adduct, i.e. Cd[S2CN(CH2ferrocen­yl)CH2py]2(phen), no additional Cd—N(pyrid­yl) inter­actions are formed in the crystal as the cadmium cation is coordinatively saturated (Kumar et al., 2016). However, in {Cd{[S2CN(CH2Ph)CH2py]2}n and related species, all potential donor atoms are coordinating, leading to a two-dimensional coordination polymer (Kumar et al., 2014). It is inter­esting to note that zero-dimensional aggregation can also occur, as in the case of {Cd[S2CN(1H-indol-3-ylmeth­yl)CH2(CH2py)]2}2, where the tridentate mode of coordination of one di­thio­carbamate is retained, but aggregation leads to a dimer only (Kumar et al., 2014). This may be a result of the now well established steric effects in 1,1-di­thiol­ate chemistry (Tiekink, 2003, 2006). Several related structures are also available for mercury. In {Hg[S2CN(CH2Py)2]2]}n, with two pyridyl groups per di­thio­carbamate ligand, an unusual one-dimensional coordination polymer with a twisted topology is found in the crystal, as one pyridyl N atom is noncoordinating (Yadav et al., 2014; Jotani et al., 2016). When one CH2py group is replaced by a methyl substitutent, as in {Hg[S2CN(Me)CH2Py]2}n (Singh et al., 2014), a one-dimensional coordination polymer is also found. Again, when one substituent is large, i.e. as in {Hg[S2CN{CH2(1-methyl-1H-pyrrol-2-yl)}CH2Py]2}n (Yadav et al., 2014), no Hg—N(pyrid­yl) inter­actions are found. Very recently, the crystal structure of a binary compound, isolated as the 3-methyl­pyridine monosolvate, i.e. {Cd[S2CN(Et)CH2py]2·3-methyl­pyridine}n, was described and found to feature two S,S′,N-tridentate di­thio­carbamate ligands, leading to a two-dimensional coordination polymer (Arman et al., 2017), as seen earlier in some of the precedents mentioned above (Kumar et al., 2014); the 3-methyl­pyridine solvent mol­ecules reside in square-shaped channels. In continuation of these structural studies, herein, the crystallographic characterization of a closely related zinc compound to the last mentioned species, namely {Zn[S2CN(Et)CH2py]2·(4-methyl­pyri­dine)0.5}n, is described.graphic file with name e-73-01162-scheme1.jpg

Structural commentary  

The asymmetric unit of (I) comprises two independent Zn[S2CN(Et)CH2py]2 residues, shown in Fig. 1, and a 4-methyl­pyridine solvent mol­ecule. Each of the di­thio­carbamate ligands is chelating, forming approximately similar Zn—S bond lengths, see data in Table 1. For the Zn1-containing mol­ecule, the disparity in the Zn—S bond lengths, i.e. Δ(Zn—S) = [Zn—S(long) − Zn—S(short)], for the S1-di­thio­carbamate ligand of 0.32 Å is greater than the value of 0.10 Å for the S3-di­thio­carbamate ligand. For the Zn2-mol­ecule, these differences diminish to 0.23 and 0.09 Å for the S5- and S7-di­thio­carbamate ligands, respectively. The similarity of the structures is emphasized in the overlay diagram of Fig. 2, showing minor variations in the orientations of the pyridyl rings and in the relationship between the two chelate rings. In each of the Zn-containing mol­ecules, one di­thio­carbamate ligand coordinates in a μ23 mode, chelating one ZnII cation and simultaneously bridging another via the pyridyl N atom. It is noted that it is the di­thio­carbamate ligand that forms the more equivalent Zn—S bond lengths in each residue that forms the bridging inter­actions. The resultant coordination geometry for each ZnII cation is based on an NS4 donor set.

Figure 1.

Figure 1

The mol­ecular structures of the two independent Zn[S2CN(Et)CH2py]2 fragments in the asymmetric unit of (I), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Table 1. Selected bond lengths (Å).

Zn1—N6 2.050 (3) Zn2—N2i 2.074 (3)
Zn1—S1 2.3510 (11) Zn2—S5 2.3723 (11)
Zn1—S2 2.6741 (11) Zn2—S6 2.5783 (12)
Zn1—S3 2.3962 (11) Zn2—S7 2.4036 (11)
Zn1—S4 2.4972 (11) Zn2—S8 2.4917 (12)

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

A mol­ecular overlay diagram of the two independent mol­ecules of Zn[S2CN(Et)CH2py]2. The Zn1-containing mol­ecule is shown in red and the mol­ecules have been overlapped so that the two more symmetrically chelating di­thio­carbamate ligands are coincident.

For five-coordinate species, the value computed for τ is a useful indicator of the adopted coordination geometry, with the values of τ ranging from 0 to 1 for ideal square-pyramidal and trigonal–bipyramidal geometries, respectively (Addison et al., 1984). In (I), the values of τ for Zn1 and Zn2 are 0.33 and 0.23, respectively, indicating that Zn2 is closer to a square pyramid than Zn1. In each case, the pyridyl N atom occupies the approximately apical position, as indicated by the range of N—Zn1—S angles of 97.62 (8)–111.76 (9)° and the narrower range of N—Zn2—S angles of 99.72 (9)–110.48 (9)°. In this description, the Zn1 cation lies 0.6827 (6) Å above the best plane through the four S atoms, i.e. S1–S4 (r.m.s. deviation = 0.1721 Å), in the direction of the pyridyl N6 atom. For the Zn2-mol­ecule, the deviation of the Zn2 cation from the S4 plane is 0.6018 (6) Å and the r.m.s. deviation through the S5–S8 atoms is 0.1273 Å.

The result of the presence of equal numbers of chelating and bridging ligands in (I) is the formation of a supra­molecular polymer aligned along [010], as illustrated in Fig. 3. The topology of the chain is zigzag. Finally, the 4-methyl­pyridine solvent mol­ecule is non-coordinating.

Figure 3.

Figure 3

The one-dimensional coordination polymer in (I), aligned along [010].

