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ABSTRACT
Facilitating the development of alternative targeted therapeutic strategies is urgently required to improve
outcome or circumvent chemotherapy resistance in children, adolescents, and adults with recurrent/
refractory de novo mature B-cell (CD20) non-Hodgkin lymphoma, including Burkitt lymphoma (BL).
Romidepsin, a histone deacetylase inhibitor (HDACi), has been used to treat cutaneous T-cell lymphoma.
We have demonstrated the significant anti-tumor effect of anti-CD20 chimeric antigen receptor (CAR)
modified expanded peripheral blood natural killer (exPBNK) against rituximab-sensitive and -resistant BL.
This study examined the anti-tumor activity of romidepsin alone and in combination with anti-CD20 CAR
exPBNKs against rituximab-sensitive and -resistant BL in vitro and in vivo. We found that romidepsin
significantly inhibited both rituximab-sensitive and -resistant BL cell proliferation in vitro (P < 0.001) and
induced cell death in rituximab-sensitive Raji (P < 0.001) and cell cycle arrest in rituximab-resistant Raji-2R
and Raji-4RH (P < 0.001). Consistent with in vitro observations, we also found romidepsin significantly
inhibited the growth of rituximab-sensitive and -resistant BL in BL xenografted NSG mice. We also
demonstrated that romidpesin significantly induced the expression of Natural Killer Group 2, Member D
(NKG2D) ligands MICA/B in both rituximab-sensitive and -resistant BL cells (P < 0.001) resulting in
enhancement of exPBNK in vitro cytotoxicity through NKG2D. Finally, we observed the combination of
romidepsin and anti-CD20 CAR exPBNK significantly induced cell death in BL cells in vitro, reduced tumor
burden and enhanced survival in humanized BL xenografted NSG mice (p < 0.05). Our data suggests that
romidepsin is an active HDAC inhibitor that also potentiates expanded NK and anti-CD20 CAR exPBNK
activity against rituximab-sensitive and -resistant BL.
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Introduction

The outcome for children, adolescents and adults with de novo
mature B-cell (CD20C) non-Hodgkin lymphoma (B-NHL),
including Burkitt lymphoma (BL) has improved significantly over
the last 2 decades.1-7 Unfortunately, for patients within this group
who relapse or progress, the prognosis is dismal due to chemo-
radiotherapy resistance.4,5,8 Therefore, facilitating the development
of alternative targeted therapeutic strategies is required to improve
outcome and/or circumvent chemotherapy resistance in these
patients. Czuczman et al developed several rituximab-resistant BL
cell-lines and found that the rituximab-resistance was also associ-
ated with resistance to multiple chemotherapy agents commonly
used to treat BL.9,10 These resistant cell lines provide an excellent
model to design alternative novel targeted therapeutic strategies.

Natural killer (NK) cells activities are balanced by signals
delivered from both inhibitory and activating receptors.11,12

NK KIR ligands mismatch following CD34 enriched haploi-
dentical allogeneic stem cell transplantation in patients with
poor risk acute myeloid leukemia (AML) has been associated
with a significant reduction of the AML relapse rate and a sig-
nificant increase in overall survival.13 The NKG2D (a NK acti-
vating receptor) binding ligands, major histocompatibility
complex class I-related chain A and B (MICA/B) and ULBP
1,2,3, enhance NK cell killing against malignant cells.14 How-
ever, factors limiting NK therapeutic approaches include small
numbers of active NK cells in unexpanded peripheral blood
and a lack of specific tumor targeting. Our group and other
groups have successfully expanded active NK cells in vitro by
short-term culture with cytokines alone, co-culture with irra-
diated EBV-transformed lymphoblastoid cell lines as feeder
cells, or co-culture with K562 cells expressing membrane
bound IL-15.15-18
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CD20 is a glycosylated phosphoprotein expressed on the
surface of B cells in all stages of B cell development except on
pro-B cells or plasma cells.19,20 CD20 is also expressed in more
than 99% in BL and over 40% in pre-B-ALL.21,22 To increase
the targeting specificity of expanded NK cells, we previously
had investigated the functional activity of K562-mbIL15
-41BBL expanded peripheral blood NK cells (exPBNK) modi-
fied to express anti-CD20 CAR following mRNA nucleofection
against CD20C B-NHL in vitro and in xenografted NSG mice.23

We demonstrated that the CARC exPBNK significantly
induced cell death in CD20C rituximab-sensitive and -resistant
BL in vitro and extended survival time and significantly inhib-
ited tumor cells migration to other organs in NSG mice.23

However, interestingly most of the NSG mice succumbed to
their disease and therefore new adjuvant approaches are neces-
sary to enhance this targeted cellular therapeutic approach.

Romidepsin is a structurally unique, potent, bicyclic class I
selective HDAC inhibitor.24 It induces apoptosis in vitro by
downregulation of the BCL-2 family of proteins, and induces G1
cell cycle arrest by enhancing p21 and p53 in several solid tumor
models.25,26 It was reported that romidepsin was rapidly cleared
from the circulation with a short half-life of about 3.5 hours in
patients and 5.8 hours in Severe Combine Immune Deficiency
(SCID) mice.27-29 The FDA has approved romidepsin for cutane-
ous lymphoma in patients who have received at least one prior
systemic therapy and for peripheral T-cell lymphoma in patients
who have received at least one prior therapy.30-33

Skov et al. and our group demonstrated a significant increase
in expression of NKG2DL MICA/B in some tumor cells after
exposure to romidepsin.34,35 MICA/B are two stress-inducible

ligands that bind the immunoreceptor NKG2D and play an
important role in mediating the cyotoxicity of NK and T cells.36

However, the efficacy of anti-CD20 CAR NK cells, in combina-
tion with romidepsin against BL has not yet to be investigated.
Therefore, in this study, we evaluated the anti-tumor activity of
romidepsin as a single agent and in combination with anti-
CD20 CAR modified expanded NK cells in rituximab-sensitive
or -resistant BL models. Our research demonstrates that romi-
depsin has distinct anti-BL mechanisms including significantly
inducing apoptosis, cell cycle arrest and/or enhancing expres-
sion of NKG2D ligands and secondary significantly optimizing
the cytotoxicity of exPBNK cells.

