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Colony-stimulating factor-1-induced AIF1 expression in tumor-associated
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ABSTRACT
M2-polarized (alternatively activated) macrophages play an important role in the progression of
hepatocellular carcinoma (HCC). Allograft inflammatory factor 1 (AIF1) is overexpressed in M2-polarized
macrophages. This study explored the role of AIF1 in tumor-associated macrophages in HCC.
Macrophages were stimulated with colony-stimulating factor 1 (CSF1) to characterize the regulatory
pathway of AIF1 in macrophages. The chromatin immunoprecipitation and luciferase reporter gene assay
were conducted to examine transcription factors associated with AIF1 expression. AIF1 was down or
upregulated, and the effects on tumor progression were evaluated by using in vitro and in vivo co-culture
systems. A cytokine array was performed to screen the downstream functional components of AIF1.
Tumor tissue from 206 patients with HCC were used to explore the clinical significance of AIF1. AIF1
induced a M2-like phenotype of macrophages. By facilitating the binding of c-Jun to the promoter of AIF1,
CSF1 secreted from hepatoma cells increased AIF1 expression through the CSF1R-MEK1/2-Erk1/2-c-Jun
axis. AIF1 expressed in macrophages promoted the migration of hepatoma cells in co-culture system of
RAW264.7 and Hepa1-6 and tumor growth in an animal model. The cytokine array showed that CXCL16
was increased in RAW264.7 cells with overexpressed AIF1, leading to enhanced tumor cell migration. In
human HCC tissue, AIF1-positive macrophages in the adjacent microenvironment was associated with
microvascular invasion and advanced TNM stages and with patients’ overall and disease-free survival (p D
0.002 for both). AIF1 expression in macrophages plays a pivotal role in the interaction between
macrophages and hepatoma cells.
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Introduction

Worldwide, hepatocellular carcinoma (HCC) is the sixth most
common malignancy and the third leading cause of cancer-
related death.1 Surgical resection is the primary treatment
toward curative outcome for HCC patients,2 but the prognosis
after surgical resection remains poor because of a high recur-
rence rate.3-6 For HCC, most tumor recurrences occur within
the remaining liver tissue, usually adjacent to the surgical
margin, implying that adjacent liver tissue may provide a
favorable microenvironment for the growth of possible resid-
ual tumor cells.7,8 The tumor microenvironment, which com-
prises tumor-associated immune cells, endothelial cells,
fibroblasts, cytokines secreted by these cells, and the extracel-
lular matrix, plays an important role in the progression of
tumor cells.9 Tumor-associated macrophages (TAMs) are the
most abundant immune cells within the tumor microenviron-
ment, and they have been reported to be associated with poor
prognosis in a wide variety of cancers. The number of infil-
trated macrophages within the adjacent liver tissue was

associated with poor prognosis after surgical resection of
HCC.10 Although TAMs within the adjacent microenviron-
ment appear to have a role in tumor progression,11,12 the
underlying mechanism is not fully understood. Based on vari-
ous environmental stimulus, macrophages differentiate
toward two different polarization statuses, termed M1 and
M2. M1-polarized macrophages exhibit a high antigen-pre-
senting capacity and participate in the antitumor immune
response, while M2-polarized macrophages exhibit a low anti-
gen-presenting capacity and facilitate tumor progression by
secreting distinct protumor cytokines.13,14 Notably, although
M1-polarized macrophages show some antitumor effect,
interleukin (IL)-1, IL-6, and other cytokines secreted by M1-
polarized macrophages have been shown to be involved in a
wide range of tumorigenic processes.15,16 Determining the dif-
ferences between M1- and M2-polarized macrophages may
help elucidate the role of TAMs in HCC progression.

CSF2 or CSF1 and its receptor signaling independently regu-
late macrophages toward a M1 or M2 polarization status.17,18
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Gene Expression Omnibus data sets (GSE66805) comparing
the gene expression profiling of human peripheral blood mono-
nuclear cells (PBMCs) stimulated with colony-stimulating fac-
tor 2 (CSF2) (M1-polarized macrophages) and human PBMCs
stimulated with CSF1 (M2-polarized macrophages) showed
that allograft inflammatory factor 1 (AIF1) was differentially
expressed in M1- and M2-polarized macrophages. The mRNA
expression of AIF1 was significantly higher in M2 compared
with M1 macrophages (p D 1.3 £ 10¡5). AIF1 is a 17-kDa
IFNg-induced calcium-binding protein.19 It is mainly
expressed on macrophages and serves as a cytoskeleton-related
protein, and it is associated with the migration and phagocyto-
sis of macrophages.20,21 Overexpression of AIF1 in the mouse
macrophage cell line RAW264.7 resulted in increased secretion
of IL-6, IL-10, and IL-12 upon lipopolysaccharide stimula-
tion.22 However, whether AIF1 contributes to the M2 polariza-
tion of macrophages in an HCC microenvironment is unclear.

In the present study, we aimed to illustrate the regulatory
mechanism of AIF1 in the HCC microenvironment and the
role of AIF1 in the progression of HCC.