The most closely related structure in the literature for comparison is that of the aforementioned recently reported {Cd[S2CN(Et)CH2py]2·3-methyl­pyridine}n, which was also isolated from an experiment attempting to coordinate isomeric methyl­pyridines to the heavy element (Arman et al., 2017). The crucial difference between the two structures is that in the cadmium crystal, both di­thio­carbamates adopt a μ23 coordination mode, leading to a cis-N2S4 coordination geometry and a two-dimensional framework with a flat topology. It is highly likely that the disparity in supra­molecular aggregation in the zinc and cadmium compounds arises from the greater ability of the larger Cd atom to expand its donor set.

Supra­molecular features  

As mentioned above, the supra­molecular chains in the crystal of (I) are aligned along [010]. In the crystal, these chains are connected into a three-dimensional architecture by a number of weak inter­molecular inter­actions, as summarized in Table 2. There are two distinct C—H⋯S inter­actions, with the donors being methyl- and pyridyl-C—H groups, as well as a methyl­ene-C—H⋯N(pyrid­yl) inter­action. The other connection between chains is of the type pyridyl-C—H⋯π(Zn1,S3,S4,C10), an inter­action well known in metal di­thio­carbamates (Tiekink & Zukerman-Schpector, 2011) and, indeed, other metal systems (Tiekink, 2017). The main connection identified between the 4-methyl­pyridine solvent mol­ecule and the chain is of the type pyridyl-C—H⋯N(4-methyl­pyridine). An illustration of the mol­ecular packing is given in Fig. 4.

Table 2. Hydrogen-bond geometry (Å, °).

Cg1 is the ring centroid of the Zn1/S3/S4/C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯N8ii 0.99 2.41 3.197 (5) 136
C30—H30C⋯S8iii 0.98 2.86 3.433 (5) 118
C36—H36⋯S5iv 0.95 2.87 3.773 (4) 158
C6—H6⋯Cg1v 0.95 2.91 3.708 (4) 142
C26—H26⋯N9vi 0.95 2.61 3.256 (5) 126

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Figure 4.

Figure 4

A view of the unit-cell contents in projection down the b axis. The C—H⋯S, C—H⋯N and C—H⋯π inter­actions are shown in orange, blue and purple dashed lines, respectively.

Database survey  

The di­thio­carabmate anion, [S2CN(Et)CH2py], found in (I) and in {Cd[S2CN(Et)CH2py]2·3-methyl­pyridine}n (Arman et al., 2017), has been structurally characterized in its free form, i.e. as its potassium 1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane (i.e. 18-crown-6) salt (Arman et al., 2013). The pyridyl N atom is noncoordinating in this structure, the K+ ion being connected to S and O atoms only, within an O6S2 donor set. There is also a series of three diorganotin structures with this di­thio­carbamate ligand, i.e. of the general formula R 2Sn[S2CN(Et)CH2py]2, for R = Me, nBu and Ph (Barba et al., 2012). In only the R = Me compound is there a weak inter­molecular Sn⋯N(pyrid­yl) inter­action of 2.98 Å between the two mol­ecules comprising the asymmetric unit. This result is consistent with surveys of diorganotin bis­(di­thio­carbamate)s in general (Tiekink, 2008) which suggest that the Sn atom in these compounds does not usually increase its coordination number by forming secondary bonding inter­actions (Tiekink, 2017). Specifically, for di­methyl­tin compounds, R 2Sn(S2CNRR′′)2, a recent survey indicated that secondary bonding inter­actions occur in only 10% of their crystal structures (Zaldi et al., 2017)

Synthesis and crystallization  

The title compound was isolated from the recrystallization of Zn{[S2CN(Et)CH2py]2 (generated from the reaction of Zn(NO3)2·H2O and [S2CN(Et)CH2py]) from 4-picoline. Suitable single crystals formed upon slow evaporation of the solvent (m.p. 337–339 K).

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 3. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with U iso(H) values set at 1.2–1.5U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula [Zn(C9H11N2S2)2]·0.5C6H7N
M r 534.57
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 98
a, b, c (Å) 9.419 (2), 15.299 (4), 17.149 (4)
α, β, γ (°) 88.871 (9), 83.914 (8), 75.766 (6)
V3) 2381.8 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.40
Crystal size (mm) 0.30 × 0.20 × 0.08
 
Data collection
Diffractometer AFC12K/SATURN724
Absorption correction Multi-scan (ABSCOR; Higashi, 1995)
T min, T max 0.549, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 13748, 9827, 8634
R int 0.037
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.053, 0.120, 1.14
No. of reflections 9827
No. of parameters 555
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.81

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017010179/hb7691sup1.cif

e-73-01162-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017010179/hb7691Isup2.hkl

e-73-01162-Isup2.hkl (779.7KB, hkl)

CCDC reference: 1561011

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Sunway University for support of biological and crystal engineering studies of metal di­thio­carbamates.

supplementary crystallographic information

Crystal data

[Zn(C9H11N2S2)2]·0.5C6H7N Z = 4
Mr = 534.57 F(000) = 1108
Triclinic, P1 Dx = 1.491 Mg m3
a = 9.419 (2) Å Mo Kα radiation, λ = 0.71069 Å
b = 15.299 (4) Å Cell parameters from 10781 reflections
c = 17.149 (4) Å θ = 2.2–40.7°
α = 88.871 (9)° µ = 1.40 mm1
β = 83.914 (8)° T = 98 K
γ = 75.766 (6)° Block, colourless
V = 2381.8 (10) Å3 0.30 × 0.20 × 0.08 mm

Data collection

AFC12K/SATURN724 diffractometer 9827 independent reflections
Radiation source: fine-focus sealed tube 8634 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
ω scans θmax = 26.5°, θmin = 2.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −11→11
Tmin = 0.549, Tmax = 1 k = −19→18
13748 measured reflections l = −21→21