Results

Romidepsin significantly inhibits cell proliferation in both
rituximab-sensitive and -resistant BL

We previously reported that romidepsin at 10ng/ml significantly
enhanced MICA/B expression in acute lymphoblastic leukemia
(ALL) and non-Hodgkin lymphoma (NHL).35 To examine if
romidepsin has any effect on rituximab-sensitive and -resistant
BL growth, CD20C rituximab-sensitive Raji and -resistant Raji-
2R and Raji-4RH cells were treated with or without 10ng/ml
romidepsin for 3 days. Raji cells but not Raji-2R and Raji-4RH
cells showed characteristic morphological changes of apoptosis
such as shrinking of the cytoplasm at day 3 (Fig. 1A). Cell pro-
liferation was inhibited in all 3 cell lines treated with romidepsin
(Fig. 1B, p < 0.0001). Consistent with the observed apoptosis
related morphological changes, cell death, as monitored by flow

Figure 1. Romidepsin significantly inhibits cell proliferation in both rituximab sensitive and resistant cells and stimulates cell death in rituximab sensitive cells. CD20C rit-
uximab sensitive Raji and resistant Raji-2R and Raji-4RH cells were treated with or without 10ng/ml romidepsin for 3 days. A, cell phenotypic changes under light micros-
copy (Carl Zeiss, Thornwood, NY)) are shown at day 3 (original magnification 200x). B, cell proliferation curves were generated with trypan blue staining of living cells
and counting living cells with hemocytometer. C, the percentage of the dead cells was gated with 7-AADC by flow cytometry analysis. Average values are reported as
the mean§ SEM. P values using unpaired student t test were noted in B and C respectively. D, intracellular caspase 3 activation was monitored by flow cytometry analysis
at day 1 and day 2. DMSO was added in equal amounts and served as a vehicle control.
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cytometry with 7-AAD staining, was significantly enhanced in
romidepsin-treated Raji cells as compared with romidepsin-
treated Raji-2R and Raji-4RH cells (p < 0.001) (Fig. 1C). We
also found that romidepsin has a significantly lower GI50
against Raji (0.40 § 0.08 ng/ml) compared with GI50 against
Raji-2R (8.30 § 1.87 ng/ml) and Raji-4RH (4.81 § 2.22 ng/ml)
(p < 0.05) (Fig. S1). Consistent with what Roychowdhury et al
reported that 270.35ng/ml romidepsin induced apoptosis and
caspase 3 activation in Epstein-Barr Virus (EBV) positive ritux-
imab-sensitive BL cells,37 10ng/ml romidepsin increased active
caspase 3 by intracellular flow cytometry analysis in rituxiamb
sensitive Raji cells (Fig. 1D). However, the cleaved active cas-
pase 3 was not detectable in Raji-2R and Raji-4RH at day 1
and day 2 after romidepsin treatment (Fig. 1D).

We also observed that romidepsin induced significant cell
death in other B cell malignancy cell lines such as Ramos (BL),
Daudi (BL), Rs4;11 (pre-B-Acute lymphoblastic leukemia),
NALM-6 (pre-B-Acute lymphoblastic leukemia), and U-698-M
(pre-B- lymphoblastic lymphoma) (Fig. S2).

Romidepsin significantly inhibits rituximab-sensitive
and -resistant BL cell growth in xenografted mice

To assess the in vivo anti-tumor activity of romidepsin, 5 £ 105

of Raji- Luc or Raji-2R-Luc cells were injected subcutaneously in
the right flanks of NSG mice as we previous described.23 Three
days after tumor inoculation, mice were randomized to equalize
tumor burden and injected intraperitoneally with 4.4mg/kg
romidepsin weekly for continuous 3 weeks. The control group
was injected with vehicle with the same amount of Dimethyl
Sulfoxide (DMSO) diluted in PBS. We demonstrated that the
luciferase signals measured in the romidepsin treated Raji-Luc
group were significantly reduced compared with the vehicle-
treated mice (p < 0.05) (Fig. 2A and B). The tumor size mea-
sured in the romidepsin-treated Raji-luc group was also signifi-
cantly smaller than that in the vehicle-treated mice (p < 0.05)
(Fig. 2C). Similarly, the luciferase signals measured in the romi-
depsin treated Raji-2R-Luc group were significantly reduced
compared with the vehicle-treated mice (p < 0.05) (Fig. 2D and
E). The tumor size measured in the romidepsin-treated Raji-2R-
luc group was also significantly smaller than that in the vehicle-
treated mice (p < 0.05) (Fig. 2F). These data demonstrate that
romidepsin significantly inhibits rituximab-sensitive and -resistant
cells growth in xenografted mice. We further confirmed the con-
clusion with Daudi xenografts. 1 £ 106 Daudi-Luc cells were
injected i.v. to NSG mice. After tumor xenografting at day 14,
2.2mg/kg romidepsin was injected i.v. to mice 3 days/week for
continuous 2 weeks. We found that tumor burden was signifi-
cantly reduced with significantly reduced luciferase signals in
treated mice compared with the vehicle-treated mice (Fig. 2G and
H) (p < 0.001). Consistent with reduced tumor burden, romidep-
sin treated mice had significantly extended survival time compared
with the vehicle-treated mice (p< 0.001) (Fig. 2I).

