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Abstract

Many studies have explored phase-change contrast agents (PCCAs) that can be vaporized by an 

ultrasonic pulse to form microbubbles for ultrasound imaging and therapy. However, few 

investigations have been published demonstrating the utility and characteristics of PCCAs as 

contrast agents in vivo. In this study, we examine the properties of low boiling point nanoscale 

PCCAs evaluated in vivo, and compare data to conventional microbubbles with respect to contrast 

generation and circulation properties. In order to do this, we develop a custom pulse sequence to 

vaporize and image PCCAs using the Verasonics research platform and a clinical array transducer. 

Results show that droplets can produce similar contrast enhancement to microbubbles (7.29 to 

18.24 dB over baseline, depending on formulation), and can be designed to circulate for as much 

as 3.3 times longer than microbubbles. This study also demonstrates for the first time the ability to 

capture contrast wash-out kinetics of the target organ as a measure of vascular perfusion.
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Introduction

Since their early appearance in patent literature, ultrasonically-activated phase-change 

contrast agents (PCCAs) have been investigated to solve challenges in both diagnostic and 

therapeutic applications of ultrasound (Apfel, 1998). PCCAs provide a unique solution in 

that an externally-applied ultrasonic pulse of sufficient energy can be used to trigger a 

transition from a liquid state to a gas state – causing a significant change in the size, density, 

and compressibility of the particle located within tissue. Some of the earliest published 

studies demonstrated ultrasound-induced phase transition of superheated 
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dodecafluoropentane microdroplets in vitro and termed the phenomenon ‘acoustic droplet 

vaporization’ (Kripfgans et al., 2000; Miller et al., 2000). Continued studies showed the 

utility of this new class of agents in applications such as occlusion therapy, aberration 

correction, and cavitation enhancement (Kripfgans et al., 2002; Miller and Song, 2002; 

Miller et al., 2000).

Since these early experiments, the number of preclinical investigations using PCCAs has 

increased dramatically and expanded to applications spanning diagnostic/molecular imaging, 

drug/gene delivery, and tissue ablation (Lin and Pitt, 2013; Rapoport, 2012; Sheeran and 

Dayton, 2012; Wilson et al., 2013). These studies have shown that the ability to activate 

agents selectively in vivo can be useful in overcoming some of the limitations of 

conventional microbubble contrast agents. One of the most sought-after goals in PCCA 

literature has been to create agents with small initial size (in the liquid state) and longer 

circulation times compared to microbubbles in order to allow passive accumulation in solid 

tumors via the enhanced permeability and retention (EPR) effect (Campbell, 2006; 

Kopechek et al., 2013; Rapoport et al., 2009; Reznik et al., 2011; Sheeran et al., 2011b; 

Williams et al., 2013). Once vaporized to form microbubbles, the contrast present could be 

used to gain diagnostic information about the interstitial environment. Other studies have 

shown that vaporization of larger, microscale PCCAs may be useful for creating bubbles that 

become lodged in the vascular network and serve as references for phase aberration 

correction (Haworth et al., 2008). PCCAs may also be useful in ultrasound molecular 

imaging for eliminating the need to discriminate between circulating and molecularly 

targeted agents (Sheeran et al., 2013b). Once activated in a volume of interest, targeted 

agents will appear as stationary bubbles, while untargeted agents will clear from the imaging 

plane. Because the un-vaporized droplets remaining in circulation provide very low contrast 

relative to tissue, the level of molecular expression can be measured immediately. Some 

studies have demonstrated that the contrast from the newly-created bubbles can be used to 

aid in therapeutic goals (Couture et al., 2012; Zhang et al., 2010), and potentially with more 

control over spatial confinement of the effect compared to typical ultrasound contrast agents 

(Chen et al., 2013).

Perfluorocarbons have proven to be ideal compounds for use with phase-change contrast 

agents, given their low solubility in aqueous media, relatively high molecular weight, boiling 

points near physiologic temperatures, and an extensive history of use in medical imaging 

(Mattrey, 1994; Sheeran and Dayton, 2012). Despite a few studies demonstrating the 

imaging contrast produced by vaporized perfluorocarbon droplets (Kripfgans et al., 2005, 

2002, 2000; Williams et al., 2013), PCCAs have primarily been tested as tools to enhance 

therapeutic ultrasound. This preference most likely reflects the unique therapeutic 

opportunities provided by the dramatic change in agent properties with vaporization, as well 

as technological barriers that have, until recently, limited their use as diagnostic agents.

Although the theoretical expansion of perfluorocarbon droplets is 3 to 6 times their initial 

diameter, experiments have shown a size change on the order of 10 to 12 fold, as a result of 

the inward diffusion of dissolved gases from surrounding fluid (Kripfgans et al., 2000; 

Sheeran et al., 2011a, 2011b; Shpak et al., 2013). In order to produce ideal contrast-

providing bubbles for diagnostic vascular applications, droplet vaporization should produce 
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microbubbles on the order of 1 to 5 micrometers in diameter (similar to clinical formulations 

such as Definity; Lantheus Medical Imaging, Billerica MA, USA) to allow for high 

backscatter as well as safe passage through the microvasculature. As a result, the droplets 

must be on the order of 100 to 500 nm in diameter. One of the physical barriers to using 

PCCAs as contrast agents stems from scaling effects as droplet diameters are reduced to the 

low 100s of nanometers. For large droplets with boiling points near body temperature (such 

as dodecafluoropentane, boiling point 29°C), the droplets exist in a superheated state upon 

injection until they either spontaneously vaporize or are vaporized by ultrasound. However, 

as droplet size diminishes, the Laplace pressure increase resulting from interfacial surface 

tension elevates the boiling point (Rapoport et al., 2009; Sheeran et al., 2011b), creating 

what Lin and Pitt refer to as ‘artificial superheat’ (Lin and Pitt, 2013). At very small droplet 

sizes (such as 100s of nm in diameter), the boiling point elevation is substantial enough to 

limit the efficiency of vaporization and increase vaporization thresholds (Sheeran et al., 

2011b). This Laplace pressure influence is especially deleterious for diagnostic applications 

of PCCAs: it not only reduces the number of droplets that will vaporize at a given pressure, 

but may cause recently-vaporized bubbles to re-condense to the droplet state once the 

ultrasonic pulse has passed (Reznik et al., 2013) - reducing the number of contrast-providing 

bubbles.

One solution to reduce the vaporization thresholds may be to alter the characteristics of the 

vaporization pulse – such as altering pulse length and frequency. Previous studies have 

shown that under certain circumstances, pulse length appears to reduce the energy required 

for vaporization (Fabiilli et al., 2009; Lo et al., 2007; Williams et al., 2013). However, long 

pulse lengths will alter the bubble distribution as a result of rectified gas diffusion, bubble 

destruction, and fusion (Kang et al., 2014; Sheeran et al., 2013a; Shpak et al., 2013). These 

secondary effects and changes in bubble size distribution are likely to be unwanted for 

contrast applications, and may also cause unintended interactions with tissue. Alternatively, 

some of the earliest studies involving PCCAs demonstrated that increasing the ultrasound 

frequency reduced the pressure required to get a similar level of droplet vaporization 

(Kripfgans et al., 2000). This effect was confirmed in a number of separate studies (Fabiilli 

et al., 2009; Williams et al., 2013), and recently revealed to be the result of superharmonic 

focusing of nonlinear pulses that increases the negative pressure within the droplet (Shpak et 

al., 2014). However, for the purposes of contrast generation using sub-micron droplets, the 

frequency-dependence may not be a significant factor, since the focusing effect requires 

highly nonlinear pulses (i.e. high pressures) and appears to be relatively negligible for 

droplets much smaller than 1 micrometer in diameter at typical human diagnostic imaging 

frequencies.