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053 H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0424P)2 + 1.244P] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max = 0.001
9827 reflections Δρmax = 0.55 e Å3
555 parameters Δρmin = −0.81 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.54704 (5) 0.72964 (3) 0.93393 (2) 0.01760 (11)
Zn2 0.43549 (5) 0.25774 (3) 0.57576 (2) 0.01760 (11)
S1 0.32468 (10) 0.83898 (6) 0.96346 (5) 0.01963 (19)
S2 0.58234 (10) 0.88714 (6) 0.87543 (5) 0.01821 (18)
S3 0.78618 (10) 0.68982 (6) 0.97969 (5) 0.01919 (19)
S4 0.53708 (10) 0.61206 (6) 1.03606 (5) 0.01912 (19)
S5 0.67047 (10) 0.28992 (6) 0.55549 (5) 0.0212 (2)
S6 0.40191 (10) 0.42263 (6) 0.61908 (5) 0.01971 (19)
S7 0.20336 (10) 0.27671 (6) 0.52307 (5) 0.02089 (19)
S8 0.46521 (10) 0.12755 (6) 0.48528 (5) 0.0217 (2)
N1 0.3378 (3) 1.0087 (2) 0.92953 (16) 0.0176 (6)
N2 0.4298 (3) 1.19659 (19) 0.68468 (17) 0.0187 (6)
N3 0.8009 (3) 0.56341 (19) 1.09051 (17) 0.0173 (6)
N4 1.0896 (4) 0.7366 (3) 1.2448 (2) 0.0345 (8)
N5 0.6620 (3) 0.46253 (19) 0.58467 (17) 0.0178 (6)
N6 0.5447 (3) 0.66729 (19) 0.82948 (16) 0.0162 (6)
N7 0.2023 (3) 0.1338 (2) 0.43693 (17) 0.0198 (6)
N8 −0.0182 (4) 0.3770 (2) 0.24530 (18) 0.0260 (7)
N9 0.7781 (4) 0.1256 (2) 0.2852 (2) 0.0318 (8)
C1 0.4081 (4) 0.9211 (2) 0.92226 (19) 0.0175 (7)
C2 0.1861 (4) 1.0407 (3) 0.9680 (2) 0.0258 (8)
H2A 0.1900 1.0664 1.0200 0.031*
H2B 0.1414 0.9886 0.9764 0.031*
C3 0.0895 (4) 1.1112 (3) 0.9207 (2) 0.0242 (8)
H3A −0.0104 1.1283 0.9479 0.036*
H3B 0.0862 1.0865 0.8688 0.036*
H3C 0.1299 1.1644 0.9148 0.036*
C4 0.4188 (4) 1.0786 (2) 0.91370 (19) 0.0186 (7)
H4A 0.5225 1.0528 0.9235 0.022*
H4B 0.3775 1.1282 0.9520 0.022*
C5 0.4183 (4) 1.1186 (2) 0.8325 (2) 0.0183 (7)
C6 0.4609 (4) 1.1986 (2) 0.8213 (2) 0.0187 (7)
H6 0.4855 1.2282 0.8643 0.022*
C7 0.4674 (4) 1.2355 (2) 0.7466 (2) 0.0194 (7)
H7 0.4992 1.2897 0.7391 0.023*
C8 0.3872 (4) 1.1200 (2) 0.6959 (2) 0.0192 (7)
H8 0.3598 1.0928 0.6525 0.023*
C9 0.3813 (4) 1.0782 (2) 0.76892 (19) 0.0185 (7)
H9 0.3522 1.0230 0.7747 0.022*
C10 0.7165 (4) 0.6157 (2) 1.04110 (19) 0.0151 (7)
C11 0.7438 (4) 0.4998 (2) 1.1437 (2) 0.0212 (8)
H11A 0.6378 0.5255 1.1596 0.025*
H11B 0.7957 0.4922 1.1916 0.025*
C12 0.7640 (4) 0.4080 (3) 1.1055 (2) 0.0248 (8)
H12A 0.7334 0.3664 1.1441 0.037*
H12B 0.8678 0.3843 1.0861 0.037*
H12C 0.7036 0.4143 1.0615 0.037*
C13 0.9591 (4) 0.5577 (2) 1.0897 (2) 0.0185 (7)
H13A 0.9985 0.5688 1.0355 0.022*
H13B 1.0092 0.4955 1.1036 0.022*
C14 0.9978 (4) 0.6223 (2) 1.1441 (2) 0.0185 (7)
C15 1.1310 (4) 0.6461 (3) 1.1276 (2) 0.0277 (9)
H15 1.1941 0.6238 1.0816 0.033*
C16 1.1711 (5) 0.7026 (3) 1.1786 (3) 0.0359 (10)
H16 1.2623 0.7183 1.1658 0.043*
C17 0.9631 (5) 0.7129 (3) 1.2598 (2) 0.0283 (9)
H17 0.9029 0.7356 1.3066 0.034*
C18 0.9122 (4) 0.6575 (3) 1.2122 (2) 0.0249 (8)
H18 0.8197 0.6438 1.2261 0.030*
C19 0.5864 (4) 0.3983 (2) 0.58684 (19) 0.0175 (7)
C20 0.8195 (4) 0.4443 (3) 0.5556 (2) 0.0305 (9)
H20A 0.8293 0.4685 0.5018 0.037*
H20B 0.8611 0.3783 0.5526 0.037*
C21 0.9081 (4) 0.4856 (3) 0.6068 (2) 0.0281 (9)
H21A 1.0129 0.4660 0.5879 0.042*
H21B 0.8924 0.4660 0.6611 0.042*
H21C 0.8761 0.5515 0.6044 0.042*
C22 0.5849 (4) 0.5575 (2) 0.5968 (2) 0.0202 (8)