Romidepsin induces cell cycle arrest in rituximab-resistant
cells

We further investigated whether the growth arrest in Raji-2R
and Raji-4RH cells treated with romidepsin could be caused by

cell cycle arrest. Romidepsin induced G1 arrest in Raji cells (p
D 0.001), significant G2 arrest (p D 0.001) and S phase reduc-
tion (p < 0.001) in Raji-2R cells, and significant G1 arrest (p <

0.001) and S phase reduction (p < 0.001) in Raji-4RH cells at
day 1 (Fig. 3). Cell cycle analysis also indicated romidepsin
caused significant increases in pre-G1 fraction (apoptosis) in
Raji cells compared with Raji-2R and Raji-4RH (p < 0.001)
(Fig. 3). These rituximab-resistant cell lines have been gener-
ated through repeated exposure to rituximab.10 Czuczman et al.
reported that prolonged rituximab exposure led to downregula-
tion of the pro-apoptotic Bcl-2 family proteins in these rituxi-
mab resistant cells and therefore these cells were also resistant
to multiple chemotherapeutic agents.38 Probably due to lack of
pro-apoptotic pathway proteins in Raji-2R and Raji-4RH,
romidepsin does not directly induce cell apoptosis (Fig. 1D) in
these cells, but interestingly, it can control the growth of these
rituximab-resistant cells by enhancing the cell cycle arrest.

To explore the potential mechanisms of romidepsin inhibi-
tion of cell growth and induction of cell cycle arrest, we per-
formed intracellular flow cytometry and phospho-flow
cytometry analysis. We found that romidepsin significantly
increased histone H3K9 acetylation (p < 0.05) (Fig. 4A). Con-
sistent with cell cycle arrest, romidepsin increased cell cycle
check-point protein p21 in Raji (p D 0.15), Raji-2R (p D 0.06),
and Raji-4RH (p D 0.013) compared with the vehicle treated
cells (Fig. 4A). Recently, p38 MAPK has been shown to have a
central role in resistance to chemotherapeutic agents and inhi-
bition of the p38 MAPK signaling pathway diminished cellular
multidrug resistance.40,41 Therefore, we examined and com-
pared the p38 MAPK phosphorylation level in rituximab-sensi-
tive and resistant cells. We found that p38 MAPK
phosphorylation at Thr180/Tyr182 was significantly enhanced
in rituximab-resistant Raji-2R (p < 0.01) and Raji-4RH (p <

0.01) cells compared with the sensitive Raji cells (Fig. 4B), indi-
cating p38 MAPK phosphorylation is partially involved in rit-
uximab-resistance. Following, we investigated whether
romidepsin could play a role in regulating the level of p38
MAPK phosphorylation. Surprisingly, romidepsin significantly
reduced the p38 MAPK phosphorylation in Raji-2R (p < 0.05)
and Raji-4RH (p < 0.01) cells but not in Raji cells (Fig. 4B).
Considering the p38 MAPK phosphorylation level was still rel-
ative high in romidepsin treated rituximab-resistant cells com-
pared with Raji cells, we used a highly selective, cell-permeable
inhibitor of p38 MAP kinase on these cells. Our data demon-
strate that the combination of romidepsin and a p38 MAPK
inhibitor significantly inhibited the growth of Raji-2R and Raji-
4RH cells at 24 (Fig. S4) and 72 hours (Fig. 4C). Overall, our
results indicate the role of the p38 MAPK signaling pathway in
rituximab-resistant BL and the therapeutic potential of the
combination of a HDAC inhibitor and targeting p38 MAPK
pathway in the treatment of rituximab-resistant BL.

Ex vivo expanded PBNK has significantly enhanced
cytotoxic activity against romidepsin treated
rituximab-sensitive and -resistant BL

Recently, we reported that our expanded PBNK cells with
K562-mb15 - 41BBL feeder cells were associated with a high
expression of the NKG2D receptor.23 To determine if MICA/B
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expression was increased in rituximab-resistant BL cells
exposed to romidepsin and if expanded PBNK K562-mb15 -
41BBL feeder cells were able to induce cell death in the romi-
depsin treated rituximab-resistant BL cells, we compared
MICA/B expression in rituximab sensitive and resistant BL
cells treated with or without romidepsin and compared the
cytotoxicity of expanded PBNK against rituximab-sensitive and
-resistant BL cells treated with or without romidepsin.

Raji, Raji-2R and Raji-4RH cells were treated with or with-
out 10ng/ml romidepsin for 24 hours. MICA/B expression was

significantly enhanced in romidepsin treated Raji, Raji-2R and
Raji-4RH cells compared with the vehicle untreated cells
(p < 0.001) (Fig. 5A). Representative flow cytometry plots of
forward scatter (FSC) vs. side scatter (SSC) of the cells treated
with or without romidepsin are shown in Fig. S3.