Results

AIF1 was exclusively expressed on macrophages
within HCC microenvironment

Immunohistochemical staining was performed on human
HCC tissue sections. AIF1-positive cells had a relatively
smaller size and polymorphic branches. The expression of
AIF1 was higher in the adjacent area than within tumor tis-
sue, also than within normal liver tissue (Fig. 1A). Immu-
nofluorescence confocal imaging showed that AIF1 was co-
expressed with CD68, which is an accepted macrophage
marker (Fig. 1B). In consistency with the immunohisto-
chemical staining, the number of AIF1CCD68C macro-
phages was higher in the adjacent area than within tumor
tissue. Western blot analysis showed that AIF1 was exclu-
sively expressed on different macrophage cell lines, includ-
ing THP-1-derived macrophages, mouse bone marrow-
derived macrophages (BMDMs) and RAW264.7, but not on
various human and mouse hepatoma cell lines, human
umbilical vein endothelial cells (HUVECs), and liver stellate
cell lines (LX2) (Fig. 1C).

AIF1 played a pivotal role in the proliferation, migration,
and M2 polarization of macrophages

Inhibiting the expression of AIF1 using siRNAs impaired the
proliferation of RAW264.7 cells by inducing the cell cycle arrest
in the S phase (Fig. 2A, Fig. S1). Phalloidin-TRITC staining of
RAW264.7 cells showed a disordered structure of the cytoskele-
ton after inhibition of the expression of AIF1 (Fig. 2B). Consti-
tutively knocking down of AIF1 attenuated the migration of
RAW264.7 cells upon CSF1 stimulation (Fig. 2C). In contrast,
RAW264.7 cells overexpressing AIF1 were more attractant to
CSF1 stimulation (Fig. 2D).

CSF1-induced BMDMs (CSF1-BMDMs), which were
regarded as M2-like macrophages,17,18 exhibited a higher migra-
tion capacity than CSF2-induced BMDMs (CSF2-BMDMs)

(M1-like macrophage) (Fig. S2A). The expression of AIF1 was
significantly higher in CSF1-BMDMs than in CSF2-BMDMs
(Fig. S2B), so was in THP-1-derived M1 and M2 macrophages
(Figs. S2C–F).

To investigate the effect of AIF1 on macrophage polari-
zation, qRT-PCR was performed to evaluate the following
markers associated with macrophage polarization: TNF,
iNOS, CD80, CD86, CD74 (MHC-II-associated invariant
chain), CD206, and Arg1. RAW264.7 cells overexpressing
AIF1 exhibited a M2-polarized phenotype, which implicated
AIF1 as having a role in M2 polarization (Fig. 2G). Flow
cytometry of classic M2-associated marker CD206 and M1-
associated marker MHC-II also showed that upregulation of
AIF1 in RAW264.7 cells promoted an M2-like phenotype
(Fig. 2H).

AIF1 expression in TAMs was induced by CSF1-CSF1R-c-Jun
signaling pathway

Exogenous CSF1 induced the expression of AIF1 in RAW264.7
cells, which was blocked by the CSF1R inhibitor PLX3397
(Figs. 3A and B). The expression of AIF1 was also increased in
TAMs. Twenty-four hours after being cultured in the CM of
mouse Hepa1–6 and H22 cell lines, both RAW264.7 cells and
BMDMs showed an increase of AIF1 expression (Fig. 3C,
Fig. S3A). PLX3397 blocked the upregulation of AIF1 induced
by the CM of Hepa1-6 and H22 cells (Fig. 3C). The expression
of AIF1 in human THP-1-derived macrophages was also
increased when cultured in the CM of HCCLM3, a human hep-
atoma cell line (Fig. S3B).

Shortly after exogenous CSF1 stimulation, CSF1R phos-
phorylation was observed in both RAW264.7 cells and
BMDMs (Fig. 3D, Fig. S3C). MEK1/2, Erk1/2, and c-Jun,
which are downstream molecules of the CSF1R activa-
tion,23,24 were phosphorylated or increased thereafter, out-
comes that were blocked by the CSF1R inhibitor PLX3397
(Fig. 3E). The MEK1/2 inhibitor U0126 decreased the CSF1-
induced phosphorylation of Erk1/2 and the downstream
transcription factor c-Jun by inhibiting the activity of P-
MEK1/2 (Fig. 3E). To show the interaction between c-Jun
and AIF1 expression, a ChIP-RT-PCR assay was performed.
Ten pairs of primers were designed to cover the full length
of the promoter region of AIF1. RT-PCR showed that c-Jun
bound to the promoter region of AIF1, sequence covered by
primer 5 (Fig. 3F). Exogenous CSF1 stimulation increased
the binding of c-Jun to the promoter region, sequence cov-
ered by primers 3, 4, and 5 (Fig. 3F). On the basis, a lucifer-
ase reporter gene assay was performed. C-Jun plasmid and
the AIF1 promoter luciferase plasmids (wild type and three
mutants targeting the preceding three possible binding
sequences of c-Jun on the AIF1 promoter) were constructed.
The results showed that c-Jun increased the expression of
AIF1, which was accelerated by CSF1. The tgaattct sequence
1720bp to 1728bp upstream of the open reading frame
(ORF) was the key binding site for c-Jun, mutated which
resulted in significantly decreased AIF1 transcription
(Fig. 3G). These results indicated that the CSF1-CSF1R-
MEK1/2- Erk1/2-c-jun axis was a vital upstream regulator of
AIF1 expression in macrophages (Fig. 3H).
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AIF1 expression in macrophages-facilitated tumor
progression by the secretion of CXCL16