H22A 0.4857 0.5667 0.5789 0.024*
H22B 0.6388 0.5945 0.5629 0.024*
C23 0.5673 (4) 0.5923 (2) 0.68008 (19) 0.0170 (7)
C24 0.6113 (4) 0.5384 (2) 0.7445 (2) 0.0181 (7)
H24 0.6492 0.4751 0.7381 0.022*
C25 0.5989 (4) 0.5782 (2) 0.8170 (2) 0.0184 (7)
H25 0.6300 0.5411 0.8601 0.022*
C26 0.4962 (4) 0.7180 (2) 0.7679 (2) 0.0189 (7)
H26 0.4533 0.7806 0.7762 0.023*
C27 0.5060 (4) 0.6832 (2) 0.6938 (2) 0.0205 (8)
H27 0.4707 0.7215 0.6521 0.025*
C28 0.2825 (4) 0.1734 (2) 0.4770 (2) 0.0182 (7)
C29 0.2630 (4) 0.0457 (2) 0.3968 (2) 0.0241 (8)
H29A 0.3719 0.0314 0.3930 0.029*
H29B 0.2337 0.0499 0.3428 0.029*
C30 0.2093 (5) −0.0302 (3) 0.4398 (3) 0.0323 (10)
H30A 0.2525 −0.0872 0.4115 0.048*
H30B 0.1016 −0.0172 0.4423 0.048*
H30C 0.2390 −0.0351 0.4930 0.048*
C31 0.0470 (4) 0.1766 (2) 0.4283 (2) 0.0213 (8)
H31A −0.0014 0.2049 0.4788 0.026*
H31B −0.0031 0.1296 0.4156 0.026*
C32 0.0291 (4) 0.2475 (2) 0.36478 (19) 0.0167 (7)
C33 0.1391 (4) 0.2508 (3) 0.3047 (2) 0.0229 (8)
H33 0.2329 0.2094 0.3032 0.027*
C34 0.1093 (4) 0.3154 (3) 0.2470 (2) 0.0264 (9)
H34 0.1849 0.3159 0.2058 0.032*
C35 −0.1227 (4) 0.3728 (3) 0.3038 (2) 0.0275 (9)
H35 −0.2148 0.4157 0.3042 0.033*
C36 −0.1056 (4) 0.3105 (3) 0.3632 (2) 0.0231 (8)
H36 −0.1845 0.3105 0.4027 0.028*
C37 0.8173 (4) 0.0465 (3) 0.3202 (2) 0.0282 (9)
H37 0.7525 0.0328 0.3624 0.034*
C38 0.9486 (4) −0.0178 (3) 0.2986 (2) 0.0288 (9)
H38 0.9703 −0.0742 0.3245 0.035*
C39 1.0473 (4) 0.0021 (3) 0.2383 (2) 0.0269 (8)
C40 1.0051 (5) 0.0859 (3) 0.2018 (2) 0.0322 (9)
H40 1.0677 0.1027 0.1602 0.039*
C41 0.8712 (5) 0.1440 (3) 0.2271 (3) 0.0353 (10)
H41 0.8444 0.2004 0.2015 0.042*
C42 1.1917 (5) −0.0633 (3) 0.2133 (3) 0.0387 (11)
H42A 1.2049 −0.1155 0.2482 0.058*
H42B 1.2722 −0.0337 0.2161 0.058*
H42C 1.1921 −0.0833 0.1593 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0182 (2) 0.0187 (2) 0.0157 (2) −0.00322 (16) −0.00350 (16) −0.00183 (16)
Zn2 0.0214 (2) 0.0196 (2) 0.0143 (2) −0.00902 (17) −0.00376 (16) 0.00265 (16)
S1 0.0195 (5) 0.0172 (4) 0.0221 (5) −0.0057 (3) 0.0010 (3) 0.0019 (3)
S2 0.0184 (4) 0.0189 (4) 0.0176 (4) −0.0056 (3) −0.0010 (3) 0.0013 (3)
S3 0.0194 (5) 0.0199 (4) 0.0201 (4) −0.0077 (4) −0.0040 (3) 0.0040 (3)
S4 0.0170 (4) 0.0214 (5) 0.0211 (4) −0.0079 (3) −0.0044 (3) 0.0017 (3)
S5 0.0227 (5) 0.0166 (4) 0.0240 (5) −0.0072 (4) 0.0047 (4) −0.0042 (3)
S6 0.0192 (5) 0.0188 (4) 0.0213 (4) −0.0052 (3) −0.0014 (3) −0.0017 (3)
S7 0.0222 (5) 0.0199 (4) 0.0208 (5) −0.0040 (4) −0.0051 (4) −0.0024 (3)
S8 0.0195 (5) 0.0237 (5) 0.0222 (5) −0.0039 (4) −0.0059 (3) −0.0023 (4)
N1 0.0176 (16) 0.0186 (15) 0.0157 (15) −0.0037 (12) −0.0003 (11) 0.0021 (12)
N2 0.0240 (17) 0.0169 (15) 0.0171 (15) −0.0075 (12) −0.0049 (12) 0.0042 (12)
N3 0.0167 (15) 0.0166 (15) 0.0200 (15) −0.0055 (12) −0.0051 (12) 0.0022 (12)
N4 0.038 (2) 0.038 (2) 0.032 (2) −0.0151 (17) −0.0091 (16) −0.0055 (16)
N5 0.0215 (16) 0.0153 (15) 0.0185 (15) −0.0095 (12) 0.0012 (12) −0.0023 (12)
N6 0.0150 (15) 0.0174 (15) 0.0168 (15) −0.0042 (12) −0.0038 (11) −0.0019 (11)
N7 0.0173 (16) 0.0196 (16) 0.0224 (16) −0.0027 (12) −0.0062 (12) −0.0001 (12)
N8 0.0211 (17) 0.0340 (19) 0.0215 (17) −0.0042 (14) −0.0028 (13) 0.0042 (14)