PBNK cells were ex vivo expanded with irradiated K562-
mb15 - 41BBL feeder cells for 14 d and purified with NK isola-
tion kits, as we have described previously,23 for more than 99%
purity (Fig. 5B). The cytotoxicity of expanded PBNK cells was
significantly increased against romidepsin treated Raji cells

Figure 2. Romidepsin significantly inhibits Raji and Raji-2R cells growth in xenografted mice. 5£ 105 of Raji-Luc or Raji-2R-Luc cells were s.c. injected in the right flanks of
NSG mice. 3 d after tumor inoculation, mice were randomized to equalize tumor burden and injected i.p. with 4.4mg/kg romidepsin weekly for continuous 3 weeks; mice
treated with vehicle containing the same amount of DMSO were served as controls (A-F). A and D, bioluminescence images were taken once weekly. Live imaging dem-
onstrating the extent of Raji-Luc progression is shown. B and E, photons emitted from luciferase-expression cells were measured in regions of interest that encompassed
the entire body and quantified using the Living Image software. Signal intensities (total Flux) are shown at the time points detected in untreated, and romidepsin treated
mice and plotted as mean § SEM. C and F, the tumor size was measured with a caliper once a week and plotted as the mean § SEM for each group. �p < 0.05. G, H and
I, 1 £ 106 of Daudi-Luc cells were iv injected in the tails of NSG mice. 14 d after tumor inoculation, mice were randomized to equalize tumor burden and injected iv with
2.2mg/kg romidepsin 3 d weekly for continuous 2 weeks; mice treated with PBS were served as controls. G, bioluminescence images were taken once weekly. Live imag-
ing demonstrating the extent of Daudi-Luc progression is shown. H, photons emitted from luciferase-expression cells were measured in regions of interest that encom-
passed the entire body and quantified using the Living Image software. Signal intensities (total Flux) are shown at the time points detected in untreated, and romidepsin
treated mice and plotted as mean § SEM. I, mice were followed until death or killed if paralysis of hind legs. The Kaplan–Meier survival curves were generated following
therapy using animal death/sacrifice as the terminal event.
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(p < 0.001), Raji-2R (p < 0.01) and Raji-4RH (p < 0.05) com-
pared with the untreated cells (Fig. 5C).

To further determine whether the enhanced cytotoxicity was
in part mediated through the interaction between MICA/B and
NKG2D, we performed in vitro NKG2D blocking experiments.
ExPBNK cells were incubated with an un-conjugated anti-
NKG2D antibody to block NKG2D receptor. After incubation,
the free, unblocked NKG2D level was reduced from 99.1 §
0.03% to 2.97 § 0.14% detected by a fluorescent conjugated
anti-NKG2D antibody (Fig. 5D), demonstrating that the
NKG2D receptors were bound by the anti-NKG2D blocking
antibody. ExPBNK cells incubated with anti-NKG2D antibod-
ies were used for cytotoxicity assays against romidepsin-treated
Raji, Raji-2R and Raji-4RH. ExPBNK cells incubated with
Immunoglobulin G (IgG) were used as controls. The cytotoxic-
ity of exPBNK cells was significantly reduced after blocking
with anti-NKG2D antibodies compared with exPBNK blocking
with IgG against romidepsin treated Raji, Raji-2R and Raji-
4RH cells (p < 0.001) (Fig. 5E).

Shimizu et al. have previously reported that CD20 expres-
sion on lymphoma cells was enhanced by the HDACi, val-
proic acid.9 We therefore examined whether romidepsin
affects CD20 expression on Raji, Raji-2R and Raji-4RH
under our condition. CD20 expression was quantified by
mean of fluorescence intensity (MFI). We demonstrated that
CD20 MFI was 740 § 95 in Raji, 517 § 50 in Raji-2R and
201 § 18 in Raji-4RH before treatment, and 580 § 19 in
Raji, 410 § 35 in Raji-2R and 174 § 25 in Raji-4RH respec-
tively after 10ng/ml romidepsin treatment of 24 hours
(Fig. 5F). CD20 expression was not significantly different
with 10ng/ml romidepsin treatment of 24 hours in these 3
cell lines, suggesting that CD20 expression on BL is not a

major factor on romidepsin-enhanced in vitro cytotoxicity of
exPBNK against these 3 BL cell lines.

Anti-CD20 CAR significantly enhanced exPBNK cytotoxic
activity against romidepsin treated rituximab-sensitive
and -resistant CD20C BL

To examine whether anti-CD20 chimeric antigen receptor
further enhances exPBNK cytotoxocity against romidepsin
treated CD20C BL at a low effector to target ratio, we gener-
ated anti-CD20 CAR exPBNK cells by anti-CD20 CAR
mRNA nucleofection and the CAR expression was analyzed
by flow cytometry at 24 hours after nucleofection (Fig. 6A)
as we have described previously.23 The anti-CD20 CAR
exPBNK cells at 24 hours after nucleofection were used as
effector cells. Mock-nucleofected exPBNK cells, not express-
ing anti-CD20 CAR were used as control effectors. CD20C

Ramos, Raji, Raji-2R, Raji-4RH and CD20¡ RS4;11 cells
were treated with or without 10ng/ml romidepsin for
24 hours. In vitro cytotoxicity of anti-CD20 CAR exPBNK
cells were measured against romidepsin treated or untreated
targets at E:T D 3:1. Consistent with our previous report,23

the in vitro cytotoxicity of anti-CD20 CAR exPBNK cells
was significantly enhanced against CD20C Ramos (p < 0.05)
(Fig. 6B), Raji (p < 0.01) (Fig. 6C), Raji-2R (p < 0.05)
(Fig. 6D), and Raji-4RH (p < 0.01) (Fig. 6E, ) but not
CD20¡ RS4;11 ((Fig. 6F). More over, the in vitro cytotoxicity
of anti-CD20 CAR exPBNK cells was significantly enhanced
against romidepsin-treated Ramos, Raji Raji-2R, and Raji-
4RH compared with the cytotoxicity of the mock CAR
exPBNK cells against the treated or untreated tumor cells
(Fig. 6B, C and E). In vitro cytotoxicity of anti-CD20 CAR