Recent studies by our group have demonstrated that the increase in droplet vaporization 

threshold at small sizes can be circumvented by using perfluorocarbon species with lower 

boiling points, such as decafluorobutane (DFB, boiling point −2°C) and octafluoropropane 

(OFP, boiling point −37°C) (Sheeran et al., 2012, 2011a, 2011b). Because the critical 

temperatures of these compounds are much closer to body temperature than higher boiling 

point PFCs, the vapor bubbles formed from activation are less likely to re-condense due to 

Laplace pressure or the compressional half-cycles of the ultrasound pulse. Though a tradeoff 

exists between sensitivity to ultrasound (i.e. vaporization threshold) and general droplet 
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thermal stability, the droplet emulsions can be ‘tuned’ to provide an ideal balance for each 

application by mixing perfluorocarbon species (Kawabata et al., 2005; Sheeran et al., 2012). 

Previous studies have shown that condensation techniques can be used to generate stable 

sub-micron droplets that vaporize to bubbles of ideal size for contrast imaging and that these 

droplets can be activated at pressures available on typical diagnostic ultrasound machines 

(Sheeran et al., 2013a, 2013b, 2011a).

To our knowledge, no studies in the literature have explored the development of real-time 

diagnostic contrast-enhancement sequences based on PCCAs, although some studies have 

been published demonstrating both activation and imaging from a single imaging transducer 

(Couture et al., 2012; Sheeran et al., 2013b). As contrast agents, PCCAs require unique 

ultrasound pulse sequences to optimize diagnostic information. While other approaches are 

possible, perhaps the simplest is an image/activate/image sequence where the first imaging 

state is used to gather a pre-activation measurement and the second used to assess the level 

of contrast generated from an activation state. In the initial liquid state, pre-activation 

imaging must occur at pressures low enough to avoid droplet activation. When activation is 

desired (either at intervals or user-triggered), activation should cover the area of interest 

(pre-designated or operator-designated) and produce droplet vaporization as quickly as 

possible in the plane or volume – likely through focused pulses to minimize activation 

elsewhere. For the final imaging state, the imaging pressures must be low enough to not 

cause further droplet vaporization, and to not disrupt the bubbles produced (unless this is 

desirable). This post-activation imaging state must also occur quickly enough after the 

activation to capture contrast before it leaves the imaging plane, although this timing may be 

more flexible for droplets that are stationary (such as targeted droplets or those in tissue 

rather than vasculature). Clinical ultrasound scanners typically do not allow the level of 

pulse sequence customization required to create ideal PCCA-based contrast imaging without 

manufacturer research agreements. A new generation of highly-customizable ultrasound 

research platforms made by companies such as Verasonics (Redmond, WA, USA) and 

Cephasonics (Santa Clara, CA, USA) have allowed researchers to overcome these 

technological barriers and explore new imaging and processing techniques.

In this study, we use the Verasonics ultrasound platform to develop a custom PCCA-based 

diagnostic imaging sequence where both activation and imaging are accomplished using a 

single diagnostic linear array probe at ultrasound conditions at or near FDA guidelines for 

diagnostic imaging (Barnett et al., 2000). By controlling pulse timing, focusing, and 

pressure, we capture the contrast enhancement provided by PCCAs. Using the rodent kidney 

as a vascular target, we demonstrate the ability to evaluate both circulation and wash-out 

kinetics as a function of perfluorocarbon boiling point, and illustrate the considerations 

necessary to develop optimal sequences for PCCA contrast enhancement.

Materials and Methods

Contrast Agent Preparation

Perfluorocarbon microbubbles and phase-change contrast agents were prepared using 

techniques described in detail previously (Sheeran et al., 2012). The microbubbles and 

PCCA precursor microbubbles were encapsulated in a phospholipid cocktail consisting of a 
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9:1 M ratio of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-distearoyl-sn-

glycero-3-phosphoethanolamine-N-methoxy(polyethylene-glycol)-2000 (DSPE-PEG2000). 

Lipids were purchased from Avanti Polar Lipids (Alabaster, AL, USA). The excipient 

solution consisted of a 16:3:1 ratio of phosphate-buffered saline (PBS), propylene glycol, 

and glycerol, producing a total lipid concentration of 1 mg/mL. Both control microbubble 

samples and PCCA precursor microbubbles were generated by adding 1.5 mL of the lipid 

solution to a 3 mL glass vial and gas-exchanging the headspace with either decafluorobutane 

or octafluoropropane gas (Fluoromed, Round Rock, TX, USA) prior to bubble formation via 

a standard mechanical agitation technique (Vialmix, Bristol-Myers-Squibb, New York, NY, 

USA).

To form PCCAs from decafluorobutane and octafluoropropane, a microbubble condensation 

technique was used to convert precursor bubbles (formed as described above) to the liquid 

state (Sheeran et al., 2012, 2011a). Briefly, the vials of microbubbles with cores composed 

of DFB or OFP were submerged in an isopropanol bath maintained at a temperature between 

−8°C and −10°C and swirled gently for approximately 2 minutes. The vials were then 

connected to an adjustable air-pressure source and the headspace pressure increased until a 

change in emulsion consistency indicating condensation was observed. For DFB samples, 

condensation was generally observed due to temperature alone, while OFP samples required 

on the order of 40–50 psi (275–350 kPa) to achieve condensation as a result of a much lower 

boiling point. Samples were stored at 4°C for a maximum of 5 hours prior to use for DFB, 

and a maximum of 2 hours for OFP to avoid variation as a result of thermal instability.

Microbubble size distributions were obtained by measuring 2 µL of microbubble emulsion 

with an Accusizer 780A (Particle Sizing Systems, Santa Barbara, CA, USA), and statistics 

averaged for 3 independent microbubble vials to obtain a representative distribution and 

concentration. PCCAs formed from condensed microbubbles were sized by using a 

NanoSight NS500 (Malvern Instruments Inc., Westborough, MA, USA) capable of 

measuring both size distribution and concentration of sub-micron particles. The NanoSight 

was used to capture six 30-second recordings at a temperature of 23.3°C for each sample 

with all other settings at default values. DFB and OFP droplet samples were diluted 1/200 in 

PBS prior to sampling. Measurements produced from each of the six recordings were 

averaged to produce a representative size distribution and concentration for each sample, and 

the process repeated for a total of 3 samples of both DFB and OFP droplets.

Droplet Imaging and Activation Pulse Sequence

All imaging and droplet activation was performed using a fully customizable Verasonics 

research ultrasound platform (Verasonics, Redmond, WA, USA), equipped with an ATL 

L12-5 38mm 192-element linear array probe (Phillips, Andover, MA, USA). The transducer 

was calibrated in the free-field using a needle hydrophone (Onda HNA-0400, Sunnyvale, 

CA, USA) in degassed water. The center 128 elements of the transducer were used for all 

imaging and activation. The Verasonics hardware was controlled by MATLAB (The 

MathWorks, Natick, MA, USA) scripts, which allows for simple customization of acoustic 

parameters. Three different sequences were developed: One for B-mode (anatomical) 

images, another for droplet activation, and a pulse inversion approach (Simpson et al., 1999) 
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for contrast-specific imaging. The output of the transducer in each imaging mode was 

controlled by adjusting the output voltage of the Verasonics hardware using MATLAB 

scripts.

B-mode—For B-mode anatomical imaging, a plane-wave coherent angular compounding 

approach (Montaldo et al., 2009) was implemented by delivering 9 MHz, 1-cycle sinusoidal 

pulses from the ATL L12-5 transducer. The final B-mode images were formed by 

compounding the envelope detected and beamformed RF signal from 7 transmit-receive 

frames in which the transmit beam was electronically steered at even angular intervals 

between the axial and lateral dimensions of the transducer (from −18° to 18°). The 

beamforming and compounding were performed by Verasonics reconstruction algorithms.

Pulse-inversion—For contrast-specific imaging, a similar coherent angular compounding 

approach as above was used in which the acquisition at each angle consisted of the RF 

addition of echoes received from sequential 4.5 MHz, 1-cycle pulses delivered 180° out of 

phase. The initial positive pulse was followed by a negative pulse after an interval of 105 µs, 

and each image was constructed from the compounding of all angles. The acquisition time 

between angles was 205 µs, and the final images were captured at a rate of 10 Hz. The 

number of compounding angles was reduced to 3 (−18°, 0°, 18°) in order to speed up the 

data transfer rate and reduce reconstruction time. The Verasonics was set to receive at 9 

MHz nominally, although no secondary filtering was performed to further isolate the 2nd 

harmonic component.