N9 0.028 (2) 0.0290 (19) 0.039 (2) −0.0058 (15) −0.0105 (16) −0.0053 (16)
C1 0.0194 (18) 0.0211 (18) 0.0123 (16) −0.0049 (14) −0.0026 (13) −0.0005 (13)
C2 0.022 (2) 0.024 (2) 0.028 (2) −0.0031 (16) 0.0052 (16) 0.0058 (16)
C3 0.020 (2) 0.027 (2) 0.026 (2) −0.0041 (15) −0.0064 (15) 0.0005 (16)
C4 0.0234 (19) 0.0183 (18) 0.0155 (17) −0.0070 (14) −0.0042 (14) −0.0003 (14)
C5 0.0152 (18) 0.0196 (18) 0.0203 (18) −0.0050 (14) −0.0009 (13) 0.0013 (14)
C6 0.0215 (19) 0.0168 (17) 0.0190 (18) −0.0061 (14) −0.0036 (14) −0.0003 (14)
C7 0.0222 (19) 0.0175 (18) 0.0207 (18) −0.0092 (14) −0.0030 (14) 0.0022 (14)
C8 0.0225 (19) 0.0207 (18) 0.0153 (17) −0.0064 (15) −0.0033 (14) −0.0001 (14)
C9 0.025 (2) 0.0180 (17) 0.0153 (17) −0.0103 (15) −0.0035 (14) −0.0002 (14)
C10 0.0172 (17) 0.0121 (16) 0.0164 (17) −0.0040 (13) −0.0016 (13) −0.0030 (13)
C11 0.0202 (19) 0.0246 (19) 0.0213 (19) −0.0107 (15) −0.0034 (14) 0.0083 (15)
C12 0.024 (2) 0.024 (2) 0.031 (2) −0.0141 (16) −0.0082 (16) 0.0081 (16)
C13 0.0141 (17) 0.0193 (18) 0.0216 (18) −0.0024 (14) −0.0031 (14) −0.0004 (14)
C14 0.0183 (18) 0.0182 (17) 0.0200 (18) −0.0044 (14) −0.0076 (14) 0.0041 (14)
C15 0.023 (2) 0.030 (2) 0.030 (2) −0.0088 (17) 0.0029 (16) −0.0066 (17)
C16 0.028 (2) 0.045 (3) 0.041 (3) −0.020 (2) −0.0033 (19) −0.008 (2)
C17 0.031 (2) 0.031 (2) 0.023 (2) −0.0057 (17) −0.0042 (16) −0.0016 (16)
C18 0.023 (2) 0.024 (2) 0.028 (2) −0.0068 (16) −0.0029 (16) 0.0010 (16)
C19 0.0235 (19) 0.0225 (18) 0.0086 (16) −0.0096 (15) −0.0014 (13) 0.0000 (13)
C20 0.026 (2) 0.034 (2) 0.034 (2) −0.0154 (18) 0.0086 (17) −0.0108 (18)
C21 0.028 (2) 0.029 (2) 0.030 (2) −0.0108 (17) −0.0022 (17) −0.0037 (17)
C22 0.032 (2) 0.0171 (18) 0.0138 (17) −0.0101 (15) −0.0033 (14) 0.0015 (14)
C23 0.0177 (18) 0.0224 (18) 0.0141 (17) −0.0111 (14) −0.0007 (13) −0.0010 (14)
C24 0.0208 (19) 0.0135 (17) 0.0199 (18) −0.0041 (14) −0.0019 (14) 0.0006 (14)
C25 0.0225 (19) 0.0192 (18) 0.0159 (17) −0.0096 (15) −0.0020 (14) 0.0034 (14)
C26 0.0204 (19) 0.0157 (17) 0.0208 (18) −0.0033 (14) −0.0068 (14) 0.0010 (14)
C27 0.0215 (19) 0.0202 (18) 0.0210 (18) −0.0057 (15) −0.0072 (14) 0.0039 (15)
C28 0.0196 (18) 0.0202 (18) 0.0166 (17) −0.0076 (14) −0.0043 (14) 0.0049 (14)
C29 0.025 (2) 0.0213 (19) 0.028 (2) −0.0065 (16) −0.0086 (16) −0.0061 (16)
C30 0.033 (2) 0.020 (2) 0.047 (3) −0.0070 (17) −0.0152 (19) 0.0016 (18)
C31 0.0170 (18) 0.0229 (19) 0.0258 (19) −0.0067 (15) −0.0058 (14) 0.0007 (15)
C32 0.0191 (18) 0.0188 (17) 0.0133 (16) −0.0059 (14) −0.0041 (13) −0.0020 (13)
C33 0.0158 (18) 0.028 (2) 0.026 (2) −0.0065 (15) −0.0048 (14) 0.0016 (16)
C34 0.020 (2) 0.038 (2) 0.023 (2) −0.0103 (17) −0.0006 (15) 0.0019 (17)
C35 0.023 (2) 0.030 (2) 0.024 (2) 0.0010 (16) 0.0029 (16) 0.0011 (16)
C36 0.022 (2) 0.028 (2) 0.0168 (18) −0.0025 (16) −0.0002 (14) −0.0025 (15)
C37 0.024 (2) 0.040 (2) 0.025 (2) −0.0143 (18) −0.0054 (16) −0.0079 (17)
C38 0.025 (2) 0.033 (2) 0.034 (2) −0.0124 (17) −0.0104 (17) −0.0052 (18)
C39 0.021 (2) 0.030 (2) 0.033 (2) −0.0088 (16) −0.0095 (16) −0.0062 (17)
C40 0.033 (2) 0.036 (2) 0.028 (2) −0.0092 (19) −0.0010 (17) −0.0058 (18)
C41 0.040 (3) 0.032 (2) 0.036 (2) −0.009 (2) −0.014 (2) 0.0038 (19)
C42 0.028 (2) 0.034 (2) 0.054 (3) −0.0081 (19) −0.001 (2) −0.013 (2)