Figure 3. Romidepsin induces cell cycle arrest in rituximab resistant cells. CD20C rituximab sensitive Raji and resistant Raji-2R and Raji-4RH cells were treated with or
without 10ng/ml romidepsin for 24 hours. Propidium iodide (PI)-staining was performed to analyze cell cycle distribution. A, representative histograms illustrate cell cycle
profiles of Raji, Raji-2R and Raji-4RH treated with or without romidepsin. B, percentage of Raji, Raji-2R and Raji-4RH. Cells treated with vehicle containing the same
amount of DMSO were served as controls.
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exPBNK cells were significantly enhanced against romidep-
sin-treated CD20¡ RS4;11 (p < 0.001) (Fig. 6F) compared
with the untreated RS4;11 cells, but not significantly com-
pared with the cytotoxicity of the mock exPBNK cells against
the treated RS4;11. Intracellular CD107a expression in
exPBNK and anti-CD20 CAR exPBNK was detected by flow
cytometry. Consistent with our previous report23 and the
enhanced in vitro cytotoxicity (Fig. 6), intracellular CD107a
expression was significantly enhanced in anti-CD20 CAR
exPBNK compared with mock exPBNK in response to
CD20C Ramos, Raji, Raji-2R and Raji-4RH (p < 0.001) stim-
ulation but not in response to CD20¡ RS4;11 (Fig. S5).
CD107a expression was also significantly enhanced in
exPBNK in response to romidepsin treated Raji, Raji-2R,
Raji-4RH and RS4;11 (Fig. S5). CD107a expression was
unexpectedly reduced in exPBNK in response to romidepsin
treated Ramos for unknown reasons (Fig. S5A). More over,
CD107a expression was further enhanced in anti-CD20 CAR
exPBNK in response to romidepsin treated CD20C Raji,
Raji-2R and Raji-4RH stimulation but not in response to
romidepsin treated CD20¡ RS4;11 (Fig. S5) compared with
all other controls (Fig. S5). Overall, these results indicate

that the cytotoxicity induced by the interaction of anti-CD20
CAR with CD20 has an additive effect with the cytotoxicity
caused by the romidepsin treatment on tumor targets.

Anti-CD20 CAR exPBNK cells combined with romidepsin
significantly inhibited Raji cells growth and extended
the survival of Raji xenografted NSG mice

The in vivo anti-tumor efficacy of anti-CD20 CAR exPBNK
combined with romidepsin was next evaluated in therapeuti-
cally relevant xenograft models of human BL. 5 £ 105 of
Raji-Luc cells were i.p. injected in NSG mice on day 0. After
confirming the tumor engraftment at day 7, 2.2 mg/kg romi-
depsin or PBS containing DMSO was i.p. injected to each
mouse once a week for 3 continuous weeks. 5 £ 106 anti-CD20
CAR exPBNK (with anti-CD20 CAR mRNA electroporation)
or mock exPBNK (without anti-CD20 CAR mRNA electropo-
ration) cells were i.p. injected following each romidepsin injec-
tion after 24 hours. Mice treated with medium were served as
controls. Whole mouse bioluminescent imaging (BLI) was used
to quantify tumor burden over time (Fig. 7A and B). We dem-
onstrated that after the third NK injection at d28 when the

Figure 4. Romidepsin enhances histone acetylation and cell cycle check point protein p21 expression and reduces phospho-p38MAPK level. Raji, Raji-2R and Raji-4RH cells
were treated with or without 10ng/ml romidepsin for 24 hours. A, intracellular protein levels of H3K9 acetylation, p21, phospho-p38 MAPK (Thr180/Tyr182), phospho-p44/
42 MAPK (Thr202/Tyr204), phospho-Akt (Ser473) and b-catenin were examined by intracellular flow cytometry or phospho-flow cytometry analysis. B, intracellular phos-
pho-p38 MAPK (Thr180/Tyr182) level was measured by flow cytometry and quantified using the mean fluorescence intensity (MFI) in Raji, Raji-2R and Raji-4RH treated
with or without romidepsin. C, Raji, Raji-2R and Raji-4RH cells were treated with 10ng/ml romidepsin, 50uM inhibitor of p38MAPK (SBS202190, Tocris), or combination for
72 hours before relative cell viability/proliferation was measured by MTS assay. Cells treated with vehicle containing the same amount of DMSO were served as controls.
The A490 values were normalized to the vehicle control (DMSO).
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majority of animals were still alive in most of the groups, the
luciferase signals were significantly reduced in all of the treated
groups including the mock exPBNK group (p < 0.05), the
romidepsin group (p < 0.05), the anti-CD20 CAR exPBNK
group (p < 0.01), the mock exPBNKCromidepsin group (p <

0.05), and the anti-CD20 CAR exPBNKCromidepsin (p <

0.01) group compared with the untreated tumor only group
(Fig. 7A). More importantly, the luciferase signals were

significantly reduced in the anti-CD20 CAR exPBNKCromi-
depsin group compared with the romidepsin group (d28, p <

0.05) and the anti-CD20 CAR exPBNK group (d35, p < 0.05)
(Fig. 7A). The representative bioluminescent images are dem-
onstrated in Fig. 7B. Mice were followed until death or killed if
tumor size reached 2 cm3. The Kaplan–Meier survival curves
for all groups represent the death of mice caused by tumor cells
disseminated to the whole body from the injection site or killed