Activation—Droplet activation was achieved by a series of electronically focused and 

steered 5 MHz, 2-cycle sinusoidal pulses. The use of focused pulses allowed activation only 

within the region of the beam where pressures were highest – limiting unwanted activation 

elsewhere. In these studies, the area of activation was set to a rectangular region of interest 

(ROI) within the lateral width of the transducer. Focused pulses were delivered uniformly 

within this region by setting the lateral and axial spacing between each pulse to cover the 

ROI. The pulses were delivered in a raster-scan style along the rows from left to right, 

starting with the deepest row in order to prevent shadowing by bubble clouds produced early 

in the sequence. Inter-pulse delay was set to 50 µs (near the limit of the Verasonics 

hardware) in order to activate within the ROI as quickly as possible.

Combined Imaging/Activation Sequence—B-mode imaging was first used as an 

anatomical reference to locate and align the kidney with the activation ROI. Once the kidney 

was positioned in the desired location, B-mode images of the final kidney placement were 

captured and stored offline before switching to pulse inversion and droplet activation modes 

(Figure 1). Kidney motion due to breathing could result in droplet activation in a plane not 

aligned with the imaging plane, and therefore a two-trigger structure was developed to 

ensure alignment between activation and imaging planes. Kidney appearance and motion 

was monitored during the free imaging state, and upon completion of the previous breathing 

cycle, the operator triggered the pre-activation imaging state. In this state, 10 frames were 

collected at a frame rate of 10 Hz and then the system returned to a free imaging state to 

align with breathing motion prior to activation. Once the animal breathing motion ceased, a 
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second trigger transitioned the machine to the droplet activation sequence. After a 500 µs 

delay to switch the Verasonics hardware to the activation voltage, focused activation pulses 

were delivered as described above, completing the entire activation sequence on a short 

timescale relative to respiratory motion. Upon completion of the last focused pulse, a delay 

of 1.2 ms allowed the Verasonics hardware time to return to imaging output levels. After this 

pause, the machine entered a post-activation imaging state and collected 100 images at a rate 

of 10 Hz for droplet groups and 10 images at a rate of 10 Hz for microbubble groups. Data 

were transferred to the PC controlling the Verasonics after both the pre-activation and post-

activation captures for offline analysis. The final design choices for the imaging and 

activation states both in vitro and in vivo are reflected in Table 1.

In Vitro Verification

In vitro verification of the droplet activation sequence was performed in an acrylic-walled 

water bath that contained 4.7 L of degassed water maintained at 37°C by circulating warm 

water through submerged copper tubing. The transducer was angled to reduce direct 

ultrasound reflections during droplet activation studies. DFB droplets were dispersed in the 

water to a concentration of approximately 107 droplets/mL, and the water was stirred 

between experimental runs to redistribute the agents.

Based on preliminary studies, the Verasonics output voltage was set to 18V for all imaging 

sequences (Table 1). Hydrophone measurements of the spatial pressure distribution resulting 

from the focused pulses were gathered to correlate with images of microbubble clouds 

generated. The hydrophone was stepped through the transducer’s lateral-axial plane at 0.1 

mm intervals using a three-axis motion stage (Newport XPS-RC, Irvine, CA, USA). The 

maximum peak negative pressures were recorded, and the pressure distributions (beam 

profiles) were analyzed in MATLAB and combined to form a composite beam map.

At a nominal output voltage of 18V peak-to-peak, the maximum peak negative pressures 

were 482 kPa and 649 kPa for B-mode and pulse-inversion imaging, respectively. These 

pressures occurred at a depth of 1.5 cm for B-mode and 1.15 cm for pulse-inversion. As both 

imaging states were implemented with plane wave transmits, the pressure field was 

relatively uniform compared to a focused-wave approach. During focused activation pulses, 

the peak negative pressure was 3.0 MPa at a focal depth of 0.5 cm. Due to the elevational 

lens, pressure increased with increasing depth to a maximum peak negative pressure of 4.8 

MPa at 1.4 cm.

Pulses were delivered at even spacing (user specified) within a rectangular region of interest 

extending laterally from −6 mm to 6 mm relative to the center of the transducer face and 

axially from 5 to mm 14 mm. The multi-angle coherent plane-wave compounding with pulse 

inversion script described above was used to image the microbubble clouds generated in 
vitro by droplet activation following the application of focused ultrasound (2 cycles at 5 

MHz) in the presence of DFB. Results from these tests were used to set the axial and lateral 

activation pulse spacing for in vivo studies based on the assumption that pulse pressures and 

spacing adequate to activate DFB in vivo would produce even greater activation of OFP 

droplets – ensuring the ability to measure both agents.
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Animal Imaging Protocol

Fischer 344 rats (Charles River laboratories, Wilmington, MA, USA) were used in this study 

and protocols approved by the University of North Carolina School of Medicine’s 

Institutional Animal Care and Use Committee were followed. Three groups were included in 

the study: DFB droplets (N = 7), OFP droplets (N = 6), and microbubbles (N = 6). Animals 

in the microbubbles group were administered DFB microbubbles (the same precursors used 

to form DFB droplets). All rats were selected based on similar size (~150 g) and age to 

reduce experimental variation. Rats were anesthetized with 2.5% inhaled isoflurane mixed 

with room air and their body temperature was maintained using a controllable heating pad. 

A 24-gauge catheter was inserted into the tail vein for the administration of the agents. The 

abdomen was shaved and further depilated using a chemical hair remover, and the area to be 

imaged was coupled to the transducer with water-based acoustic gel.

B-mode imaging was used to locate the kidney within the abdomen. The transducer was 

moved laterally, axially, and elevationally by a motion stage (Model UTS150PP, Newport-

Irvine, CA, USA) until the kidney (transverse plane) aligned with the location of the 

activation ROI, and anatomical images were then captured. Prior to the injection of contrast 

agents, the Imaging/Activation program was used to capture agent-free baseline images.

Contrast agents were delivered as single 120 µL bolus doses injected manually followed by a 

flush of sterile saline, similar to a previous study in mice with DFB droplets (Chen et al., 

2013). Based on the contrast agent size distribution and concentration measurements (see 

Results section), each bolus consisted of 60 µL of contrast agents diluted in 60 µL of saline 

for an approximate initial blood plasma concentration of 3.99×107 #/mL, 8.42×108 #/mL, 

and 1.86×109 #/mL for control microbubbles, DFB droplets, and OFP droplets, respectively. 

Next, the pre-activation and post-activation frames were captured using the imaging/

activation sequence every 3 minutes for 19 minutes, starting at 1 minute after the injection 

for the DFB and OFP groups, and every 2 minutes for 15 minutes, starting 1 minute after the 

injection for the microbubble group. Animal breathing was monitored closely after the 

injection and for the remainder of the experiment. The dose of isoflurane was adjusted 

depending on the breathing rate of the animal.

In Vivo Activation Sequence Parameters

Based on the results of the in vitro verification experiments, a lateral spacing between pulses 

of 0.85 mm (50% of the measured lateral FWHM) and axial spacing of 1.5 mm (500% of the 

approximate axial FWHM). The area of activation was set to a rectangular region spanning 3 

mm to 12 mm axially and from −6 mm to 6 mm laterally relative to the center of the 

transducer. The change in the axial window between in vitro and in vivo studies was made in 

order to ensure the region covered the entire kidney region in this imaging orientation. This 

combination of ROI and pulse spacing resulted in 90 focused pulses spaced evenly across 

the region delivered at a rate of 20,000 pulses/s. Transducer output voltage was set to 18V 

for all imaging sequences, but increased to 30V during the activation sequence to counteract 

the effects of tissue attenuation. This translated to a free-field peak negative pressure (not 

accounting for tissue attenuation) of 482.3 kPa and 648.8 kPa during B-mode and pulse-
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inversion imaging, respectively (Table 1). The increase in activation voltage resulted in a 

free-field peak negative pressure of 8.3 MPa (at an axial depth of 1.1 cm).