Geometric parameters (Å, º)

Zn1—N6 2.050 (3) C12—H12A 0.9800
Zn1—S1 2.3510 (11) C12—H12B 0.9800
Zn1—S2 2.6741 (11) C12—H12C 0.9800
Zn1—S3 2.3962 (11) C13—C14 1.505 (5)
Zn1—S4 2.4972 (11) C13—H13A 0.9900
Zn2—N2i 2.074 (3) C13—H13B 0.9900
Zn2—S5 2.3723 (11) C14—C18 1.384 (5)
Zn2—S6 2.5783 (12) C14—C15 1.391 (5)
Zn2—S7 2.4036 (11) C15—C16 1.384 (6)
Zn2—S8 2.4917 (12) C15—H15 0.9500
S1—C1 1.740 (4) C16—H16 0.9500
S2—C1 1.710 (4) C17—C18 1.389 (5)
S3—C10 1.732 (3) C17—H17 0.9500
S4—C10 1.715 (3) C18—H18 0.9500
S5—C19 1.721 (4) C20—C21 1.518 (5)
S6—C19 1.718 (4) C20—H20A 0.9900
S7—C28 1.738 (4) C20—H20B 0.9900
S8—C28 1.711 (4) C21—H21A 0.9800
N1—C1 1.342 (4) C21—H21B 0.9800
N1—C4 1.465 (4) C21—H21C 0.9800
N1—C2 1.478 (5) C22—C23 1.513 (5)
N2—C8 1.333 (4) C22—H22A 0.9900
N2—C7 1.348 (5) C22—H22B 0.9900
N2—Zn2ii 2.074 (3) C23—C27 1.383 (5)
N3—C10 1.339 (4) C23—C24 1.402 (5)
N3—C13 1.469 (4) C24—C25 1.377 (5)
N3—C11 1.479 (4) C24—H24 0.9500
N4—C17 1.328 (5) C25—H25 0.9500
N4—C16 1.339 (6) C26—C27 1.372 (5)
N5—C19 1.345 (4) C26—H26 0.9500
N5—C22 1.463 (4) C27—H27 0.9500
N5—C20 1.475 (5) C29—C30 1.525 (5)
N6—C26 1.350 (4) C29—H29A 0.9900
N6—C25 1.345 (4) C29—H29B 0.9900
N7—C28 1.327 (4) C30—H30A 0.9800
N7—C31 1.469 (4) C30—H30B 0.9800
N7—C29 1.481 (5) C30—H30C 0.9800
N8—C34 1.335 (5) C31—C32 1.515 (5)
N8—C35 1.341 (5) C31—H31A 0.9900
N9—C37 1.327 (5) C31—H31B 0.9900
N9—C41 1.329 (6) C32—C33 1.391 (5)
C2—C3 1.513 (5) C32—C36 1.394 (5)
C2—H2A 0.9900 C33—C34 1.384 (5)
C2—H2B 0.9900 C33—H33 0.9500
C3—H3A 0.9800 C34—H34 0.9500
C3—H3B 0.9800 C35—C36 1.376 (5)
C3—H3C 0.9800 C35—H35 0.9500
C4—C5 1.510 (5) C36—H36 0.9500
C4—H4A 0.9900 C37—C38 1.398 (6)
C4—H4B 0.9900 C37—H37 0.9500
C5—C9 1.381 (5) C38—C39 1.396 (6)
C5—C6 1.383 (5) C38—H38 0.9500
C6—C7 1.391 (5) C39—C40 1.401 (6)
C6—H6 0.9500 C39—C42 1.503 (6)
C7—H7 0.9500 C40—C41 1.384 (6)
C8—C9 1.397 (5) C40—H40 0.9500
C8—H8 0.9500 C41—H41 0.9500
C9—H9 0.9500 C42—H42A 0.9800
C11—C12 1.521 (5) C42—H42B 0.9800
C11—H11A 0.9900 C42—H42C 0.9800
C11—H11B 0.9900
N6—Zn1—S1 109.98 (8) C18—C14—C13 124.4 (3)
N6—Zn1—S3 111.76 (9) C15—C14—C13 118.7 (3)
S1—Zn1—S3 137.18 (4) C16—C15—C14 119.5 (4)
N6—Zn1—S4 105.21 (8) C16—C15—H15 120.2
S1—Zn1—S4 103.71 (4) C14—C15—H15 120.2
S3—Zn1—S4 74.11 (3) N4—C16—C15 124.2 (4)
N6—Zn1—S2 97.62 (8) N4—C16—H16 117.9
S1—Zn1—S2 71.89 (3) C15—C16—H16 117.9
S3—Zn1—S2 93.44 (3) N4—C17—C18 124.8 (4)
S4—Zn1—S2 156.73 (3) N4—C17—H17 117.6
N2i—Zn2—S5 105.06 (9) C18—C17—H17 117.6
N2i—Zn2—S7 110.48 (9) C14—C18—C17 119.2 (4)
S5—Zn2—S7 144.31 (4) C14—C18—H18 120.4
N2i—Zn2—S8 101.93 (9) C17—C18—H18 120.4
S5—Zn2—S8 102.19 (4) N5—C19—S6 120.9 (3)
S7—Zn2—S8 73.89 (3) N5—C19—S5 121.2 (3)
N2i—Zn2—S6 99.72 (9) S6—C19—S5 117.9 (2)
S5—Zn2—S6 72.94 (3) N5—C20—C21 113.1 (3)
S7—Zn2—S6 97.50 (3) N5—C20—H20A 108.9
S8—Zn2—S6 158.31 (3) C21—C20—H20A 108.9
C1—S1—Zn1 89.47 (13) N5—C20—H20B 108.9
C1—S2—Zn1 79.95 (12) C21—C20—H20B 108.9
C10—S3—Zn1 85.51 (12) H20A—C20—H20B 107.8
C10—S4—Zn1 82.71 (11) C20—C21—H21A 109.5
C19—S5—Zn2 87.66 (12) C20—C21—H21B 109.5
C19—S6—Zn2 81.29 (12) H21A—C21—H21B 109.5
C28—S7—Zn2 85.37 (12) C20—C21—H21C 109.5
C28—S8—Zn2 83.19 (13) H21A—C21—H21C 109.5
C1—N1—C4 120.4 (3) H21B—C21—H21C 109.5
C1—N1—C2 123.2 (3) N5—C22—C23 115.9 (3)
C4—N1—C2 115.2 (3) N5—C22—H22A 108.3
C8—N2—C7 118.4 (3) C23—C22—H22A 108.3
C8—N2—Zn2ii 121.8 (2) N5—C22—H22B 108.3
C7—N2—Zn2ii 119.7 (2) C23—C22—H22B 108.3
C10—N3—C13 122.7 (3) H22A—C22—H22B 107.4
C10—N3—C11 121.6 (3) C27—C23—C24 117.7 (3)
C13—N3—C11 115.4 (3) C27—C23—C22 118.3 (3)
C17—N4—C16 115.5 (4) C24—C23—C22 124.1 (3)
C19—N5—C22 120.7 (3) C25—C24—C23 119.2 (3)
C19—N5—C20 122.2 (3) C25—C24—H24 120.4
C22—N5—C20 116.1 (3) C23—C24—H24 120.4
C26—N6—C25 117.4 (3) N6—C25—C24 123.0 (3)
C26—N6—Zn1 119.1 (2) N6—C25—H25 118.5
C25—N6—Zn1 123.3 (2) C24—C25—H25 118.5
C28—N7—C31 121.5 (3) N6—C26—C27 122.9 (3)
C28—N7—C29 122.7 (3) N6—C26—H26 118.5
C31—N7—C29 115.8 (3) C27—C26—H26 118.5
C34—N8—C35 115.7 (3) C26—C27—C23 119.8 (3)
C37—N9—C41 117.2 (4) C26—C27—H27 120.1
N1—C1—S2 121.6 (3) C23—C27—H27 120.1
N1—C1—S1 120.2 (3) N7—C28—S8 122.7 (3)
S2—C1—S1 118.2 (2) N7—C28—S7 120.1 (3)
N1—C2—C3 112.9 (3) S8—C28—S7 117.1 (2)
N1—C2—H2A 109.0 N7—C29—C30 112.2 (3)
C3—C2—H2A 109.0 N7—C29—H29A 109.2
N1—C2—H2B 109.0 C30—C29—H29A 109.2
C3—C2—H2B 109.0 N7—C29—H29B 109.2