Figure 5. Ex vivo expanded PBNK cells have significantly enhanced cytotoxic activity against romidepsin-treated BL cells compared with the untreated BL. Raji, Raji-2R
and Raji-4RH cells were treated with or without 10ng/ml romidepsin for 24 hours. A, MICA/B expression was examined and compared in the cells treated with romidepsin
or vehicle containing the same amount of DMSO day 1 with flow cytometry analysis. The top panels show the statistic analysis of % MICA/B expression in gated living cells
(7AAD-). ���p < 0.001. The bottom panels are representative dot blots shown from 1 of 3 independent experiments. B, PBNK cells were ex vivo expanded with irradiated
K562-mb15 - 41BBL feeder cells for 14 d and purified with NK isolation kits (Miltenyi). Representative dot blots show the purity of final purified expanded PBNK cells with
anti-CD56 and anti-CD3 staining. C, in vitro cytotoxicity of ex vivo expanded PBNK cells were measured with europium release assays against Raji, Raji-2R and Raji-4RH
treated with or without romidepsin at E:T D 3:1. Cells treated with vehicle containing the same amount of DMSO were served as controls. D, exPBNK cells were incubated
with anti-NKG2D antibodies (R & D systems) to block NKG2D receptor. exPBNK cells incubated with IgG isotype were used as controls. Flow cytometry was subsequently
performed to quantify surface expression of NKG2D receptors on the exPBNK cell surface. The histograms show the NKG2D expression (left panel). E, cytotoxicity assays
were performed after NKG2D receptors were blocked on exPBNK cells against romidepsin treated Raji, Raji-2R and Raji-4RH. exPBNK cells incubated with IgG isotype
were used as controls. ���p < 0.001. F, CD20 expression was examined on Raji, Raji-2R and Raji-4RH treated with or without romidepsin by flow cytometry. Left panel
show histogram overlays representing isotype controls, CD20 in cells treated with or without romidespin. Right panel show the mean § SEM of CD20 MFI in cells treated
with or without romidespin. n D 4, nsD not significant.
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if tumor size reached 2 cm3 or larger. The CAR exPBNK-
treated Raji-Luc mice (median survival time: 44 days) had sig-
nificantly extended survival time compared with the untreated
mice (median survival time: 32 days, p < 0.001) and the mock
exPBNK-treated mice (median survival time: 30 days, p <

0.05) as we previously reported.23 More importantly, we found
that the CAR exPBNKCromidepsin treated mice (some mice
survived over 85 days) had significantly extended survival time
than the CAR exPBNK-treated mice (median survival time:
44 days) or the romidepsin treated mice (median survival time:
30 days) (Fig. 7C). We were able to detect some degree of
enhanced MICA/B in the spleen tissue and other tissue with
migrated tumor cells (Fig. S6), indicating MICA/B may in part
be associated with mediating the enhanced anti-tumor effect of
CAR exPBNK cells in vivo.

We further confirmed that romidepsin significantly
enhanced MICA/B expression in human BL cells in human BL
xenografted mice. 1 £ 106 of Daudi-Luc or Raji-2R-Luc cells
were intravenously injected in NSG mice on day 0. After con-
firming tumor engraftment at day 14, 2.2mg/kg romidepsin or
PBS containing DMSO was intravenously injected to each
mouse daily for 2 or 3 consecutive days. We found that MICA/
B expression was significantly enhanced in the circulated Daudi
in the peripheral blood (Fig. S7A) (p < 0.01) or Raji-2R

(Fig. S7B) (p < 0.05) after 2 or 3 consecutive romidepsin
injections.

Discussion

In this study, we investigated for the first time the anti-tumor
effect of romidepsin; the combined effect of romidepsin with
anti-CD20 CAR exPBNK cells against rituximab-sensitive and
-resistant CD20C BL cells; and the enhancement of MICA/B
expression by romidepsin in human BL tumor cells in human
BL xenografted mice models. We demonstrated that single-
agent romidepsin significantly inhibits rituximab-sensitive and
-resistant BL growth by inducing cell death and cell cycle
arrest in vitro and in vivo. We also demonstrated a signifi-
cantly synergistic effect between romidepsin and anti-CD20
CAR modified expanded NK cells in vitro and in BL xeno-
grafted NSG mice.

Consistent with previous finding many human cancers have
alterations in HDACs levels,42,43 we found that HDAC1, 2, 3, 4
and 6 were highly expressed in most of the BL cells (Fig. S8).
Several anti-tumor mechanisms of HDACi have been suggested
which include i) upregulation of cell-dependent kinase (CDK)
inhibitors like p21/p27 and downregulation of cyclinD1; ii)
acetylation of non-histone proteins to regulate cell growth and