AIF1 in RAW264.7 cells was downregulated with liposome-
mediated siRNA transfection and lentivirus-mediated shRNA
transfection or upregulated with lentivirus-mediated AIF1
overexpression plasmid transfection (Figs. 2E and F; Figs. S4A
and B, 5A). In co-cultures of Hepa1-6 with RAW264.7 cells for
24 h, the RAW264.7 cells that overexpressed AIF1 increased
the migration of Hepa1-6 (Fig. 4A). The migration of Hepa1-6
was attenuated when co-cultured with RAW264.7 cells with
downregulated AIF1 expression (Fig. 4A, Figs. 5B and C). The
proliferation of Hepa1-6 cells was impaired in the CM of
RAW264.7 cells with downregulated AIF1 expression,

compared with the CM of control RAW264.7 cells, by inducing
cell cycle arrest in the G1 phase; the proliferation was acceler-
ated in the CM of RAW264.7 cells overexpressing AIF1, with
increased Hepa1-6 cells in the S and G2 phases (Fig. 4B,
Fig. S6).

Mouse cytokine antibody array analysis of the CM from
RAW264.7 cells (overexpressing or down-regulating AIF1)
co-cultured with Hepa1-6 cells showed that AIF1 increased
the secretion of CXCL16, which was among the most abun-
dant cytokines in the supernatant of RAW264.7 cells
(Fig. S7A). ELISA of the CM from RAW264.7 cells co-cul-
tured with Hepa1-6 cells showed that the concentration of
CXCL16 was increased in RAW264.7 cells overexpressing
AIF1 and decreased in RAW264.7 cells downregulating

Figure 1. AIF1 was exclusively expressed in macrophages in HCC. (A) AIF1 positive cells were abundant in the adjacent peritumoral area of HCC ( £ 25). The expression of
AIF1 was significantly higher in adjacent liver tissue than within the tumor tissue (from 206 HCC patients), also than within normal liver tissue (from 20 HCC patients) ( £
200). (B) Immunofluorescence confocal analysis of HCC showed that AIF1 was co-expressed with CD68 within the intratumual and peritumoral microenvironment. The
scale bar indicates a length of 100 mm. (C) Western blot showed that AIF1 was specifically expressed in various macrophage cell lines but not in liver cells, liver cancer
cells, endothelial cells and astrocytes; �p < 0.05. TPSA, total positive staining area.
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AIF1 (Fig. S7B). Blocking CXCL16 using CXCL16-neutraliz-
ing antibody attenuated the migration of Hepa1-6 promoted
by AIF1 (Fig. 4C).

Animal study showed that RAW264.7 cells with downre-
gulated AIF1 decreased the growth of subcutaneous tumor,
compared with control RAW264.7 cells (Fig. 5A). Accord-
ingly, the expression of AIF1 was decreased in TAMs in the
junctional area, and the expression of CXCL16 and prolifer-
ation-associated protein Ki67 were also significantly reduced
within the junctional area as shown by immunohistochemi-
cal staining (Fig. 5B). The number of CXCL16-expressing
macrophages was smaller in the junctional area of tumor

co-implanted with RAW264.7-shAIF1 than RAW264.7-
shNC (Fig. S8).

AIF1 expression on macrophages in the adjacent
microenvironment was associated with poor prognosis
after surgical resection of HCC

Immunohistochemical staining was performed to study the
clinical significance of AIF1 expression in macrophages. AIF1
expression in the adjacent microenvironment was associated
with the number of tumor nodules (p D 0.019), the presence of
microvascular invasion (p D 0.005), and advanced TNM stage

Figure 2. AIF1 was associated with the proliferation, migration, and M2 polarization of macrophages. (A) Inhibiting AIF1 with siRNA transfection decreased the number of
RAW264.7 cells. (B) Phalloidin-TRITC staining showed that inhibiting AIF1 with siRNA transfection resulted in malformation of the cytoskeleton. (C, D) RAW264.7 cells were
less attractant to CSF1 stimulation (100 ng/mL) after constitutive knockdown of AIF1 and more attractant to CSF1 stimulation (100 ng/mL) after constitutive overexpres-
sion of AIF1. (E, F) Western blot confirmed AIF1 was effectively knocked down or overexpressed after infection with lentivirus containing shRNA targeting AIF1 or transfec-
tion with the AIF1 overexpression plasmid. (G) QRT-PCR showed that overexpression of AIF1 in RAW264.7 cells exhibited increased markers associated with M2
polarization and decreased those associated with M1 polarization. (H) Flow cytometric assay showed that overexpression of AIF1 in RAW264.7 cells showed increased
CD206 and decreased MHC-II; �p < 0.05; �� p < 0.01; ���p < 0.001.
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(p D 0.006) (Table 1), suggesting that AIF1 expression on mac-
rophages may promote tumor cell dissemination. Furthermore,
high infiltration of AIF1-positive cells in the adjacent liver tis-
sue was associated with poor overall survival (p D 0.002) and
disease-free survival (p D 0.002) after resection of HCC
(Fig. 5C). Multivariate analysis of factors associated with the
prognosis after resection of HCC showed that AIF1 was an
independent prognostic factor of the overall survival (p D
0.039) and disease-free survival (p D 0.023) (Table 2).