Data Analysis

Custom MATLAB scripts were used to analyze the pulse inversion data captured with the 

Verasonics. The output image data (envelope-detected and beam formed) was square root-

compressed, so the pixel values in all the frames were squared to obtain the linear beam 

formed voltage data. In order to analyze the contrast properties within the kidney, reference 

images were normalized and converted to the decibel scale for visualization. Regions-of-

interest (ROIs) were placed manually in the reference image and applied to all frames of the 

underlying (linear) data set. In cases where shadowing in the images was present, ROIs were 

drawn to avoid inclusion of the affected pixels. The average pixel value and standard 

deviation inside the ROI were calculated on each frame of the voltage data.

Contrast Enhancement Measurement—The degree of contrast enhancement was 

measured by comparing the contrast images with the agent-free baseline in the following 

sequence. An ROI was placed around the region of highest activation within the kidney in 

the first post-activation frame (or post-injection, in the case of microbubbles). The mean 

pixel value was computed for each frame of the entire data set (agent-free baseline, pre-

activation, post-activation). For groups that were administered microbubbles, the data set 

consisted of only the agent-free baseline images and the post-injection images. The agent-

free baseline value for each animal was calculated by averaging the ROI values from the 10 

agent-free baseline images. The mean pixel value of each frame after administration of the 

contrast agents was normalized to the agent-free baseline value and converted to decibel 

scale to arrive at a dB increase in contrast relative to agent-free baseline.

Percentage Filled Measurement—To measure spatial aspects of contrast enhancement, 

an ROI was drawn around the entire border of the kidney and the mean and standard 

deviation of the pixel values within the ROI calculated. At each of the contrast measurement 

time points, the percentage of pixels that exceeded the mean value of the agent-free baseline 

by at least 3 standard deviations was calculated as a measure of the spatial coverage of the 

newly generated contrast. Because some pixels in the agent-free case exceed this threshold 

(due to nonlinear tissue signal), the ‘percent filled’ value was adjusted by subtracting the 

percentage obtained in the agent-free case. Due to the fundamental physics of ultrasound 

speckle, as well as the vascular structure of the kidney, the percent filled value should 

naturally reach a maximum value less than 100.

Half-Life Measurements—Using the contrast enhancement measurements described 

above, the decrease in the contrast captured with each sequential data set was analyzed to 

obtain contrast half-lives and quantitatively compare the longevity of agent circulation. The 

contrast enhancement values of each data set were normalized to the maximum value 

obtained at the 1 minute time point, and the normalized data for each animal was fitted with 

an exponential of the form
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(Eq. #1)

where t is the time in minutes after injection, and βh is the rate of decay. In this fit, any time 

points were excluded where the mean contrast enhancement captured by the post-activation 

imaging was not significantly increased compared to the pre-activation imaging. These were 

excluded due to the fact that the mean contrast should return to zero for the exponential. The 

contrast measurements capture the maximum signal due to contrast agent enhancement, but 

once contrast is no longer being produced, this measure will capture the variation in the 

noise and produce a non-zero value at late time points.

Wash-out Rate Measurements—To measure the rate of contrast clearance from the 

imaging plane post-activation, the contrast enhancement measurements were clipped to the 

maximum value (with breathing noise removed) and fit with an exponential curve of the 

form

(Eq. #2)

where βw is the wash-out rate, tmax is the time at which the maximum contrast occurred, and 

dBmax is the maximum contrast enhancement produced.

Results

Contrast Agent Sizing and Concentration

The averaged distribution of DFB microbubbles, which were used as control agents 

throughout this study, had a mean diameter and variation of distribution of 1.00 ± 0.89 µm, 

with a mode size of 0.62 µm, and a total concentration of 6.57×109 ± 0.84×109 bubbles/mL 

(N = 3) (Figure 2a). Reproducibility between samples was high, with the standard deviation 

in the mean of 0.06 µm, and standard deviation in the mode of 0.01 µm (N = 3). Similarly, 

the precursor microbubbles used to make OFP particles had a mean diameter and variation 

of distribution of 1.03 ± 0.66 µm, with a mode size of 0.61 µm. OFP microbubbles had a 

higher mean concentration of 8.50×109 ± 1.4×109 bubbles/mL (N = 3) compared to DFB 

microbubbles, but not significantly so (p = 0.16, Student’s two-sided t-test).

The representative distributions obtained by averaging all 3 samples of each type of droplet 

(Figure 2b) produced a mean diameter and distribution variation of 166 ± 59 nm for DFB, 

with a mode size of 141 nm, and a total concentration of 13.88×1010 ± 6.58×1010 

droplets/mL, while OFP produced a mean diameter and distribution variation of 154 ± 64 

nm, with a mode size of 110 nm, and a total concentration of 30.61×1010 ± 9.65×1010 

droplets/mL. Reproducibility between samples was high, with the standard deviation in the 

mean less than 3 nm for both OFP (N = 3) and DFB (N = 3). Similarly, mode size of the 3 

samples for each droplet type had standard deviations less than 12 nm. A Kolmogorov-

Smirnov test showed that the smaller size distribution of OFP droplets was statistically 

significant compared to DFB (p < 0.001), which agreed with Student's two-tailed t-test 
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evaluation of the measured mean (p = 0.03) and mode (p<0.01) values for the two droplet 

types. OFP droplets had a nearly significant increase in concentration compared to DFB (p = 

0.07), similar to the microbubble concentration results. The smaller mode and mean 

diameters of the OFP samples can be expected based on ideal gas laws, which predict a 

greater size-dependent factor of conversion for OFP than DFB (Evans et al., 2006; Sheeran 

et al., 2014, 2011b). Given that the peak in the DFB microbubble distribution occurred at 

0.62 µm and at 0.61 µm for OFP, an assumption of ideal conversion between the gas and 

liquid states suggests a conversion factor of 5.57 ± 0.33 for OFP and 4.41 ± 0.37 for DFB.

Droplet measurements produced higher concentrations than microbubble measurements, 

which requires further discussion. A small increase in concentration is expected as a result 

of the reduction in volume of each PFC agent converting to the liquid state, although in 

theory this should only result in a decrease in total emulsion volume on the order of 5–10 µL 

– not explaining the order-of-magnitude difference between droplets and bubble 

measurements. We hypothesize that the discrepancy is due to the differences in the 

equipment used to measure the agents. Specifically, the Accusizer is not sensitive to objects 

smaller than 500 nm in diameter – although the lower limit of the microbubble distribution 

(Figure 2a) clearly indicates that there must be agents present in this range. This unmeasured 

content suggests the actual concentration in the microbubble samples is likely higher than 

the measurements provide. Additionally, empty vesicles present in the solution as a result of 

the phospholipid preparation may increase the measured concentration to some degree. In 

previous studies, measurements of the pure phospholipid solution showed a small number of 

particles were present on the order of 100 nm (Sheeran et al., 2011a). Future studies are 

needed to determine the degree to which sub-micron concentration measurements are 

skewed by these vesicles. Regardless, these discrepancies highlight inherent challenges in 

measuring nanoscale and microscale distributions in order to compare performance.

In Vitro Verification

Testing within an imaging field measuring 1 cm2 at a depth of 1 cm in a water bath 

maintained at 37°C and containing a concentration of approximately 107 DFB droplets/mL 

demonstrated a correlation between the focal pressures and the sizes of individual 

microbubble clouds generated by droplet activation (Figure 3). At the in vitro imaging and 

activation output settings (see Methods section), vaporization of DFB droplets was not 

observed prior to triggering the focused activation pulses, indicating pressures were low 

enough to eliminate unintended vaporization. This matches previous in vitro measurements 

showing that efficient DFB activation at frequencies near 5 MHz requires pressures on the 

order of 2 MPa or greater (Sheeran et al., 2013a).