Figure 6. Anti-CD20 CAR significantly enhanced exPBNK cytotoxic activity against rituximab-sensitive and -resistant CD20C BL after the tumor cells were treated with
romidepsin. CD20C Ramos, Raji, Raji-2R, Raji-4RH and CD20- RS4;11 cells were treated with or without 10ng/ml romidepsin for 24 hours. After washing 3 times with PBS,
these cells were used as targets. Anti-CD20 CAR exPBNK cells were generated by anti-CD20 CAR mRNA nucleofection and the CAR expression was analyzed by flow
cytometry at 24 hours after nucleofection. Anti-CD20 CAR exPBNK cells at 24 hours after nucleofection were used as effectors. Mock exPBNK cells without anti-CD20 CAR
mRNA nucleofection were used as controls. A, one of the representative density plots illustrates the expression of the anti-CD20 CAR in exPBNK cells after mRNA electro-
poration at 24 hours. In vitro cytotoxicity of anti-CD20 CAR exPBNK cells were measured with europium release assays against rituximab sensitive Ramos and Raji (B-C), rit-
uximab resistant Raji-2R and Raji-4RH (D-E) treated with or without romidepsin at E:T D 3:1. F, CD20- RS4;11 was used as a negative control for anti-CD20 CAR exPBNK
cells mediated cytotoxicity. Cells treated with vehicle containing the same amount of DMSO were served as controls. �p < 0.05, ��p < 0.01, ���p < 0.001, ns D not signif-
icant, p > 0.05
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survival; iii) direct activation of apoptotic pathways; iv)
enhanced antitumor immunity through enhancement of tumor
necrosis factor–related apoptosis-inducing ligand (TRAIL) or
upregulation of antigen expression to facilitate cancer cell rec-
ognition.44-46 In our BL pre-clinical models, we found that
romidpesin significantly inhibits rituximab sensitive BL growth
by inducing cell death and activating apoptotic pathways with
the increased active caspase 3 levels (Fig. 1). However, romi-
depsin did not increase active caspase 3 in rituximab resistant
BL cells (Fig. 1), even if the cells had been retreated with romi-
depsin for a week with a fresh amount of romidepsin after 3 d
(Fig. S2), suggesting that romidepsin inhibits rituximab resis-
tant BL growth by other mechanism(s) rather than by activat-
ing apoptotic pathways. Resistance to apoptosis is one of the
major mechanisms of tumor resistance to conventional thera-
pies and it is selectively and naturally acquired after successive
rounds of chemotherapy.47 To explore the mechanisms of the
inhibition of rituximab-resistant BL growth, we found that

romidepsin induced p21 expression in both rituximab-sensitive
and -resistant BL cells (Fig.4A) and G1-phase cell cycle arrest
in Raji-4RH, G2-phase cell cycle arrest in Raji-2R rather than
apoptosis in rituximab resistant BL at the doses tested (Fig. 3).

Our data demonstrates the in vitro and in vivo effectiveness
of romidepsin in inhibiting the growth of the rituximab-sensi-
tive and -resistant BL cells (Fig. 1 and Fig. 2), suggesting that
romidepsin can modify the rituximab-resistant phenotype by
interfering with signaling pathways to inhibit proliferation.
However, the cellular signaling pathways that romidepsin
interferes with remains elusive. We performed phosphoflow
analysis to examine the changes in p38MAPK, ERK1/2, AKT
phosphorylations. Deregulation of these pathways can contrib-
ute to the acquired chemoresistance.48,49 We found that
p38MAPK, ERK1/2, AKT were constitutively phosphorylated
and activated in Raji, Raji-2R and Raji-4RH. Interestingly, we
found that p38MAPK phosphorylation was significantly
enhanced in the resistant Raji-2R and Raji-4RH cells

Figure 7. Anti-CD20 CAR exPBNK cells combined with romidepsin significantly inhibited Raji cells growth and extended the survival of xenografted mice. A, 5 £ 105 of
Raji-Luc cells were i.p. injected in NSG mice on day 0. After confirming the tumor engraftment at day 7, 2.2 mg/kg romidepsin or vehicle containing the same amount of
DMSO was i.p. injected to each mouse once weekly for continuous 3 weeks. 5 £ 106 anti-CD20 CAR exPBNK (with anti-CD20 CAR mRNA electroporation) or mock exPBNK
(without anti-CD20 CAR mRNA electroporation) cells were injected i.p. following each romidepsin injection after 24 hours. Mice treated with medium were served as con-
trols. Whole mouse luciferase activity was measured once weekly at various time points. Photons emitted from luciferase-expression cells were measured in regions of
interest that encompassed the entire body and quantified using the Living Image software. Signal intensities (total Flux) are shown at the time points plotted as mean §
SEM. B, Live imaging demonstrating the extent of Raji-Luc progression is shown. C, Mice were followed until death or killed if tumor size reached 2 cm3. The Kaplan–Meier
survival curves for all groups were generated following therapy initiation using animal sacrifice as the terminal event. Comparison of survival between groups is shown.
The romidepsinCCAR exPBNK treated Raji-Luc mice had significantly extended survival time compared with any other listed group. �p < 0.05; ���p < 0.001.
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compared with the sensitive Raji cells (Fig. 4B). Romidepsin
also significantly reduced p38MAPK phosphorylation in Raji-
2R and Raji-4RH but not in Raji (Fig. 4B), suggesting that the
p38MAPK pathway is involved in the acquired or intrinsic
apoptosis-resistance of Raji-2R and Raji-4RH. The combina-
tion of romidepsin and p38MAPK inhibitor significantly
inhibited the growth of Raji-2R and Raji-4RH (Fig. 4C) com-
pared with each single agent.

In addition to the romidepsin-mediated changes in apopto-
sis, cell cycle kinetics and the p38MAPK pathway, we also
demonstrate that romidespin significantly enhanced NKG2D
ligands MICA/B expression in both sensitive and resistant BL
cells (Fig. 5A) in vitro and in vivo in BL xenografted mice
(Fig. S6 and Fig. S7). MIC A/B binding to NKG2D plays an
important role in NK cell activation and tumor immune sur-
veillance .50-52 We previously reported that our ex vivo
expanded PBNK cells expressed high levels of NKG2D.23 Pre-
viously, it was reported that romidepsin suppressed the NK
cytolytic activity of cutaneous T-cell lymphoma patients.53 To
reduce the potential toxicity of romidepsin on exPBNK/CARC

exPBNK cells directly, tumors cells were treated for 24hrs
with romidepsin before adding exPBNK/CARC exPBNK cells
in the in vitro cytotoxicity assays. We demonstrated that the
cytotoxicity of exPBNK cells was significantly enhanced
against Raji, Raji-2R and Raji-4RH when these cells were
treated with romidepsin compared with the cytotoxicity
against vehicle treated tumor cells (Fig. 5C). Blocking NKG2D
significantly reduced exPBNK cells cytotoxicity even if the
tumor cells were treated with romidepsin, suggesting the inter-
action between NKG2D and MICA/B in cytolysis of tumor
cells by NK cells. To reduce the potential in vivo toxicity of
romidepsin on exPBNK/CARC exPBNK cells, romidepsin was
injected into xenografted mice 24 hrs earlier than exPBNK/
CARC exPBNK injection. With this treatment schedule, we
found that CARC exPBNK cells combined with romidepsin
significantly reduced tumor burden and increased the survival
of Raji-Luc xenografted NSG mice compared with the controls
(p < 0.01) (Fig. 7).