Discussion

We previously demonstrated that high expression of CSF1 in
the adjacent tumor microenvironment was associated with
poor prognosis after surgical resection of HCC.10,25 Sorafenib
treatment induces the expression of CSF1, which is accompa-
nied by increased macrophage infiltration, partially reducing
the antitumor effect of the drug.26 The present study showed

that CSF1 induced the expression of AIF1 in macrophages
through the CSF1R-MEK1/2-Erk1/2-c-Jun signaling pathway.
AIF1 expression in TAMs increased the proliferation and
migration of hepatoma cells in vitro, promoted the tumor
growth in animal model, and was associated with poor progno-
sis after surgical resection of HCC.

AIF1 is a cytoskeleton-associated protein and increases the
proliferation and migration of macrophages.27 AIF1 expression
has been reported to be associated with poor prognosis in the
context of glioma and breast cancer. AIF1-positive gliocytes
were associated with poor prognosis in brain astrocytoma,28

and the expression of AIF1 in the epithelium of breast ductal
carcinoma was associated with large tumor size and poor tumor
differentiation.29 In vitro study showed that AIF1 promoted
tumor growth via the NF-kB/cyclin D1 pathway.29 However,
the relationship between AIF1 and HCC has not been previ-
ously reported. The present study showed that macrophages
overexpressing AIF1 were more attractant to exogenous CSF1,

Figure 3. CSF1 secreted from hepatoma cells induced the expression of AIF1 in macrophages through the CSF1R-MEK1/2-Erk1/2-c-Jun signaling pathway. (A) CSF1
increased the expression of AIF1 in a dose-dependent manner. (B) The CSF1R inhibitor PLX3397 blocked the upregulation of AIF1 induced by CSF1. (C) The conditioned
medium of Hepa1-6 and H22 cells increased the expression of AIF1 in macrophages, which was blocked by PLX3397. (D) Exposure to CSF1 induced the phosphorylation
of CSF1R in RAW264.7 cells, which was blocked by PLX3397. (E) Thirty minutes after CSF1 stimulation, the phosphorylation of CSF1R, MEK1/2, Erk1/2, and c-Jun was
increased, which was blocked by PLX3397. The MEK1/2 inhibitor U0126 decreased the phosphorylation of Erk1/2 and c-Jun.. (F) ChIP assay showed that c-Jun bound to
the promoter region of AIF1. CSF1 increased the binding of c-Jun to the promoter region of AIF1. Sequence covered by primer 10 was near the start of the ORF. (G) Lucif-
erase reporter gene assay showed that c-Jun promoted the expression of AIF1 by binding to the tgaattct sequence 1720bp–1728bp upstream of the ORF, which was
accelerated by CSF1. Three mutated sequences were as follows: tgactttt (2156bp to 2164bp upstream of the ORF); tgatttaa (2037bp to 2045bp upstream of the ORF);
tgaattct (1720bp to 1728bp upstream of the ORF). (H) An illustration showing the upstream pathway of AIF1 in the presence of CSF1; ���p < 0.001.
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which is abundant in the adjacent liver tissue of HCC. These
data suggested that AIF1 is a vital functional component in the
infiltration of peritumoral macrophages. The CSF1-activated
CSF1R-MEK1/2-Erk1/2-c-Jun signaling pathway increased the
accumulation of AIF1-positive macrophages in the adjacent
microenvironment of HCC. Furthermore, the present study
showed that AIF1 expression in macrophages in the adjacent
microenvironment was associated with poor survival and more
aggressive tumor features. We consistently found that macro-
phages overexpressing AIF1 promoted tumor migration and
proliferation of tumor cells. Mouse cytokine antibody array
analysis showed that macrophages overexpressing AIF1 were
accompanied by increased secretion of CXCL16, which is
reported to facilitate with the migration and invasion of
HCC.30 The preceding results suggest that AIF1 promoted liver
cancer progression by enhancing the M2 polarization and
increasing CXCL16 secretion in macrophages.