During focused activation pulses, the focal zones as well as the maximum peak negative 

pressures achieved within these zones differed depending on the focal depth (Figure 3a) as a 

result of the elevational lens. Accordingly, the sizes of the microbubble clouds differed as a 

function of the focal depth (Figure 3b). Converting the output peak negative pressures to 

Mechanical Index (defined as the PNP in MPa divided by the square root of the center 

frequency in MHz (Apfel and Holland, 2014)), the maximum MI in the imaging state was 

0.3, and the maximum MI in the activation state was 2.1. It is important to note that a 
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mechanical index of 2.1 is higher than the current regulatory limits of diagnostic ultrasound 

output (MI = 1.9). In this study, it is evident that DFB droplets can be activated at ultrasound 

pressures lower than MI = 1.9. For example, in Figure 3b at a focal depth of 0.5 cm, bubble 

clouds are produced at MI = 1.3, although they are much smaller than those produced using 

higher pressures.

Even in this relatively small acoustic field, differences in the shapes of the focal zones and 

associated microbubble clouds can be discerned, demonstrating the consequence of 

electronically steering the focal beam to reach more lateral targets. As depth increases, the 

beam angle produces a slightly rotated bubble cloud. Additionally, the elevational lensing 

results in an increase in the microbubble cloud size with depth. When focused pulses are 

placed sparsely, such as a lateral separation of 6 mm and axial separation of 4.5 mm, 

contrast can be generated in isolated regions with no overlap (Figures 3a and 3b). The 

accumulation of many individual microbubble clouds can fill a region of interest with 

bubbles (Figures 3c and 3d). Differences in the individual microbubble cloud shapes and 

sizes as a function of their location in the acoustic field can be appreciated if the activating 

foci are spaced at 1.2 mm laterally (70% of the measured lateral full-width-half-max) and 

2.1 mm axially (700% of the approximate axial full-width-half-max) (Figure 3c). However, a 

more uniform vaporization field of bubbles can be generated if the activating foci are spaced 

closer at 0.43 mm laterally (25% of the full-width-half-max) and 0.75 mm axially (250% of 

the approximate axial full-width-half-max) (Figure 3d). Although this results in a visually 

confluent region of contrast, it also indicates that the vaporization pulses may be interacting 

with the bubbles produced from previous pulses.

In Vivo Acoustic Parameters

To transition to in vivo verification, a lateral spacing between pulses of 0.85 mm (50% of the 

measured lateral FWHM) and axial spacing of 1.5 mm (500% of the approximate axial 

FWHM) was chosen within the 1.08 cm2 activation region (see Methods section) in order to 

ensure bubble clouds generated from DFB droplets did not overlap significantly and 

minimizing exposure of existing bubbles to the higher energy activation pulses. These 

represent distances in between the spacing presented in Figures 3c and 3d. In our setup using 

a linear array transducer with an elevational lens, the pulse pressures increased with depth up 

to the elevational focus. However, this will not necessarily be the case in vivo, as frequency-

dependent attenuation diminishes the pulse pressure as a function of depth and frequency.

Initial in vivo investigations at the same pulse parameters used for in vitro verification were 

not capable of producing contrast from DFB droplets, although they proved sufficient to 

generate contrast from OFP droplets. In order to counteract tissue attenuation and aberration, 

transducer voltage was increased to 30V for the focused-wave activation state, but the plane-

wave imaging states remained at 18V. In order to estimate the actual in vivo pressures at this 

output voltage, the free-field pressures (see Methods section) were derated by a model 

assuming 3 mm of superficial soft tissue (attenuation coefficient of 0.6 dB/cm at 1 MHz) 

followed by kidney tissue (attenuation coefficient of 1.0 dB/cm at 1 MHz). The attenuation 

coefficients were scaled assuming a frequency dependence of 1.1 (α=α0f1.1) (Bamber, 2005, 

2002; Mast, 2000). With this model, the highest in vivo PNPs during the B-mode and pulse-
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inversion imaging states were 273.7 kPa (MI = 0.09) and 433.1 kPa (MI = 0.14), 

respectively (Table 2). During the focused-wave activation state the PNP was 3.7 MPa (MI = 

1.65) at a depth of 3 mm (the shallowest pulses near the start of the kidney region). At 10 

mm, where the kidney region of most of the test rodents ended, the PNP was 4.2 MPa (MI = 

1.89). The highest PNP was 4.5 MPa (MI = 2.01), occurring at a depth of 8.5 mm. The 

deepest focused pulses in the activation ROI, occurring at 12 mm, produced a PNP of 3.8 

MPa (MI = 1.70). Thus, the majority of the focused pulses occurred at mechanical indices 

below the regulatory limit of 1.9, although the pulses central to the kidney occurred at output 

levels slightly above MI = 1.9 as a result of the elevational focusing lens.

Contrast Enhancement Measurements

Given the differences in the size distributions of the three types of agents as well as the 

reported differences in concentrations, matching doses in a number-matched or volume-

matched manner is not straightforward. Matching the total number of agents per dose does 

not necessarily produce the same number of microbubbles in the imaging region, as droplet 

vaporization is fundamentally stochastic. Matching the volume that PFC occupies in the 

dose does not reflect the different state of microbubbles and PCCAs. To proceed with these 

preliminary in vivo demonstrations, we chose to use a constant aliquot volume from each 

sample, as the differences in concentration between OFP and DFB droplets were not 

statistically significantly. For microbubbles, this same aliquot was chosen with the 

assumption that the actual microbubble concentration was higher than reported (due to the 

differences in particle sizing equipment), and with the assumption that a higher droplet 

concentration may compensate for droplet-to-bubble conversion rate less than 100%.

With these experimental choices, contrast produced from microbubbles, DFB droplets, and 

OFP droplets was easily captured. For tests involving bubbles (no activation pulse), very 

little contrast signal (due to artifact) was present prior to injection (Figure 4). After injection, 

the relatively high dose of bubbles created a strong contrast signal that diminished at each 

time point until no contrast enhancement was observed (typically between minutes 11 and 

15). Similar to the microbubble tests, very little signal was present within the kidneys prior 

to PCCA injection (Figure 4). After injection of DFB droplets the kidneys produced similar 

contrast to the agent-free baseline, indicating agents were still in the liquid state and that 

few, if any, bubbles were present due to spontaneously vaporized droplets. OFP droplets, 

however, produced some ‘flashing’ contrast after injection during the pre-activation imaging 

sequences, indicating either spontaneous vaporization to bubbles while in circulation or 

activation of OFP droplets by imaging pulse pressures (see further discussion below). After 

the vaporization sequence was triggered at 1 minute post-injection, a high degree of contrast 

was present in the kidney for both DFB and OFP (Figure 4). DFB droplets created a distinct 

spatial pattern due to the spacing between the individual vaporization pulses. Subsequent 

imaging/activation sequences for DFB every 3 minutes up to the final time point at 19 

minutes showed a similar spatial pattern with a gradual decrease in the amount of contrast 

produced. For tests with OFP droplets, a high degree of uniform contrast was present 

throughout the kidney after the activation pulse was delivered. No spatial patterning was 

present, indicating a much higher degree of activation and bubble formation. In fact, at early 
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time points, the contrast present within the kidney was high enough to cause shadowing deep 

within the kidney that brightened as contrast washed out of the upper imaging plane.

Measuring contrast produced by the microbubble injections inside the ROI produced a 

steady level of contrast enhancement in the 1 second captures at each time point. Droplets, 

on the other hand, produced a distinct wash-out phase as the newly generated contrast 

diffused out of the imaging plane and into the rest of the kidney and circulatory system over 

the 10 to 20 seconds following the activation sequence. Characterizing the contrast 

enhancement relative to the agent-free baseline for all frames of the video capture produced 

a contrast wash-out curve at each major time point (Figure 5). Repeating this measurement 

at each major time point allows assessment of the change in the level of activation over time, 

which is directly related to the decay and clearance of the non-activated agents remaining in 

circulation. In these contrast wash-out curves, breathing motion manifests as dramatic drops 

in the measured value, as breathing causes translation into a neighboring imaging plane 

where fewer bubbles exist. In Figure 5, breathing motion artifacts have been manually 

removed to increase clarity.

Grouping the contrast enhancement results for each animal by agent type allows for further 

analysis illustrating the fundamental difference in the behavior of the agents. The maximum 

contrast present in animals prior to microbubble injection (N = 6) (representing the ‘noisiest’ 

frame in the agent-free video capture) was 0.19 ± 0.10 dB. After injection, microbubbles 

produced a high degree of initial contrast, with a mean value of 12.63 ± 3.64 dB at the 1 

minute time point (Figure 6a). Over the next 10 minutes, the contrast decayed quickly and 

returned to baseline levels by the 13 to 15 minute time points.

For the droplet groups, the pre-injection measurements were similar to the microbubble test 

group, with noise in the measurement on the order of less than 1 dB (Figure 6b). After the 

activation sequence, animals in the DFB test group (N = 7) produced a mean contrast 

enhancement at 1 minute post-injection of 7.29 ± 3.65 dB over the agent-free baseline. At 

each sequential time point, the ‘on-demand’ contrast from the activation sequence gradually 

decreased in magnitude, producing a mean contrast enhancement of 2.27 ± 0.92 dB at the 19 

minute mark that could be easily observed in the video sequence. In comparison to DFB 

droplets and microbubbles, activated OFP droplets produced a high initial contrast 

enhancement, with a mean value of 18.24 ± 3.14 dB at 1 minute post-injection. Similar to 

microbubbles, OFP contrast generated from each activation sequence decayed rapidly over 

the course of 19 minutes. At the 13 minute post-injection time point, contrast produced by 

OFP had a lower mean value (2.24 ± 1.19 dB) than DFB (3.49 ± 1.78 dB), suggesting the 

concentration in the bloodstream diminished much more rapidly than DFB. This matches 

prior in vitro experiments demonstrating relatively poor thermal stability of OFP droplets at 

37°C (Sheeran et al., 2012).

In all three agent types, the range of values in each group at early time points was high, 

likely due to differences in attenuation and aberration from animal to animal. These effects 

not only limit brightness of the contrast captured, but also diminish the ability to produce 

droplet vaporization at depth. In several of the DFB test cases, the appearance of the contrast 

varied spatially throughout the kidney, with high activation in the axial line central to the 
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transducer and reduced activation in the left and right extremities of the kidney. In most 

cases, these reduced regions of activation corresponded with visible acoustic shadowing 

from upper layers – highlighting the importance of coupling the transducer to the skin as 

well as possible for PCCA contrast studies.

To arrive at the contrast enhancement values in Figure 6, measurements were normalized to 

the mean value of the agent-free baseline images rather than the pre-activation images 

collected just before application of the vaporization sequence. This choice was based on 

preliminary studies showing that the pre-activation measurement of OFP agents was 

influenced by droplet vaporization (Figure 4 and 5b). Thus, normalizing to the pre-activation 

mean value would have the effect of under-reporting the actual contrast generated by OFP 

particles at early time points. As a result of this choice, it is possible for a systematic shift in 

the measurements to occur. It was noticed during testing that the mean value of the pre-

activation images at later time points post-injection did not always match the agent-free 

baseline. For example, while the agent-free baseline had a zero-mean value, at the 19 minute 

mark the pre-activation images of both DFB and OFP had a mean value on the order of 0.5 

dB (Figure 7a). In the agent-free baseline, the maximum ‘noise’ in the contrast measurement 

(the maximum value of the tissue signal in any frame compared to the mean of all frames) 

was 0.22 ± 0.08 dB for DFB and 0.22 ± 0.13 dB for OFP. At the 19 minute mark, this 

increased to a value of 0.44 ± 0.20 dB for DFB and 0.82 ± 0.33 dB for OFP (Figure 7b). 

Although this type of systematic shift could result from circulating microbubbles created by 

previous vaporization pulses, the small fraction of bubbles created by each sequence relative 

to the total blood volume, along with the short circulation time of the microbubbles suggests 

this is unlikely. Visually, the pre-activation captures at these later time points have the 

appearance of being completely free of contrast agents. We therefore hypothesize that this is 

a result of slight shifts in the imaging plane accumulating due to breathing motion over the 

test period. At the beginning of tests, the transducer was aligned with the most anechoic 

plane of the kidney, and so any shifts from this plane would result in a general increase in 

the mean tissue signal.

This bias in the measurements complicates the assessment of contrast enhancement in that 

the maximum dB level produced at each time point may not actually indicate an increase in 

contrast as a result of the vaporization pulses. Comparing the contrast produced in the 10 

frames just prior to activation with the 10 frames following activation statistically (student’s 

two-sided paired t-test) correlates well with visual assessment of whether an increase in 

contrast was produced by the sequence. For DFB, all 7 test subjects had a statistically 

significant increase in contrast at the 19 minute time point, indicating viable droplets were 

still present in circulation. For OFP, all subjects had a significant increase in contrast at 

minutes 1 through 10. However, the number of animals with increases in the contrast 

measurement dropped to only 3 out of 6 by the 16 minute mark, and 2 out of 6 by the 19 

minute mark. This highlights the difference in stability between choices of PFC: at the last 

time point tested, new contrast was being generated in all animals given DFB droplets, while 

OFP droplets had cleared from circulation in the majority of animals.

Figure 7b also shows important aspects of OFP performance at early time points. Due to the 

low vaporization thresholds of OFP and relative thermal instability, contrast is produced 
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even during the pre-activation imaging, manifesting as bright, temporary ‘flashes’ in the 

videos (Figure 4). This appears as spikes in the pre-activation contrast measurements (Figure 

5b). This may be due to a combination of spontaneously vaporized droplets as well as 

droplet vaporization due to the pressure of the imaging pulses. In previous in vitro studies, 

the vaporization threshold of microscale OFP droplets exposed to 8 MHz, 2 cycle pulses 

proved to be at peak negative pressures on the order of 0.5 MPa (Sheeran et al., 2012). Here, 

the imaging state reached estimated peak negative pressures in the tissue of 424.2 kPa, and 

so we hypothesize that this effect is primarily due to imaging pulses that exceed the 

vaporization threshold of large outlier droplets still in circulation at early time points. This is 

consistent with preliminary studies using lower imaging pressures, where OFP ‘flashing’ 

was not observed.

Half-life Measurements

By normalizing the contrast enhancement data to the maximum value, the circulation half-

life can be calculated with a mono-exponential fit described in Eq. #1 (Figure 8). Using this 

analysis, microbubbles had a mean decay rate of 0.22 ± 0.02 min−1, producing a mean 

circulation half-life of 3.26 ± 0.37 min. The minimum and maximum half-lives in the group 

were 2.77 min and 3.83 min, respectively. OFP droplets produced similar measurements as 

microbubbles, with a mean decay rate of 0.20 ± 0.06 min−1. The mean half-life of the group 

was 3.67 ± 0.37 min, with minimum and maximum half-lives in the group of 2.43 min and 

5.51 min, respectively. OFP half-lives were not statistically significantly different compared 

to the half-lives of the microbubble group (p = 0.4, student’s two-tailed t-test). DFB 

droplets, while initially showing lower contrast than the other two types of particles at the 1 

minute time point, produced a significantly slower mean decay rate of 0.07 ± 0.01 min−1. 

The mean half-life of the group was 10.84 ± 1.63 min, with minimum and maximum half-

lives in the group of 8.07 min and 13.02 min, respectively. DFB half-lives were statistically 

significantly different compared to both microbubbles and OFP droplets (p << 0.01).

Percentage of Kidney Filled

Up to this point, all analysis has been based on the mean value of an ROI placed in the area 

of highest contrast within the kidney, but analyzing the contrast production by other 

approaches further illustrates the differences between agents. One possibility is to calculate 

the percentage of pixels in the kidney as a whole that have exceeded a threshold defined by 

the agent-free case. This measurement takes into account spatial coverage of the contrast 

rather than overall intensity. Analyzing the data by this process with a pixel threshold of 3 

standard deviations above the mean of the agent-free baseline further reveals differences in 

performance between DFB, OFP, and microbubbles (Figure 9). Circulating microbubbles 

produced a mean of 45.11 ± 7.88 percent filled, while OFP produced a higher mean of 49.62 

± 5.97 percent filled compared to microbubbles (p = 0.19). DFB, though affording longer 

circulation time, produces a significantly lower mean of 15.69 ± 8.4 percent filled compared 

to both microbubbles and OFP droplets (p << 0.01). These data demonstrate that the contrast 

produced from phase-change agents can create more complete coverage of the target organ 

(OFP) or less (DFB) compared to microbubbles, depending on PCCA formulation, 

concentration, and activation pulse settings. Although not explored in depth here, this 
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method also allows characterizing microbubble wash-out curves and droplet half-life 

clearance.

Discussion

Wash-out Measurements

One unexpected aspect of the wash-out curves captured in this study (Figure 5) is the 

appearance of two distinct phases. In the first phase, typically occurring in the first second 

following the vaporization sequence, the contrast within the ROI increases until it reaches a 

maximal value within 1 to 2 dB of the initial value. This increase may be partly due to 

contrast spreading from the spatial location of the peak pressures into neighboring regions. It 

may also be a result of bubble growth shortly after vaporization due to intake of ambient 

gases dissolved in the bloodstream (Kripfgans et al., 2000; Sheeran et al., 2011a, 2011b; 

Shpak et al., 2013). In the second phase, the contrast decays exponentially as it washes out 

of the imaging plane and into the rest of the bloodstream. The mechanisms that create this 

two-phase behavior require further investigation.

The exponential decay portion of these contrast curves affords a unique possibility to 

measure a wash-out rate of the vascular network in the imaging plane. Because contrast can 

be generated ‘on-demand’ with PCCAs and monitored in real-time, the clearance rate can be 

captured and used as an indication of perfusion. This is similar in concept to the destruction-

replenishment curves gathered in microbubble-enhanced ultrasound that have been utilized 

to measure tissue perfusion (Quaia, 2011; Wei et al., 1998). In destruction-replenishment, 

pressures near the current upper limit of diagnostic ultrasound are used to destroy the 

microbubbles in the imaging plane, followed by lower imaging pressures to capture contrast 

reperfusion. Conversely, with a PCCA sequence high pressures are used to generate contrast 

in the imaging plane rather than destroy it, and lower pressures used to capture wash-out 

rather than reperfusion.

As a simple demonstration, the wash-out curves produced 1 minute post-injection for DFB 

and OFP were fitted with the mono-exponential described in Eq. #2. The DFB group 

produced a mean wash-out rate of 0.17 ± 0.04 sec−1, while OFP produced a mean rate of 

0.13 ± 0.03 sec−1. The clearance rates of the two different agents were nearly statistically 

significant compared to each other (p = 0.08), which may be as a result of the differences in 

the droplet distributions. As DFB droplets are more thermally stable than OFP, it may be that 

large outlier droplets are present during activation and take longer to clear compared to OFP. 

Future studies are needed to compare clearance rate as a function of dose, pulse pressures, 

droplet size distribution, and droplet boiling point to determine possible sources of these 

differences. For instance, increased pressures and/or choosing droplets with lower 

vaporization thresholds increases the extent of vaporization in the elevational dimension as 

well, which may change the measured wash-out rate.

Although the wash-out characteristics here were captured after a single activation sequence 

spanning the entire region of interest and with similar droplet size distributions, there are 

many implementations that could be explored in future studies. Beyond measuring 

differences in perfusion as a function of droplet size, one could create sparse pockets (i.e. 
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from single pulses) at desired locations and measure the dissipation as an indication of the 

underlying vasculature. This differs fundamentally from microbubble destruction-

replenishment approaches, where microbubbles in the entire imaging volume are destroyed 

and the measurement depends on the re-perfusion from all neighboring vascularized tissue. 

It may be much simpler to apply PCCA wash-out measurements to 3D imaging than 

destruction-replenishment, since a single bolus could be created in the center of the volume 

of interest and then be tracked as it dissipates. In larger vessels, PCCAs could be vaporized 

upstream using electronic steering and the microbubble bolus tracked as it passes a target 

site - allowing measurement of both flow velocity and flow dynamics. This may be a very 

desirable approach to theranostic applications, such as targeted clot break-up - where a site 

is evaluated using PCCA perfusion and then treated.

Finally, it is worth noting that in microbubble destruction-replenishment, pressures 

necessarily must be high enough to cause bubble collapse and signal extinction. In PCCA 

wash-out curves, however, high pressures are not necessarily required to generate contrast 

and monitor the wash-out because it is not a requirement to destroy the contrast agents. The 

pressure and pulse spacing used here are not optimized for OFP, and it may be possible to 

accomplish these measurements with significantly less energy delivered into tissue. 

Furthermore, refinements in droplet properties (size distribution, vaporization thresholds) 

and dosing may produce a balance that minimizes interaction with vasculature.

Limitations and Future Directions

Adverse Reaction Monitoring—In these studies, no animals displayed visible 

symptoms of distress or breathing difficulties during the tests or in the post-test monitoring 

(typically 1 – 2 hours following regaining of consciousness). This suggests the bolus doses 

were well tolerated, although further dose dependence tests that include cardiac monitoring 

are needed. As a whole, few dose dependence studies are available for PCCAs – especially 

at nanoscale sizes. In a study with microscale PFC droplets, Zhang et al. observed 

respiratory distress and blood chemistry changes in a canine model at doses of 2×109 

droplets/kg, and a dose of 3×109 droplets/kg (total PFC dose of 0.2 g/kg) was fatal to the 

animals (Zhang et al., 2011). Here, much higher doses were administered to the rodents per 

kg – 5.55×1010 droplets/kg for DFB droplets and 1.22×1011 droplets/kg for OFP droplets, 

but the size distributions an order of magnitude smaller in diameter produced a substantially 

lower total PFC dose of approximately 2.12×10−4 g/kg for DFB droplets and 3.75×10−4 g/kg 

for OFP droplets.

One of the most important aspects of PCCA vaporization is the possibility of bioeffects to 

the surrounding vascular network and tissue (Samuel et al., 2012). This may be desirable in 

some applications of drug delivery and tissue ablation. However, for the purposes of 

diagnostic/molecular imaging minimal interaction with tissue is vital. Studies are ongoing to 

assess damage from vaporization of volatile PCCAs and determine the dependence on 

droplet formulation, size distribution, and pulse parameters.

Influence of Activation on Half-Life Measurements—One aspect that is not well-

understood is to what degree the activation of PCCAs at each time point influences future 
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measurements. We have assumed in this study that the activation/imaging plane of the 

kidney represents a small fraction of the overall blood space that PCCAs occupy. However, 

it is possible that the actual contrast half-lives are higher than measured here due to the fact 

that each activation sequence removes a fraction of the viable droplets. Regardless, the 

results demonstrate that PCCAs generally have longer circulation properties than 

microbubbles. Even the most volatile PCCA explored in literature to date - OFP droplets 

(PFC boiling point of −36.7°C) - exhibited a virtually identical clearance rate to 

microbubbles, while DFB droplets had more than three times the measured contrast half-life 

that microbubbles exhibited. This study also demonstrates that PCCAs at relatively similar 

doses can produce similar contrast properties as clinical microbubble formulations, which 

matches previous studies exploring the acoustic properties of bubbles produced from PCCAs 

(Reznik et al., 2014).

Future Implementation—In this preliminary in vivo demonstration of PCCA contrast 

production, a plane-wave approach to imaging was chosen to facilitate speed in imaging and 

data transfer. In early studies, plane wave transmits allowed investigation of the period 

following activation on a short timescale (frame rates near 1 kHz) – but it was found that the 

wash-out kinetics allowed a much slower frame rate to sufficiently capture contrast wash-

out. The final frame rate chosen (10 Hz) leaves much room to improve the imaging quality 

by developing a focused-wave imaging approach. This may allow better visualization of the 

unique contrast properties of PCCAs and how they depend on the underlying vascular 

structure.

It is worth noting that portions of this study (free imaging for alignment and breathing 

motion monitoring) were captured and displayed in real-time on the Verasonics hardware, 

but that the actual data captures were not displayed in real-time. This was primarily due to 

the ultimate intent of offline analysis. However, real-time implementation of the entire 

sequence could be accomplished easily on the Verasonics with simple changes to the scripts 

- allowing one to trigger vaporization and visually monitor the contrast enhancement. This is 

conceptually very similar to microbubble destruction-replenishment sequences (except for 

the activation sequence design), which are currently implemented on pre-clinical and clinical 

scanners. The measured clearance in the rodent kidney in this study suggests that imaging 

rates as low as 10 Hz are sufficient to capture the contrast dynamics of these formulations, 

which is well within the capabilities of current systems for both plane wave and focused 

imaging approaches.

The performance of the two different PCCA formulations was compared with set imaging 

and activation parameters in order to evaluate relative differences when the same acoustic 

settings are chosen. In reality, the pulse sequence should be designed around formulation 

and intended use (therapeutic vs. diagnostic) of the PCCA. Some of these considerations are 

highlighted in a recently published investigation performed in parallel to this one (Puett et 

al., 2014). Here, the acoustic choices resulted in over-activation and unintended vaporization 

during imaging for OFP droplets, and under-activation of DFB droplets as a result of the 

drastic differences in droplet boiling point. For OFP, future sequences will require lower 

imaging pressures and adjustment of pulse pressure and spacing, whereas for DFB it is 

likely that higher pressures can be used on imaging and activation (or, alternatively, closer 
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activation pulse spacing). Because of elevational focusing from the transducer used, the peak 

negative pressures varied highly with depth. This resulted in activation pulses that were 

lower than the regulatory limits (MI = 1.9) as well as some that exceeded these limits. It is 

evident from the images both in vitro (Figure 3) and in vivo (Figure 4) that activation of 

DFB and OFP can be accomplished at PNPs below these limits – as contrast is produced at 

superficial locations where the measured pressures do not exceed these limits. This is 

consistent with previous in vitro studies showing that DFB droplets can be activated 

optimally with short pulses that do not exceed MI = 1.9 (Sheeran et al., 2013a). In future 

studies, implementing the entire pulse sequence within regulatory limits might be 

accomplished by using 1.5 or 2D arrays, or by simply adjusting the output pressure as a 

function of axial depth through transmit apodization or output voltage.

Conclusions

In this study, we have demonstrated that custom imaging and activation sequences can be 

developed to produce and capture contrast from perfluorocarbon phase-change contrast 

agents in vivo. These sequences allow for new perfusion measurements based on 

microbubble wash-out as well as providing a tool for measuring and optimizing the in vivo 
performance of PCCAs as a function of formulation. PCCA-based contrast-enhanced 

imaging may open the possibility of new diagnostic and theranostic applications based on 

PCCA technology.
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Figure 1. 
Imaging and activation sequence. A free imaging state was used to monitor the breathing 

cycle prior to a manually triggered transition to the pre-activation imaging state. Pre-

activation imaging was followed by a return to the free imaging state. After alignment with 

the breathing cycle, a transition to the activation sequence was manually triggered. A period 

of post-activation imaging immediately followed the activation sequence. In these studies, 

images were reconstructed offline after all imaging and data transfer was complete.
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Figure 2. 
Representative distributions of contrast agents used in this study. A) DFB microbubbles had 

a mean diameter of 1.00 ± 0.89 µm and a mode size of 0.62 µm. B) Droplets created by 

condensing DFB and OFP microbubbles produced sub-micron distributions. DFB droplets 

had a mean diameter 166 ± 59 nm and a mode of 141 nm, while OFP droplets had a smaller 

mean diameter of 154 ± 64 nm and a mode of 110 nm.
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Figure 3. 
In Vitro activation of DFB droplets. Changes in the magnitude and geometry of the pressure 

focal zones (A) and corresponding microbubble clouds (B) at nine focal locations occur as a 

result of electronically steering the activation pulses. A region of interest can be filled with 

bubbles by the accumulation of discrete microbubble clouds (C). Spacing the focal locations 

closer results in a more uniform field of bubbles (D).
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Figure 4. 
Example overlays of B-mode (grey scale) ultrasound scans and contrast-specific pulse-

inversion scans (green scale) for each contrast agent tested. In all images, the pulse-inversion 

scans have been manually cropped to the borders of the kidney region to illustrate 

differences in signal within the kidney. The first column displays the agent-free case (pre-

injection), and the second column corresponds to the pre-activation imaging (after injection 

but before activation). DFB droplets produced no significant increase in contrast after 

injection, but once activated exhibited a ‘patterned’ contrast appearance with lower mean 

contrast compared to microbubbles. OFP droplets, in comparison, exhibited some ‘flashing’ 

in the pre-activation state as a result of unwanted activation, and generated uniform contrast 

with a higher mean value than microbubbles after the activation sequence. The level of OFP 

activation was high enough to produce shadowing deep within the kidney at early time 

points.
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Figure 5. 
Examples of contrast measurements taken for individual animals administered A) DFB and 

B) OFP droplets. The mean value of the contrast enhancement increased over a short period 

following the vaporization pulse and then decreased as agents washed out of the kidney 

imaging plane. For OFP droplets, spikes in the 1 minute pre-activation capture are visible 

caused by unwanted vaporization.
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Figure 6. 
Maximum dB enhancement relative to the mean of the agent-free baseline for A) 

microbubbles after injection and B) droplets after application of a vaporization sequence. 

The mean signal within the manually placed ROI showed that microbubbles produced a high 

degree of contrast initially that cleared by the 15 minute mark. Contrast generated by 

activation of OFP was initially greater than DFB and microbubbles, but decayed more 

rapidly than DFB due to droplet instability. Contrast generation variability in the early time 

points is largely due to animal-to-animal differences in attenuation and aberration.
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Figure 7. 
Change in dB enhancement relative to the mean of the agent-free baseline. A) Initially, the 

pre-activation signal value is zero-mean, but shifts upward on the order of 0.5 dB over the 

test period. Similarly, B) the maximum value produced in the video sequence shifts on the 

order of 0.5 to 1 dB during the test period. It is expected that these changes are due to 

accumulated shifts in animal positioning over the period. Also visible in A) and B) is the 

high contrast produced by unwanted activation of OFP droplets at the 1 minute time point.
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Figure 8. 
Maximum contrast enhancement over the mean of the agent-free baseline normalized to the 

maximum value produced by each animal for A) microbubbles and B) droplets. DFB 

decayed at a significantly slower rate than OFP and microbubbles, resulting in contrast 

production half-lives on the order of 3-fold longer than microbubbles and OFP droplets. 

Shown in solid lines are the exponential curve fits to the grouped data, with 95% confidence 

intervals in dashed lines.
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Figure 9. 
Calculated percentage of kidney pixels exceeding the agent-free baseline threshold value for 

the different contrast agents at the 1 minute time point. Contrast generated by the activation 

of OFP filled a greater percentage of the kidney than a microbubble injection, while 

activation of DFB droplets produced an irregular contrast generation pattern and filled less 

of the kidney.
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Table 2

In vivo pressure estimations based on a simple tissue attenuation model.

Estimated In Vivo Imaging Pressures

State

Max PNP
Axial

Location
(cm)

Maximum
PNP Value

(MPa) Mechanical
Index

B-mode 0.50 0.27 0.09

Pulse Inversion 0.50 0.43 0.14

Estimated In Vivo Activation Pressures

Description Axial Location (cm) PNP Value (MPa) Mechanical Index

Start of Kidney 0.30 3.70 1.65

Maximum PNP 0.85 4.50 2.01

End of Kidney 1.00 4.20 1.89

End of Activation ROI 1.20 3.80 1.70
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