In conclusion, these results demonstrate the significant
effects of romidepsin on rituximab-sensitive and -resistant BL
in vitro and in vivo. Our data suggest that romidepsin is an
active HDAC inhibitor that potentiates expanded NK and
anti-CD20 CAR modified expanded NK activity in vitro and
in vivo. Our study offers a rationale for the development of
new therapeutic strategies by combining romidepsin with
expanded activated NK cells or CAR expanded NK cells for
targeting in CD20C mature BL.

Materials and methods

Cell lines and reagents

Raji, Raji-2R and Raji-4RH cells were generously provided by
Matthew Barth, MDand Myron Czuczman, MD from Roswell
Park Cancer Institute.10 Romidepsin was generously provided
by Celgene Corporation (Summit, NJ). Romidepsin was dis-
solved in DMSO and further diluted in PBS. As control an
equal amount of DMSO was diluted in PBS. See Supplementary
Methods for details.

NK cell expansion and anti-CD20-BB- z mRNA modified
NK generation

Expanded PBNK cells were isolated by negative selection using
Miltenyi NK cell isolation kit (Miltenyi Biotec). NK cell purity
was confirmed by flow cytometry using anti-CD56 and anti-
CD3 antibodies (Becton Dickinson). Anti-CD20–4–1BB- CD3z
mRNA was transcribed in vitro using the mMESSAGE mMA-
CHINE T7 Ultra kit (Thermofisher) and nucleofected to puri-
fied expanded NK cells as described previously.23

In vitro cytotoxicity

NK cytotoxic activity was determined by europium release
assays with a standard kit (Perkin Elmer) as we have described
previously.23 A detailed description of the experimental proce-
dures is provided in the supplementary methods.

Cell growth assay and GI50 calculation

Cells were treated with 10ng/ml romidepsin. Cell viability was
assayed by trypan blue (Thermofisher) exclusion and the cell
growth was documented with a hemocytometer by counting the
total number of living cells in quadruplicate wells every day for
3 days, or by CellTiter 96 AQueous one solution cell proliferation
assay (Pormega) according to the manufacturer’s manual.GI50 val-
ues for romidepsin on day 1 in BL cells were calculated from non-
linear regression curve fits using GraphPad Prism 5 (Graphpad).

Cell cycle analysis

Romidepsin treated and untreated cells were fixed and stained with
propidium iodide (PI) (Acros Organics) in the presence of DNase
free RNase (Thermo Scientific). The cells were analyzed via flow
cytometry using FACScan (BD), acquiring 10000 events.

NKG2D blocking

NKG2D blocking experiments were performed using anti-
NKG2D antibodies (R and D) as described previously with
minor modifications.35 Briefly, freshly purified NK cells (1 £
106) were incubated with anti-NKG2D antibodies or IgG con-
trol at various concentrations (0–50 ml). Flow cytometry was
subsequently performed to quantify surface expression of
NKG2D receptors on the NK cell surface with a second incuba-
tion with APC conjugated anti-NKG2D antibodies. Cytotoxic-
ity assays were performed after NKG2D receptors were blocked
on NK cells.

Flow cytometry analysis of intracellular proteins
and phosphoproteins

Fixed and permeabilized cells were stained with mouse anti-
human primary antibodies (cellsignaling) H3K9 acetylation
(#9649P), p21 (#2947P), b-catenin (#8480p), or phospho-site
specific antibodies phospho-p38 MAPK (Thr180/Tyr182)
(#4511P), phospho-p44/42 MAPK (Thr202/Tyr204) (#4370P),
phospho-Akt (Ser473) (#4060P) followed by anti-rabbit Alexa-
Fluor 647- conjugated secondary antibodies (life technologies).
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Cells were analyzed using MACSQuant Analyzer (Miltenyi Bio-
tec). No stain, or isotype controls were used for gating.

Animal studies

Six to 8-week old NOD/SCID/g-chain-/- (NSG) mice (The
Jackson Laboratory, Bar Harbor, ME) were bred and main-
tained under pathogen-free conditions in-house at Compara-
tive Medicine at New York Medical College. All protocols were
approved by the Institutional Animal Care and Use Committee
(IACUC) in New York Medical College.

Xenograft models of human Burkitt lymphoma (BL)
and rituximab resistant BL

Luciferase expression tumor cells (Raji-Luc, Daudi-Luc, and
Raji-2R-Luc) were generated as we described previously.23

Tumor cells were intraperitoneally or intravenously injected
into the NSG mice. Tumor engraftment and progression were
evaluated using the Xenogen IVIS-200 system (Caliper Life Sci-
ences) as we have described previously.23 Tumor size was esti-
mated according to the following formula: tumor size (cm3) D
length (cm) £ width2 (cm) £ 0.5. Mice were followed until
death or killed if any tumor size reached 2 cm3 or larger.

Statistical analyses

Average values are reported as the mean § SEM. The one-
tailed unpaired Student t-test with p < 0.05 was considered as
significant. See Supplementary Methods for details.
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