The correlation between CSF1 and AIF1 has been reported
before. Imai et al. found that CSF1 induced the activation of
CSF1R-PI3K-PLCg signaling pathway. AIF1, together with
PLCg further activated the RAC signaling pathway, which was
associated with the rearrangement of the cytoskeleton, contrib-
uting to the proliferation and migration of macrophages,31

which is in consistency with the results of our study. However,
the effect of CSF1 on AIF1 expression and its correlation with
M2 polarization was not investigated, which was elucidated in
detail in the present study. We revealed for the first time that
CSF1 induced the expression of AIF1 through the activation of
CSF1R-MEK1/2-Erk1/2-c-Jun signaling pathway.

TAMs exhibit an M2-like phenotype, which is regulated by
the interaction between macrophages and tumor cells.32 How-
ever, the mechanism by which HCC promotes an M2-polarized
status among macrophages is not clearly understood. The
CSF1-CSF1R signaling pathway was reported to be associated

Figure 4. AIF1 enhanced the proliferation and migration of Hepa1-6 by the secretion of CXCL16. (A) In the Corning 3422 Boyden chambers, RAW264.7 cells in the lower
chamber were co-cultured with Hepa1-6 cells in the upper chamber for 24 h. The migration of Hepa1-6 cells was attenuated with RAW264.7 cells downregulating AIF1
and enhanced with RAW264.7 cells overexpressing AIF1. (B) The conditioned medium of RAW264.7 cells downregulating AIF1 decreased the number of Hepa1-6 cells,
and the conditioned medium of RAW264.7 cells overexpressing AIF1 increased the number of Hepa1-6 cells. (C) AIF1 promoted the migration of Hepa1-6 cells, which was
blocked by the neutralizing antibody against CXCL16; �p < 0.05; ��p < 0.01; ���p < 0.001.
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with the M2 polarization of macrophages.33 Blocking CSF1R
showed an antitumor effect in glioma by decreasing the alterna-
tively activated M2 markers.34 We speculated that AIF1 is a
vital regulator downstream of the CSF1-CSF1R axis in the M2
polarization of macrophages. CSF1 induced the expression of
AIF1, which resulted in the M2 polarization of macrophages
with increased expression of markers associated with M2 polar-
ization and reduced expression of markers associated with M1
polarization.13 However, the M2 polarization of macrophages
is a complex process, which also involves multiple factor other
than CSF1, such as CCL2. The CCL2-CCR2 axis was reported
to regulate macrophage polarization, which is also regulated by
the CSF1-CSF1R signaling pathway.35,36

TAMs facilitate tumor angiogenesis, provide an immuno-
suppressive microenvironment, and promote the migration
and invasion of tumor cells.32 The accumulation of TAMs in
the adjacent liver tissue provides a suitable microenvironment
for the seeding of tumor cells or circulating tumor cells.32

TAMs directly promote the migration and invasion of tumor
cells by secreting a variety of cytokines or chemokines, includ-
ing CCL18, CCL22, and EGF.11,12,37 CCL18 and CCL22 were
reported to be increased in IL-4-activated macrophages,11,12

but not in CSF1-activated macrophages. CSF1 secreted from
cancer cells was reported to promote the expression of EGF
by macrophages, which, in turn, promoted the invasiveness of
cancer cells.37 Though in the present study, mouse cytokine
antibody array showed that EGF secretion was slightly
increased in RAW264.7 cells overexpressing AIF1 compared
with the AIF1 knockdown, the quantity of EGF was generally
low. CXCL16 was reported to be increased in cancer-associ-
ated fibroblasts compared with normal fibroblasts, which pro-
moted the migration and invasion of HCC.30 Cho et al.
compared the cytokine array of CM from macrophage/thy-
roid cancer co-cultures and CM from thyroid cancer culture
alone and found that the CM of macrophage/thyroid cancer
co-cultures contained a high level of CXCL16, which
enhanced the migration of tumor cells.38 These findings were
in line with our results and further confirmed that CXCL16 is
an important downstream molecule of AIF1, which in the
present study promoted hepatoma cell migration and further
facilitated the progression of HCC. Consistent with the pres-
ent study’s findings, CXCL12 has also been reported to be
secreted from M2-polarized macrophages and to promote the
migration of cancer cells.39,40

Figure 5. AIF1-positive macrophages promoted the progression of HCC. (A) RAW264.7-shNC/shAIF1 was co-injected with Hepa1-6 to establish a subcutaneous tumor
model. Tumor sizes and weights were smaller after co-injection of RAW264.7 cells with downregulated AIF1 and Hepa1-6 cells as compared with that after co-injection of
control RAW264.7 cells and Hepa1-6 cells. (B) A lower expression of AIF1, CXCL16 and Ki67 were detected in tumors derived from co-injection of RAW264.7 cells with
downregulated AIF1 and Hepa1-6 cells, as compared with those from co-injection of control RAW264.7 cells and Hepa1-6 cells. (C) In human HCC tissue, high expression
of AIF1 in the adjacent liver tissue was associated with poor overall survival (p D 0.002) and disease-free survival (p D 0.002) after surgical resection; �p < 0.05; ��p <

0.01. TPSA, total positive staining area. IOD, integrated optical density.
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Our study has some limitations. First, the regulation of
AIF1 expression in BMDMs, which are similar to tumor-
infiltrating macrophages, was less effective. As we know,
BMDMs are terminally differentiated cells, which are not
susceptible to lentivirus- or liposome-mediated plasmid
transfection. Whether AIF1 knockdown or overexpression
in BMDMs was associated with macrophage polarization or
tumor cell proliferation or migration is unclear. Second,
since AIF1 expression in the adjacent liver tissue was asso-
ciated with the prognosis of HCC, a premetastatic microen-
vironment with AIF1-transformed macrophages would be
an ideal model to study the effect of peritumoral AIF1 on
tumor progression. Third, the cytokines detected by the

mouse cytokine antibody array were limited. Other cyto-
kines, such as CCL18, CXCL12, or others, could potentially
account for the increased migration of cancer cells.

This study has potential value for clinical practice. The AIF1
expression in the adjacent liver tissue provided an important
prognostic indicator, which could guide proper postoperative
adjuvant therapies. Since CSF1 induced M2 polarization through
the CSF1R-c-Jun-AIF1 signaling pathway, blocking CSF1R with
PLX3397 may reduce the M2 polarization34 and exert some anti-
tumor effect, which has already been reported in the treatment
of giant cell tumor.41 In vivo knockout of AIF1 may be possible
in future for haling the M2 polarization of macrophages, which
may reduce postoperative intrahepatic recurrence.

Materials and methods

Patients and follow-ups

From March 2004 to December 2006, 217 consecutive patients
were diagnosed with HCC and received curative surgical resec-
tion in Zhongshan Hospital, Fudan University. Postoperative
pathological examination confirmed the diagnosis of HCC, and
no macroscopically tumor residual was observed. Eleven patients
who died of factors related to surgery or were lost to follow-ups
were excluded, leaving 206 patients to be included in our study.
All patients were followed up every 2 to 3 mo after surgery.
Informed consent was obtained from all patients, and this study
was approved by the ethics committee of Zhongshan Hospital.

Cell lines

Mouse macrophage cell line RAW264.7 (Chinese Academy of
Science), mouse hepatoma cell lines Hepa1-6 and H22 (Chinese
Academy of Science), and human HCC cell line HCCLM3
(established and maintained in our institute) were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) (HyClone,
Logan, UT, USA) containing 10% fetal bovine serum (FBS)
(Invitrogen, Carlsbad, CA, USA) in a humidified atmosphere
of 5% CO2 at 37�C. Human THP-1 cell lines (Chinese Acad-
emy of Science) were cultured in the RPMI Medium Modified
(HyClone) containing 10% FBS (Invitrogen).

Mouse BMDMs were obtained by harvesting bone marrow
cells from the long bones of C57BL/6 mice and culturing them
in the presence of recombinant mouse CSF1 (20 ng/mL) or
CSF2 (20 ng/mL) for 1 week according to the protocol provided
by the David Hume Group – The Roslin Institute with slight
modifications.42

Recombinant mouse CSF1 (51112-M08H) and CSF2
(51048-M07H) were purchased from Sino Biological (Beijing,
China). The CSF1R inhibitor pexidartinib (PLX3397) (S7818)
and MEK1/2 inhibitor U0126 were purchased from Selleck
(Shanghai, China). The CXCL16 neutralizing antibody
(MAB503) was purchased from R&D Systems, Inc. (Minneapo-
lis, MN, USA).

Lentivirus infection and siRNA transfection

To inhibit AIF1 expression in macrophages, three small inter-
fering RNAs (siRNAs) targeting mouse AIF1 were designed

Table 1. Basic clinicopathological parameters of included patients.

Peritumoral AIF1 expression

Low High p value

Age (year) 52.51 § 11.85 52.25 § 9.99 0.873
Gender 0.133
Male 43 131
Female 12 20

HBsAg 0.170
Negative 11 19
Positive 43 131

Concurrent cirrhosis 0.304
No 15 31
Yes 40 120

AFP (ng/mL)
� 20 19 45 0.481
>20 35 105

Tumor size (cm) 4.58 § 2.77 5.52 § 3.90 0.059
Number of tumor nodules 0.019
Solitary 53 127
Multiple 2 24

Tumor encapsulation 0.743
No 28 72
Yes 27 77

Microvascular invasion 0.005
No 41 79
Yes 14 71

Tumor differentiation 0.132
I - II 43 104
III - IV 11 47

TNM stage 0.006
I - II 54 127
III - IV 1 24

Table 2. Multivariate analysis of factors associated with overall and disease-free
survivals of hepatocellular carcinoma after curative surgical resection.

Overall survival Disease-free survival

HR (95% CI) p value HR (95% CI) p value

Tumor size (cm)
>5 vs. � 5 1.74 (1.03–2.95) 0.040 1.47 (0.91–2.37) 0.113

Tumor number
Solitary vs. multiple 0.77 (0.35–1.69) 0.507 1.31 (0.69–2.45) 0.409

Vascular tumor thrombus
Yes vs. no 1.56 (0.96–2.54) 0.075 1.35 (0.88–2.08) 0.173

TNM stage
III - IV vs. I - II 2.43 (1.05–5.58) 0.037 1.66 (0.81–3.39) 0.169

GGT (U/L)
>91 vs. � 91 2.15 (1.31–3.53) 0.002 1.72 (1.09–2.71) 0.020

AIF1 expression
Low vs. high 1.97 (1.03–3.74) 0.039 1.92 (1.09–3.36) 0.023
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and constructed by Sigma Aldrich. The siRNA sequences
(50–30) were as follows: CUGACUUUCUCAGAAUGAU,
CUAGAGCUGAAGAGAUUAA, and GAUCUGCCAUCUU-
GAGAAU. The siRNAs were transfected into RAW264.7 using
Lipofectamine 3000 transfection reagent (Invitrogen). The first
siRNA sequence was used to construct recombinant lentivirus
vectors containing small hairpin RNA (shRNA) targeting
mouse AIF1 to constitutively inhibit the expression of AIF1 in
macrophages. The vectors used for AIF1 knockdown were
hU6-MCS-Ubiquitin-EGFP-IRES-puromycin (Genechem,
Shanghai, China). To constitutively overexpress AIF1 in mac-
rophages, we constructed recombinant lentivirus vectors con-
taining the full-length sequence of AIF1. The vectors used for
AIF1 overexpression were Ubi-MCS-3FLAG-CMV-EGFP
(Genechem, Shanghai, China). RAW264.7 cells were then
infected with lentivirus following the manufacturer’s instruc-
tions, and Western blot was used to validate the efficiency of
AIF1 knockdown and overexpression.

Cell proliferation and migration assay

Cell proliferation assay was performed using CCK-8 solution
(Dojindo, Kumamoto, Japan) to detect the absorbance at a
wavelength 450 nm. Cell migration assays were performed
using Boyden chambers with an 8-mm pore size (Corning,
Tewksbury, MA) to count the number of cells that migrated
through the pore to the lower surface as described previously.43

Three independent experiments were performed in triplicate.

Tissue microarray and immunohistochemistry

Tissue microarrays (TMAs) were constructed according to a
described previously protocol.10 In brief, tumor tissue and adja-
cent relatively noncancerous tissue within 10 mm of the tumor
from 206 patients were sampled to construct three TMA sec-
tions (cooperation with Shanghai Biochip Company Ltd.,
Shanghai, China).

The immunohistochemistry protocol has been described
elsewhere.44 Primary antibodies were rabbit monoclonal anti-
body combined with AIF1 (1:2000; Abcam, Cambridge, UK),
rabbit polyclonal antibody combined with CXCL16 (1:50;
Abcam) and rabbit monoclonal antibody combined with Ki67
(1:100; Abcam). The components of the Ultravision Quanto
Detection system (Lab Vision Corporation, Fremont, CA) were
applied for human tissue. The HRP-conjugated goat anti rabbit
secondary antibody (1:200, Dako, Glostrup, Denmark) was
used for mouse tissue. Reaction products were visualized by
incubation with diaminobenzidine.

The immunohistochemical images were recorded with a
computerized image system composed of a Leica CCD camera
DFC420 connected to a Leica DM IRE2 microscope (Leica
Microsystems Imaging Solutions Ltd, Cambridge, UK). At
high-power magnification (£200), images of three representa-
tive fields were captured by the Leica QWin Plus v3 software.
The parameters were constant for each captured image. The
total positive staining area of AIF1 or Ki67, and the integrated
optical density of CXCL16 were calculated by Image-Pro Plus
v6.2 software (Media Cybernetics Inc., Bethesda, MD). A

uniform setting was applied, and the total positive staining area
or the integrated optical density was recorded for each slice.

Western blot

Western blot procedures have been described elsewhere.43 Pri-
mary antibodies used are listed as follows: AIF1/Iba1
(#ab178847, Abcam), c-Jun (#9165, Cell Signaling Technologies,
Massachusetts, USA), phospho c-Jun (#3270, Cell Signaling
Technologies), Erk1/2 (#4695, Cell Signaling Technologies),
phospho Erk1/2 (#4370, Cell Signaling Technologies), MEK1/2
(#8787, Cell Signaling Technologies), phospho MEK1/2 (#9154,
Cell Signaling Technologies), and GAPDH (#5174, Cell Signal-
ing Technologies). Peroxidase-conjugated goat anti-rabbit sec-
ond antibody (KC-RB-035) were purchased from Kangchen
Biotech (Shanghai, China).

Real-time quantitative PCR

RNA isolation and qRT-PCR procedures have been described
previously.43 Reverse transcription reagents (RR820) and PCR
reagents (RR047) were purchased from TaKaRa Biotechnology
(Dalian, China), and primers were synthesized by Sangon Bio-
tech (Shanghai, China). Primer sequences used are listed in
Table S1.

Immunofluorescence staining and confocal microscopy

Procedures for immunofluorescence staining and confocal
microscopy were described in our previous study.43 Primary
rabbit anti-Iba1 antibody (10904-1-AP, Proteintech, Chicago,
USA), mouse anti-CD68 antibody (ab955, Abcam), rabbit anti-
CXCL16 antibody (abs122925, Absin, Shanghai, China) and rat
anti-CD68 (ab53444, Abcam) antibody were used. The mouse,
rabbit and rat IgGs were used as isotype controls to rule out
non-specific binding of primary antibodies. Alexa Fluor 546-
conjugated anti-rabbit IgG (1:250, Invitrogen) and Alexa Fluor
488-conjugated anti-mouse IgG (1:250, Invitrogen) were used
as secondary antibodies. Phalloidin-TRITC (P1951, Sigma
Aldrich) was used to label the cytoskeleton of macrophages.
The immunofluorescence staining was observed under the con-
focal fluorescent microscope (£400 magnification, Olympus).

Flow cytometry

Single-cell suspensions were prepared. Antibodies for cell sur-
face staining were APC-conjugated anti-MHC-II (130-108-004,
Miltenyi Biotec, Bergisch Gladbach, Germany) and Alexa Fluor
488-conjugated anti-mannose receptor (ab195191, Abcam).
FACS data were acquired using a FACSCalibur (BD Bioscien-
ces, Franklin Lakes, NJ, USA), which was provided by Shu-Hui
Sun of the Public Technology Platform, School of Basic Medical
Sciences, Fudan University. CELLQuest software (BD Bioscien-
ces) and FlowJo (Tree Star, Inc., Ashland, OR) were used to
examine the expression of CD206 and MHC-II on 10,000 cells.

For the analysis of cell-cycle distribution, the PI/RNase
Staining Buffer (BD PharMingen) was used according to the
manufacturer’s protocol before flow cytometry. In brief, cells
were pelleted, centrifuged and resuspended in 75% ethanol at
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¡20℃ overnight. Then, 106 cells were centrifuged and resus-
pended in 0.5 mL of PtdIns/RNase Staining Buffer at room
temperature for 15 min. CELLQuest and FlowJo were used to
analyze the cell-cycle distribution in the G1, S and G2 phases in
10,000 cells.

Chromatin immunoprecipitation

Chromatin immunoprecipitation (ChIP) against c-Jun was
conducted in RAW264.7 cells stimulated with exogenous CSF1
using the Pierce Agarose ChIP Kit (#26156, Thermo). The
ChIP procedure is described elsewhere45 and was used with
minor modifications. For immunoprecipitation of c-Jun in
RAW264.7 cells, rabbit polyclonal c-Jun antibody (ab31419,
Abcam) was used. Normal rabbit IgG (#2729P, Cell Signaling
Technologies) was used as the negative control. Primer sequen-
ces for detection of c-Jun target promoter by RT-PCR are listed
in Table S2.

Luciferase reporter gene assay

The Luciferase reporter gene assay was performed using Dual
Luciferase Assay Kits purchased from Promega (Madison, WI)
according to the manufacturer’s protocol. The GL3b-AIF1 pro-
moter luciferase plasmids (wild and mutant types) and c-Jun
plasmid were constructed by Genechem. The 293T cells were
co-transfected with AIF1 promoter luciferase plasmid and c-
Jun plasmid with or without the stimulation of CSF1 with dif-
ferent combinations. The Firefly luciferase activity normalized
to Renilla luciferase activity was calculated for each sample.

Collection of the conditioned medium (CM)

Tumor cells were cultured in the FBS-free DMEM for 24 h. The
macrophages were co-cultured with tumor cells in Boyden
chambers (Corning) in DMEM containing 1% FBS for 24 h.
The CM was centrifuged for 20 min at 3,000 rpm, and the
resultant pellet was collected for further study.

Mouse cytokine antibody array

The quantities of secreted cytokines in the CM were compared
between RAW264.7 cells with AIF1 knockdown and
RAW264.7 cells with AIF1 overexpression using C-Series
Mouse Cytokine Antibody Array C6 for the semiquantitative
detection of 97 mouse proteins (RayBiotech, Norcross, GA,
USA) as directed by the manufacturer. The concentration of
CXCL16 in the CM was confirmed by ELISA (Boster, Wuhan,
China).

Animal model

RAW264.7-shNC/shAIF1 cells and Hepa1-6 cells were mixed
at a ratio of 1 : 4 and a total of 5 £ 106 cells were subcutane-
ously injected to the right flank of C57BL/6 mice. The longest
diameter (a), shortest diameter (b) and mass of tumors were
measured for each group after 3 weeks and the volume of
tumors was equaled as a£ b£ b / 2 (cm3). Immunohistochem-
ical staining was performed to confirm the knockdown of AIF1

in TAMs and assess the expression of CXCL16 and Ki67 within
tumor. The animal experiments were approved by the animal
care committee of Zhongshan Hospital.

Statistical analysis

Data were analyzed with SPSS 18.0. All quantitative data were
recorded as the means § SD and compared with the two-tailed
Student’s t-test. Qualitative data were recorded as relativity and
compared with the chi-square test. Kaplan-Meier analysis and
log-rank test were used to compare the differences in patients’
overall and disease-free survival. p values < 0.05 were consid-
ered statistically significant.
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