H2A—C2—H2B 107.8 C30—C29—H29B 109.2
C2—C3—H3A 109.5 H29A—C29—H29B 107.9
C2—C3—H3B 109.5 C29—C30—H30A 109.5
H3A—C3—H3B 109.5 C29—C30—H30B 109.5
C2—C3—H3C 109.5 H30A—C30—H30B 109.5
H3A—C3—H3C 109.5 C29—C30—H30C 109.5
H3B—C3—H3C 109.5 H30A—C30—H30C 109.5
N1—C4—C5 116.8 (3) H30B—C30—H30C 109.5
N1—C4—H4A 108.1 N7—C31—C32 112.6 (3)
C5—C4—H4A 108.1 N7—C31—H31A 109.1
N1—C4—H4B 108.1 C32—C31—H31A 109.1
C5—C4—H4B 108.1 N7—C31—H31B 109.1
H4A—C4—H4B 107.3 C32—C31—H31B 109.1
C9—C5—C6 118.7 (3) H31A—C31—H31B 107.8
C9—C5—C4 123.3 (3) C33—C32—C36 117.4 (3)
C6—C5—C4 117.9 (3) C33—C32—C31 123.1 (3)
C5—C6—C7 119.4 (3) C36—C32—C31 119.4 (3)
C5—C6—H6 120.3 C34—C33—C32 118.8 (4)
C7—C6—H6 120.3 C34—C33—H33 120.6
N2—C7—C6 121.9 (3) C32—C33—H33 120.6
N2—C7—H7 119.1 N8—C34—C33 124.6 (4)
C6—C7—H7 119.1 N8—C34—H34 117.7
N2—C8—C9 122.8 (3) C33—C34—H34 117.7
N2—C8—H8 118.6 N8—C35—C36 124.5 (4)
C9—C8—H8 118.6 N8—C35—H35 117.8
C5—C9—C8 118.7 (3) C36—C35—H35 117.8
C5—C9—H9 120.6 C35—C36—C32 119.0 (3)
C8—C9—H9 120.6 C35—C36—H36 120.5
N3—C10—S4 121.8 (2) C32—C36—H36 120.5
N3—C10—S3 120.5 (3) N9—C37—C38 123.7 (4)
S4—C10—S3 117.67 (19) N9—C37—H37 118.1
N3—C11—C12 112.2 (3) C38—C37—H37 118.1
N3—C11—H11A 109.2 C39—C38—C37 119.0 (4)
C12—C11—H11A 109.2 C39—C38—H38 120.5
N3—C11—H11B 109.2 C37—C38—H38 120.5
C12—C11—H11B 109.2 C38—C39—C40 116.8 (4)
H11A—C11—H11B 107.9 C38—C39—C42 121.7 (4)
C11—C12—H12A 109.5 C40—C39—C42 121.5 (4)
C11—C12—H12B 109.5 C41—C40—C39 119.4 (4)
H12A—C12—H12B 109.5 C41—C40—H40 120.3
C11—C12—H12C 109.5 C39—C40—H40 120.3
H12A—C12—H12C 109.5 N9—C41—C40 123.9 (4)
H12B—C12—H12C 109.5 N9—C41—H41 118.1
N3—C13—C14 115.2 (3) C40—C41—H41 118.1
N3—C13—H13A 108.5 C39—C42—H42A 109.5
C14—C13—H13A 108.5 C39—C42—H42B 109.5
N3—C13—H13B 108.5 H42A—C42—H42B 109.5
C14—C13—H13B 108.5 C39—C42—H42C 109.5
H13A—C13—H13B 107.5 H42A—C42—H42C 109.5
C18—C14—C15 116.8 (4) H42B—C42—H42C 109.5
C4—N1—C1—S2 −14.0 (4) Zn2—S6—C19—N5 175.0 (3)
C2—N1—C1—S2 178.6 (3) Zn2—S6—C19—S5 −3.67 (17)
C4—N1—C1—S1 164.1 (2) Zn2—S5—C19—N5 −174.7 (3)
C2—N1—C1—S1 −3.4 (5) Zn2—S5—C19—S6 3.94 (18)
Zn1—S2—C1—N1 172.1 (3) C19—N5—C20—C21 −136.1 (4)
Zn1—S2—C1—S1 −5.99 (17) C22—N5—C20—C21 55.4 (4)
Zn1—S1—C1—N1 −171.4 (3) C19—N5—C22—C23 93.2 (4)
Zn1—S1—C1—S2 6.71 (19) C20—N5—C22—C23 −98.1 (4)
C1—N1—C2—C3 −132.8 (4) N5—C22—C23—C27 174.9 (3)
C4—N1—C2—C3 59.1 (4) N5—C22—C23—C24 −4.2 (5)
C1—N1—C4—C5 95.4 (4) C27—C23—C24—C25 −3.3 (5)
C2—N1—C4—C5 −96.2 (4) C22—C23—C24—C25 175.8 (3)
N1—C4—C5—C9 −17.5 (5) C26—N6—C25—C24 2.4 (5)
N1—C4—C5—C6 164.2 (3) Zn1—N6—C25—C24 −172.9 (3)
C9—C5—C6—C7 −1.0 (5) C23—C24—C25—N6 0.7 (5)
C4—C5—C6—C7 177.4 (3) C25—N6—C26—C27 −2.9 (5)
C8—N2—C7—C6 −0.9 (5) Zn1—N6—C26—C27 172.6 (3)
Zn2ii—N2—C7—C6 177.9 (3) N6—C26—C27—C23 0.3 (5)
C5—C6—C7—N2 1.7 (6) C24—C23—C27—C26 2.8 (5)
C7—N2—C8—C9 −0.6 (5) C22—C23—C27—C26 −176.3 (3)
Zn2ii—N2—C8—C9 −179.4 (3) C31—N7—C28—S8 −177.6 (2)
C6—C5—C9—C8 −0.4 (5) C29—N7—C28—S8 1.0 (5)
C4—C5—C9—C8 −178.7 (3) C31—N7—C28—S7 1.8 (4)
N2—C8—C9—C5 1.3 (6) C29—N7—C28—S7 −179.7 (3)
C13—N3—C10—S4 172.8 (3) Zn2—S8—C28—N7 −174.7 (3)
C11—N3—C10—S4 −0.2 (5) Zn2—S8—C28—S7 5.98 (17)
C13—N3—C10—S3 −7.2 (5) Zn2—S7—C28—N7 174.5 (3)
C11—N3—C10—S3 179.8 (3) Zn2—S7—C28—S8 −6.17 (18)
Zn1—S4—C10—N3 −180.0 (3) C28—N7—C29—C30 106.3 (4)
Zn1—S4—C10—S3 0.04 (18) C31—N7—C29—C30 −75.1 (4)
Zn1—S3—C10—N3 180.0 (3) C28—N7—C31—C32 80.4 (4)
Zn1—S3—C10—S4 −0.04 (18) C29—N7—C31—C32 −98.2 (4)
C10—N3—C11—C12 88.3 (4) N7—C31—C32—C33 20.6 (5)
C13—N3—C11—C12 −85.2 (4) N7—C31—C32—C36 −162.7 (3)
C10—N3—C13—C14 92.3 (4) C36—C32—C33—C34 −0.2 (5)
C11—N3—C13—C14 −94.3 (4) C31—C32—C33—C34 176.6 (4)
N3—C13—C14—C18 26.5 (5) C35—N8—C34—C33 −1.2 (6)
N3—C13—C14—C15 −156.3 (3) C32—C33—C34—N8 1.3 (6)
C18—C14—C15—C16 −0.1 (6) C34—N8—C35—C36 0.0 (6)
C13—C14—C15—C16 −177.5 (4) N8—C35—C36—C32 0.9 (6)
C17—N4—C16—C15 −0.2 (7) C33—C32—C36—C35 −0.8 (5)
C14—C15—C16—N4 0.5 (7) C31—C32—C36—C35 −177.8 (4)
C16—N4—C17—C18 −0.5 (6) C41—N9—C37—C38 −1.0 (6)
C15—C14—C18—C17 −0.5 (5) N9—C37—C38—C39 1.9 (6)
C13—C14—C18—C17 176.7 (3) C37—C38—C39—C40 −1.5 (5)
N4—C17—C18—C14 0.8 (6) C37—C38—C39—C42 178.7 (4)
C22—N5—C19—S6 −10.5 (4) C38—C39—C40—C41 0.5 (6)
C20—N5—C19—S6 −178.5 (3) C42—C39—C40—C41 −179.7 (4)
C22—N5—C19—S5 168.1 (2) C37—N9—C41—C40 −0.1 (6)
C20—N5—C19—S5 0.1 (5) C39—C40—C41—N9 0.3 (7)

Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z.

Hydrogen-bond geometry (Å, º)

Cg1 is the ring centroid of the Zn1/S3/S4/C10 ring.

D—H···A D—H H···A D···A D—H···A
C11—H11B···N8iii 0.99 2.41 3.197 (5) 136
C30—H30C···S8iv 0.98 2.86 3.433 (5) 118
C36—H36···S5v 0.95 2.87 3.773 (4) 158
C6—H6···Cg1vi 0.95 2.91 3.708 (4) 142
C26—H26···N9vii 0.95 2.61 3.256 (5) 126

Symmetry codes: (iii) x+1, y, z+1; (iv) −x+1, −y, −z+1; (v) x−1, y, z; (vi) −x+1, −y+2, −z+2; (vii) −x+1, −y+1, −z+1.

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2013). Acta Cryst. E69, m479–m480. [DOI] [PMC free article] [PubMed]
  3. Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 488–492. [DOI] [PMC free article] [PubMed]
  4. Barba, V. B., Arenaza, B., Guerrero, J. & Reyes, R. (2012). Heteroatom Chem. 23, 422–428.
  5. Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940.
  6. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  7. Cookson, J. & Beer, P. D. (2007). Dalton Trans. pp. 1459–1472. [DOI] [PubMed]
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  10. Hogarth, G. (2005). Prog. Inorg. Chem. 53, 271–561.
  11. Howie, R. A., de Lima, G. M., Menezes, D. C., Wardell, J. L., Wardell, S. M. S. V., Young, D. J. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 1626–1637.
  12. Jotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 403–413.
  13. Knight, E. R., Cowley, A. R., Hogarth, G. & Wilton-Ely, J. D. E. T. (2009). Dalton Trans. pp. 607–609. [DOI] [PubMed]
  14. Kumar, V., Manar, K. K., Gupta, A. N., Singh, V., Drew, M. G. B. & Singh, N. (2016). J. Organomet. Chem. 820, 62–69.
  15. Kumar, V., Singh, V., Gupta, A. N., Manar, K. K., Drew, M. G. B. & Singh, N. (2014). CrystEngComm, 16, 6765–6774.
  16. Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  17. Oliver, K., White, A. J. P., Hogarth, G. & Wilton-Ely, J. D. E. T. (2011). Dalton Trans. 40, 5852–5864. [DOI] [PubMed]
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  20. Singh, V., Kumar, V., Gupta, A. N., Drew, M. G. B. & Singh, N. (2014). New J. Chem. 38, 3737–3748.
  21. Tiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.
  22. Tiekink, E. R. T. (2006). CrystEngComm, 8, 104–118.
  23. Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550.
  24. Tiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209–228.
  25. Tiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623–6625. [DOI] [PubMed]
  26. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  27. Yadav, M. K., Rajput, G., Gupta, A. N., Kumar, V., Drew, M. G. B. & Singh, N. (2014). Inorg. Chim. Acta, 421, 210–217.
  28. Zaldi, N. B., Hussen, R. S. D., Lee, S. M., Halcovitch, N. R., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 842–848. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017010179/hb7691sup1.cif

e-73-01162-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017010179/hb7691Isup2.hkl

e-73-01162-Isup2.hkl (779.7KB, hkl)

CCDC reference: 1561011

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES