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Abstract Proteome homeostasis, or proteostasis, is essen-

tial to maintain cellular fitness and its disturbance is

associated with a broad range of human health conditions

and diseases. Cells are constantly challenged by various

extrinsic and intrinsic insults, which perturb cellular pro-

teostasis and provoke proteotoxic stress. To counter

proteomic perturbations and preserve proteostasis, cells

mobilize the proteotoxic stress response (PSR), an evolu-

tionarily conserved transcriptional program mediated by

heat shock factor 1 (HSF1). The HSF1-mediated PSR

guards the proteome against misfolding and aggregation. In

addition to proteotoxic stress, emerging studies reveal that

this proteostatic mechanism also responds to cellular

energy state. This regulation is mediated by the key cel-

lular metabolic sensor AMP-activated protein kinase

(AMPK). In this review, we present an overview of the

maintenance of proteostasis by HSF1, the metabolic reg-

ulation of the PSR, particularly focusing on AMPK, and

their implications in the two major age-related diseases—

diabetes mellitus and neurodegenerative disorders.
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PSR Proteotoxic stress response

STZ Streptozotocin

SUMO Small ubiquitin-like modifier

Introduction

Under a variety of environment stressors, it is imperative

for cells to sustain the internal homeostasis to maintain

normal cellular functions. Such stressors include heat

shock, heavy metals, acidosis, oxidants, and metabolic

poisons. Environmental insults perturb cellular proteome

homeostasis, or proteostasis, triggering the heat-shock

response (HSR) or proteotoxic stress response (PSR).

Cellular proteostasis refers to the delicate, dynamic equi-

librium among protein synthesis, folding, and degradation

inside cells. Proteotoxic stressors often cause cellular

protein damage or conformational changes, leading to

protein misfolding. As a means to counter this disturbance

and maintain proteostasis, cells markedly produce a group

of specialized proteins, named heat-shock proteins (HSPs)

or molecular chaperons. The induction of HSPs by pro-

teotoxic stressors, a hallmark of the PSR [1, 2], is

transcriptionally regulated by heat shock factors (HSFs),

which recognize the heat shock elements (HSEs) located at

the promoter regions of HSP genes [3]. In eukaryotes

except avian cells, HSF1 has been shown as the master

inducer of HSP transcription. In the absence of stress

stimuli, HSF1 remains inactive and becomes readily acti-

vated upon stress [4].

Metabolic disturbances, including glucose deprivation,

hypoxia, ischemia, and metabolic poisons, interfere with

mitochondrial production of ATP and provoke metabolic

stress. By contrast, growth factors stimulate glucose

metabolism to generate ATP and therefore suppress

metabolic stress [5, 6]. Impaired glucose metabolism leads

to diminished ATP generation and limited biosynthetic

precursors, including nucleic acids and fatty acids, which

are crucial to cellular growth and homeostasis [7, 8].

Regulation of cellular metabolism by the key energy sensor

AMP-activated protein kinase (AMPK) has proven crucial

in preserving energy homeostasis, thereby maintaining

normal cellular functions for survival of metabolic stress.

Aberrant metabolic regulations have been implicated in

various human diseases including metabolic syndrome,

cancer, and neurodegeneration [9–11]. Like other anabolic

processes, chaperone-mediated protein folding also con-

sumes ATP [12, 13]; unsurprisingly, protein misfolding

occurs under metabolic stress [1, 14, 15]. Nonetheless,

little is known of how metabolic stress impacts protein

folding and proteostasis specifically. In this review, we

particularly focus on the metabolic regulation of the PSR,

through the newly discovered AMPK-HSF1 interactions,

and its important implications in both diabetes mellitus

(DM) and neurodegenerative disorders.

Heat shock factors (HSFs) and the proteotoxic
stress response (PSR)

Maintenance of proteostasis is essential for cell survival

under proteotoxic stress. The PSR is a well-characterized

molecular mechanism through which chaperones are

markedly induced in response to proteotoxic stress to

preserve cellular proteostasis. Numerous studies have

conclusively indicated that the cellular chaperone network

plays a pivotal role in maintaining protein stability, pro-

tecting proteins from misfolding and aggregation,

regulating assembly of protein complexes, and promoting

protein complex translocation [16–18]. The primary tran-

scription factors initiating the PSR are heat shock factors

(HSFs). In mammals the HSF family consists of nine

members, which exhibit differential functions in regulating

cellular proteostasis [19]. Among this family, HSF1 is the

master factor controlling the powerful transcriptional

response to heat and other proteotoxic stressors [20]. In

most tissues HSF1 is constitutively expressed but remains

inactive under non-stress conditions. In the absence of

stress, HSF1 exists as monomers that are repressed by a

protein complex comprising HSPs and co-chaperones in

the cytoplasm. Upon challenged by stressors, including

heat shock, heavy metals and proteosome inhibitors, HSF1

is released from this inhibitory complex and converted

from monomers into trimers with DNA-binding capability.

Subsequently, HSF1 timers become phosphorylated,

undergo nuclear translocation, and ultimately bind to the

heat-shock element (HSE) sequences within the promoters

of many HSP genes [21]. This multi-step process of HSF1

activation results in a markedly increased cellular chaper-

oning capacity to effectively counter proteotoxic stress.

HSF family

Thus far, nine HSF family members—HSF1, 2, 3, 4, 5, X1,

X2, Y1, and Y2, have been identified in mammalian cells.

Despite many common features, they differ considerably in

post-translational modifications, interactions with other

proteins, and tissue expression patterns [22, 23]. All HSFs

contain the highly conserved N-terminal DNA-binding

domain (DBD), a looped helix-turn-helix structure [24, 25].

Upon activation, HSF1 trimers bind to HSEs that consist of

several inverted repeats of the pentanucleotide motif

nGAAn. Upon withdrawal of stress or under a prolonged

stress, the transcriptional activity of HSF1 is attenuated

while HSF1 returns to the monomeric state [26]. The

4232 K.-H. Su, C. Dai

123



domain immediately adjacent to the DBD contains

hydrophobic heptad repeats (HR-A and HR-B), which

mediate HSF1 trimerization. By contrast, the near C-ter-

minal HR-C domain is thought to constrain HSF1

trimerization [27, 28]. The C-terminal transactivation

domain is necessary for the transcription of target genes

[29, 30]. In addition, the regulatory domain (RD), located

between the HR-A/B and HR-C domain, is responsible for

suppressing HSF1 activity under non-stress condition.

Intriguingly, the RD domain of HSF1 can act as an intrinsic

sensor for heat stress [31], and be targeted by various post-

translational modifications [32, 33]. The PSR, triggered by

diverse environmental stressors, induces the expression of

several classes of molecular chaperones or HSPs, including

HSP27, HSP72, and HSP90a. By facilitating the folding,

transportation, assembly, and degradation of other proteins,

HSPs protect the proteome from the danger of misfolding

and aggregation. Therefore, under proteotoxic stress HSPs

are essential to proteostasis and cell survival.

In mammals, HSF1, the prototype of HSFs, acts as the

master regulator of the PSR. Embryonic fibroblasts derived

from Hsf1-deficient mice display no stress-induced Hsp

gene transcription [34], indicating the total necessity of

HSF1 for the PSR. However, HSF2 can also participate in

the PSR through formation of heterotrimers with HSF1

[35–37]. Interestingly, it has been reported that HSF2

maintains the HSP70 gene locus epigenetically at a de-

condensed chromatin state [37, 38]. In mitotic cells, inhi-

bition of the binding of HSF2 to the hsp70i promoter

promotes cell survival of stress [39]. Congruently, down-

regulation of HSF2 promotes the binding of both HSF1 and

RNA polymerase II to mitotic chromatins, thereby

enhancing stress-induced HSP70 expression [40]. More-

over, HSF4 could also interact with HSF1 to recruit the

chromatin remodeling complex SWI/SNF to stress-related

genes [41]. By contrast, HSF3, albeit expressed in mice,

does not regulate Hsp gene expression [22, 42, 43].

Despite dispensable for the PSR, accumulating evidence

indicates that HSF2, HSF3, and HSF4 all have important

biological functions. For example, HSF2 is required for

normal spermatogenesis [44], and HSF3 regulates the

expression of genes during chicken embryonic develop-

ment [45]. Distinct from HSF2 and HSF3, HSF4 is required

for the development of lens [46, 47]. Although HSP genes

have been long regarded as the primary transcriptional

targets of HSF1, emerging evidence reveals that HSF1 also

regulates the expression of numerous non-HSP genes

involved in the development and maintenance of brain,

germ cells, and immune cells [47–49]. In stark contrast to

HSF1, 2, 3, and 4, all of which bind to DNA, the biological

functions of HSF5 and sex chromosome-linked HSFX1,

X2, Y1, and Y2 still remain largely unknown.

Regulation of HSF1

Activation of HSF1 is a complex, multi-step process,

wherein post-translational modifications, including phos-

phorylation, sumoylation, and acetylation, play a key role.

Following exposure to heat, HSF1 trimers are heavily

phosphorylated. At least 12 phosphorylation sites, either

stimulatory or inhibitory, have been recognized on HSF1

[20, 50]. For example, phosphorylation at Ser326 is critical

to HSF1 activation by heat stress [51]. Phosphorylation at

Ser230 by Ca2?/calmodulin-dependent protein kinase II

(CaMKII) and phosphorylation at Ser320 by protein kinase

A (PKA) also induce HSF1 activation [52, 53]. By contrast,

phosphorylation at Ser307 by ERK and Ser303 by glyco-

gen synthase kinase 3 (GSK3) repress HSF1 activity under

non-stress conditions [54]. Recently, phosphorylation at

Ser121 by AMPK was shown to inhibit HSF1 activation

[55]. Furthermore, through AMPK activation, the meta-

bolic stressor metformin induces Ser121 phosphorylation

and thereby impairs the DNA-binding activity of HSF1

[55] (Fig. 1). Importantly, emerging evidence has uncov-

ered that key oncogenic and tumor-suppressing signaling

pathways intimately regulate HSF1. For example, the well-

known tumor suppressor neurofibromatosis type I (NF1)

negatively regulates HSF1 and its mediated PSR [56]. Loss

of NF1 alone suffices to activate HSF1 through hyper-ac-

tivation of oncogenic RAS/MAPK signaling [56]. In light

of the important role of RAS/MAPK signaling in activating

HSF1, surprisingly, it is MEK, rather than ERK, that

mediates HSF1 activation by directly phosphorylating

Ser326 [57]. Ser326 phosphorylation is crucial to the

nuclear translocation, DNA binding, as well as stability of

HSF1 [57]. Congruently, clinically relevant MEK inhibi-

tors inactivate and deplete HSF1, provoking global protein

destabilization and ubiquitination, aggregation, and amy-

loidogenesis in human melanoma cells, similarly to HSF1

knockdown [57]. Given that hyper-activation of the RAS/

MAPK signaling cascade occurs in one-third of all human

cancers [58], it is not surprising that constitutive HSF1

activation is widespread in human malignancies and of

significant prognostic value [59].

Sumoylation also plays a notable role in regulating

HSF1 activity. For example, phosphorylation at Ser303

leads to sumoylation at Lys298 on HSF1, thereby sup-

pressing its transcriptional activity [60, 61]. Moreover,

sumoylation could mediate protein–protein interactions by

providing a docking site for proteins containing small

ubiquitin-like modifier (SUMO)-interacting motif [62, 63].

Another modification influencing HSF1 is acetylation.

Acetylation at Lys80 causes HSF1 dissociation from chro-

matins and subsequently diminishes HSF1 activity [64].

Interestingly, sirtuin 1 (SIRT1) serves as a deacetylase for
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HSF1 at Lys80 and thereby maintains the DNA-binding

competent state of HSF1 [64]. Acetylation of HSF1 is

enhanced by pharmacological inhibition of SIRT1 and

reduced by overexpression of SIRT1, respectively [64]. In

contrast to impaired DNA binding, acetylation enhances the

stability of HSF1 proteins. By acetylating multiple lysine

residues, the acetyltransferase p300 protects HSF1 from

proteasome-mediated degradation [65].

Protein–protein interactions, in addition to post-transla-

tional modifications, regulate HSF1 as well. For example,

HSF1 is repressed by its own transcriptional targets HSPs,

thereby not only maintaining HSF1 at the inactive state

under non-stress conditions but also constituting a negative

feedback mechanism to attenuate HSF1 activity during

stress recovery [66]. In support of this, HSP90-HSF1

interactions mitigate the translocation of HSF1 into the

nucleus and impair HSP72 induction by hyperthermia in

the rat myocardial infraction model [67]. By contrast,

ATF1-HSF1 interactions recruit the chromatin-remodeling

factor BRG1 and histone acetyltransferases, both p300 and

CREB-binding protein (CBP), to assemble a potent HSF1

transcription complex [68].

Transcription-independent action of HSF1

It has been widely recognized that HSF1 promotes cellular

and organismal survival of proteotoxic stress and prolongs

lifespan; in stark contrast to these beneficial effects, its

surprising pro-oncogenic role has just begun to emerge

recently [56, 69, 70]. In models for diverse types of cancer,

including malignant peripheral nerve sheath tumor, mam-

mary carcinoma, melanoma, and hepatocellular carcinoma,

the pro-oncogenic role of HSF1 has been demonstrated

[56, 57, 71].

The underlying mechanisms, unsurprisingly, are

diverse, given the large transcriptional network HSF1

regulates. It has been shown that HSF1 augments the

oncogenic RAS signaling cascade, suppresses oncogene-

induced cell death and senescence, promotes cellular

migration and epithelial-mesenchymal transition (EMT),

as well as enhances lipogenesis [72]. Of note, new evi-

dence further indicates that HSF1 plays a critical role in

preserving proteostasis and suppressing amyloidogenesis

to promote oncogenesis [57]. Canonically, all these mul-

tifaceted effects of HSF1 have been ascribed to its

eminent transcriptional action.

Unexpectedly, a new study reports that through a tran-

scription-independent mechanism, HSF1 preserves

mTROC1 integrity and supports robust protein translation

by suppressing c-Jun N-terminal kinase (JNK), thereby

promoting stress resistance and growth [73]. JNK, acting as

a cellular sensor of proteotoxic stress, constitutively asso-

ciates with mammalian target of rapamycin complex 1

(mTORC1). Upon rapid activation by proteotoxic stress,

JNK phosphorylates both regulatory-associated protein of

mTOR (RAPTOR) and mTOR directly, leading to

Fig. 1 Suppression of the HSF1-mediated PSR by metabolic stres-

sors. a Proteotoxic stressors activate HSF1 and its mediated PSR.

Under proteotoxic stress, Ser326 phosphorylation is a key post-

translational modification activating HSF1. In addition, heat stress

also inactivates AMPK and blocks its mediated Ser121 phosphory-

lation, a modification inhibitory to HSF1 activation. Under

proteotoxic stress, induced HSP expression through the PSR plays a

critical role in preserving cellular proteostasis and enhance survival.

b In contrast to proteotoxic stressors, metabolic stressors, including

metformin and nutrient deprivation, suppresses HSF1 activation

through AMPK activation. Activated AMPK phosphorylates HSF1

directly at Ser121 to impair the nuclear translocation and DNA

binding of HSF1. In addition, AMPK can suppress the transcriptional

activity of HSF1 indirectly through PGC-1a. Upon phosphorylated

and activated by AMPK, PGC-1a acts as a transcriptional repressor

by physically interacting with HSF1. Through suppression of the

PSR, metabolic stressors exacerbate the disruption of proteostasis by

proteotoxic stressors
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mTORC1 dissociation and subsequent translation inhibi-

tion. Importantly, HSF1 physically interacts with and

sequesters JNK apart from mTORC1, thereby maintaining

protein synthesis and cellular growth [73]. Of note, HSF1

exerts this effect independently of its transcriptional regu-

lation, highlighting a new mode of action of this ancient

cytoprotective factor.

Metabolic control of the PSR in diabetes mellitus

Impacts of metabolic states on proteostasis

Although less appreciated, metabolic disturbance can

impact proteostasis. For example, metabolic dysregulation

in diabetes induces protein aggregation in pancreatic b-
cells [74, 75]. In rodents, the metabolic disturbance

induced by high-fat diets or associated with diabetes pro-

motes b-amyloid deposits in the brain [76, 77].

It has been well recognized that an array of signaling

pathways, including mTORC1 and AMPK, sense the cel-

lular energy state and respond to metabolic changes

closely. While AMPK senses fluctuations in the intracel-

lular AMP:ATP ratio, mTORC1 senses the availability of

nutrients such as amino acids. Activated by nutrients,

mTORC1 controls cellular growth by regulating protein

translation and autophagy [78]. Interestingly, it has been

shown that metabolic stress activates AMPK, which, in

turn, inhibits mTORC1 [79]. AMPK directly phosphory-

lates RAPTOR, a key binding partner of mTOR, at two

sites, Ser722 and Ser792, which subsequently induces

14–3–3 binding to RAPTOR [79]. Therefore, metabolic

stress, through AMPK activation, impairs the mTORC1-

mediated protein synthesis [80].

Metabolic states can also inflict protein damage.

Metabolic syndrome, including obesity, hyperglycemia,

hyercholesterolemia, hypertriglyceridemia, and insulin

resistance, greatly increases the risk of developing type 2

diabetes (T2D) [81]. Of note, metabolic syndrome is

frequently accompanied by oxidative stress, owing to

impaired mitochondrial ATP production and subsequent

induction of reactive oxygen species (ROS) [82]. Accu-

mulation of ROS is detrimental to cells by damaging

cellular macromolecules including lipids, nucleic acids

and proteins. Protein oxidation by ROS alters the con-

formations, solubility, and stability of proteins [83],

provoking proteotoxic stress. For example, high glucose-

induced oxidative stress results in protein misfolding and

aggregation in obese Zucker rats [74]. Inevitably, oxida-

tive stress activates HSF1 and its mediated PSR [84].

Thus, metabolic dysregulation, at least in part through

oxidative damage, deteriorates protein quality and disrupts

proteostasis.

Metabolic regulation of HSF1 and the PSR

Intriguingly, recent studies have revealed that the PSR, one

of the key protein quality-control machineries, is also

implicated in metabolic syndrome and DM. For example,

in diabetic monkeys, HSF1, HSP70, and HSP90 proteins

are all diminished in the liver; by contrast, their expression

is elevated in the pancreas [85], likely reflecting the com-

pensatory mechanism to restore proteostasis in this tissue.

Interestingly, dietary or calorie restriction, a metabolic

intervention effectively suppressing age-related diseases,

including cardiovascular diseases, cancer, neurodegenera-

tion, and T2D, and prolonging lifespan, also regulates

HSF1 [86, 87]. In calorie-restricted cells, the age-related

diminishment of HSF1 DNA binding is reversed [87].

Contrary to calorie restriction, amino acid deprivation

impairs HSF1 DNA-binding activity and suppresses the

expression of HSP mRNAs [88]. Similarly, depletion of

glutathione also suppresses the HSF1 activation by heat

shock [89]. Moreover, under fasting HSF1 activity in

mouse livers is low; however, re-feeding markedly

increases HSF1 activity and HSP expression in the liver

[71]. Taken together, accumulating evidence reveals a

complex HSF1 regulation by the cellular metabolic state.

Despite these paradoxical findings, it remains possible that

the ultimate impacts of nutrients on HSF1 may depend on

the severity of nutrient inaccessibility.

Imbalanced energy intake and expenditure is closely

associated with metabolic diseases including DM. Two key

players in sensing cellular nutritional status and preserving

energy homeostasis are insulin signaling and mitochondria.

Metabolic signaling has been implicated in regulating

HSF1 and the PSR. For example, it was proposed that

insulin signaling inhibits HSF1 activation [90]. Stimulation

of insulin-like growth factor receptor (IGFR in mammals,

DAF-2 in C. elegans) leads to activation of PI3K/AKT

signaling and subsequent phosphorylation of the tran-

scriptional factor Forkhead Box O (FOXO), impairing its

nuclear translocation. Importantly, FOXO is required to

cooperate with HSF1 in co-regulating a subset of target

genes including small hsp genes [91]. Furthermore, in C.

elegans insulin/IGF-1 signaling can negatively regulate

HSF1 through DDL1 (homologue of human CCDC53),

which forms a repressive protein complex with HSF1 [92].

In addition, activation of peroxisome proliferator-activated

receptor gamma coactivator 1-a (PGC-1a), a key regulator

of mitochondrial biogenesis, has also been reported to

inhibit HSF1. Through physical interaction, PGC-1a
represses the transcriptional action of HSF1 directly [93].

In further support of the metabolic regulation of HSF1,

other key metabolic sensors including SIRT1 and AMPK

are able to modify HSF1 as well. AMPK phosphorylates

and SIRT1 deacetylates HSF1, respectively [54, 63].
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Congruently, high-fat diets impair AMPK-dependent

phosphorylation of PGC-1a and increase the expression

and activity of SIRT1, thereby activating HSF1 [94]. Thus,

it is conceivable that metabolic dysregulation associated

with DM likely affects the HSF1-mediated PSR, con-

tributing to disruption of proteostasis.

Protective roles of HSF1 and HSPs in DM

Ample evidence has implicated dysregulation of the

chaperone network in the pathogenesis of DM. For exam-

ple, HSP72 expression induced by hyperthermia is

markedly impaired in rats developing streptozotocin

(STZ)-induced T2D [95]. Similarly, exercise fails to induce

the expression of HSF1 and HSP72 in the skeletal muscle

of diabetic rats [96]. In diabetes patients, HSPs are also

markedly diminished, correlating with insulin resistance

[97, 98].

Importantly, reduced HSP72 expression impairs insulin-

stimulated glucose uptake in DM patients [99]. Moreover,

Hsp72 knockout mice display exacerbated obesity, insulin

resistance, and lipid accumulation in the skeletal muscle

[100]. Mechanistically, deletion of Hsp72 reduces oxygen

uptake and fatty acid oxidation rate in primary myocytes

[100]. Conversely, restoring HSP72 expression improves

insulin resistance and glucose metabolism. In mice, trans-

genic HSP72 overexpression protects against high-fat diet

or obesity-induced insulin resistance, which is tightly

associated with suppressed JNK phosphorylation [101].

Furthermore, enhanced HSP72 expression increases mito-

chondrial oxidation and ameliorates insulin resistance in

the skeletal muscles in mice [102]. Also, by suppressing

the aggregation and amyloidogenesis of human islet amy-

loid polypeptide (h-IAPP), a peptide hormone co-secreted

with insulin, HSP72 overexpression protects pancreatic b-
cells from toxicity [103]. Moreover, BGP-15, a small-

molecule stimulant of HSP72, has been shown to improve

insulin sensitivity, suppress inflammation, increase mito-

chondrial activity, and restore metabolic homeostasis in

Goto-Kakizaki (GK) rats, a non-obese T2D model

[102, 104, 105]. Importantly, BGP-15 significantly

improves insulin sensitivity in insulin-resistant patients and

displays no adverse effects [104]. Furthermore, heat shock

in combination with mild electrical stimulation, which

induces Hsp72 expression, markedly improves insulin

sensitivity and glucose homeostasis in db/db mice [106].

Similarly, treatment with ADAPT-232, an adaptogen

known to induce HSF1 and HSP72 expression, notably

rescues growth retardation in a transgenic C. elegans model

expressing h-IAPP [103]. In addition to HSP72, HSP27

also plays a beneficial role in diabetes. In mice, transgenic

HSP27 overexpression antagonizes cytokine-induced islet

apoptosis and mitigates STZ-induced T2D [107].

Congruent with the effects of HSPs in diabetes,

expression of a constitutively active HSF1 in pancreatic b-
cells enhances glucose-driven insulin secretion, elevating

serum insulin levels and reducing blood glucose levels in

neonatal STZ-induced diabetic rats [108]. These effects are

correlated with activation of glucokinase and neuronal

nitric oxide synthase [108]. As the pivotal regulator of HSP

expression under stress, HSF1 is subjected to multi-layers

of regulation, including negative feedback control by its

own transcriptional targets, HSPs, and kinase-mediated

phosphorylation events [109]. Interestingly, ERK, GSK3b,
and JNK kinases, all of which are associated with insulin

resistance, have been shown to phosphorylate and suppress

HSF1 [110] (Fig. 2). By inhibiting GSK3b to activate

HSF1, physical activity/exercise, a lifestyle intervention

well known to reduce the incidence of T2D, induces the

expression of HSPs [111]. Furthermore, mild heat treat-

ment has been shown to decrease fasting plasma glucose

levels in T2D patients and prevent insulin resistance in

high-fat diet-fed rats [112, 113]. Similarly, a recent study

demonstrated that activation of HSF1 by the natural com-

pound celastrol regulates energy expenditure in mice fed

high-fat diets [114]. Through stimulation of PGC-1a sig-

naling, celastrol-induced HSF1 activation enhances

mitochondrial function, regulates white fat browning, and

prevent obesity, insulin resistance, and hepatic steatosis

[114].

Collectively, a large body of evidence has revealed

important roles of HSF1 and HSPs in both proteostasis and

energy metabolism, thus supporting the contribution of

their dysregulation to the pathogeneses of DM and further

suggesting them as valuable therapeutic targets.

AMPK: a key mediator of the metabolic stress

response

How does metabolic dysregulation impact the PSR? It has

been widely recognized that AMPK plays a pivotal role in

sensing cellular energy state and initiating the metabolic

stress response (MSR). AMPK is a heterotrimeric protein

consisting of a, b, and c subunits that are encoded by seven

individual genes in total. There are two a isoforms (a1 and

a2), two b isoforms (b1 and b2), and three c isoforms (c1,
c2, and c3). The N terminus of the a subunit contains a

serine/threonine kinase domain that is activated by

upstream kinases. The C-terminal domain of the b subunits

serves as a linker to connect the C-terminal domain of the a
subunits and the N-terminal domain of the c subunits, and

acts as a glycogen sensor [115, 116]. The c subunits con-

tain regulatory adenine nucleotide-binding sites and four

tandem repeats known as cystathionine-b-synthase (CBS)

domains. Through these CBS domains, the c subunits are

able to bind AMP, ATP, or ADP, thereby sensing the
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cellular energy status. Phosphorylation of Thr172 on the a1
subunit, a key modification activating AMPK, is mediated

by the tumor suppressor liver kinase B1 (LKB1/STK11) or

Ca2?/calmodulin-dependent protein kinase kinase b
(CaMKKb) [117, 118].

AMPK is activated by elevated intracellular AMP:ATP

ratio. Under energy stress, increased intracellular AMPs

leads to ATP replacement from the exchangeable sites on

the c subunits, causing a modest increase in AMPK Thr172

phosphorylation [119]. The ATP replacement also sup-

presses de-phosphorylation of Thr172, further enhancing

AMPK activity [119]. Pharmacological metabolic stressors

including metformin, arsenite, and antimycin A, or patho-

logical conditions including ischemia and hypoxia, can also

activate AMPK through depletion of ATP [120–123]. In

addition, 5-aminoimidazole-4-carboxamide ribonucleoside

(AICAR), an adenosine analog, is widely used as a phar-

macological activator of AMPK. Following uptake

mediated by the adenosine transporter, inside cells AICAR

is converted by the adenosine kinase into mono-phospho-

rylated forms, which mimic AMP [124].

Energy homeostasis is essential for cellular survival of

metabolic stress. A large body of evidence has pinpointed a

critical role of AMPK in preserving energy homeostasis.

AMPK is known to regulate lipid metabolism in numerous

tissues [117, 118]. Through direct phosphorylation, AMPK

inactivates two key lipogenic enzymes, acetyl-CoA car-

boxylase (ACC) and 3-hydroxy-3-methylglutaryl-CoA

reductase (HMGCR), the rate limiting enzymes for fatty

acid and cholesterol synthesis, respectively [125]. In

addition to lipogenesis, protein synthesis is another major

ATP-consuming process. Under metabolic stress, AMPK is

Fig. 2 The HSF1-mediated PSR antagonizes insulin resistance and

preserves proteostasis. a In insulin-sensitive cells, insulin signaling

mobilizes AKT, which subsequently leads to inactivation of GSK3b
[196], a negative regulator of HSF1. In addition, other HSF1

suppressors, including ERK, JNK and AMPK, also remain at a

normal or latent state. As a consequence, the HSF1-mediated PSR is

operational to induce abundant HSP expression. Importantly, HSP27

and HSP72 suppress both IKKb and JNK [197–199], two key kinases

that inhibit insulin receptor substrate-1/2 (IRS-1/2) through direct

serine phosphorylation and thereby impede insulin signaling [200].

Moreover, HSP90 can stabilize and enhance the activation of both

PDK and AKT [201, 202], two essential components within the

insulin signaling cascade. Thus, in addition to preserving cellular

proteostasis, the HSF1-mediated PSR maintains robust insulin

signaling, enhancing glucose uptake and glycogen synthesis but

suppressing gluconeogenesis. b In insulin-resistant cells, activated

IKKb and JNK, owing to lipid overload, inflammation, and oxidative

stress, markedly phosphorylate IRS-1/2, causing their dissociation

from IR and proteasomal degradation [203, 204]. Impaired insulin

signaling further leads to enhanced GSK3b activity. In addition,

inflammation and oxidative stress closely associated with the insulin-

resistant state also activate ERK and JNK. However, it still remains

controversial whether AMPK is activated under insulin resistance.

Whereas lipid overload can suppress AMPK [205], oxidative stress is

reported to cause its activation [206]. Collectively, these negative

regulators deactivate HSF1 and its mediated PSR, depleting cellular

HSPs to further exacerbate the impairment of insulin signaling and

disruption of proteostasis
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activated to inhibit both the lipogenesis, mediated by ACC

and HMGCR, and the protein synthesis, mediated by

mTORC1. mTORC1, sensitive to the inhibition by rapa-

mycin, is a protein complex comprised of mTOR,

DEPTOR, mLST8, PRAS40, and RAPTOR. mTORC1

phosphorylates ribosomal S6 kinase (p70-S6K) and

eukaryotic translation initiation factor 4E (elF4E)-binding

protein 1 (4EBP1), both of which are key players in con-

trolling protein translation [126]. In the past decade,

several studies have revealed that mTORC1 is regulated by

the tumor-suppressing LKB1-AMPK signaling pathway.

Indirectly, AMPK inhibits mTORC1 activity through

activation of the tumor suppressors tuberous sclerosis

complex 1 and 2 (TSC1 and TSC2). Through their GTPase

activity, TSC1 and TSC2 inactivate the small G protein

Ras homologue enriched in brain (RHEB), a key activator

of mTORC1 [127]. AMPK activates TSC2 though phos-

phorylation of both Thr1227 and Ser1345 [128],

subsequently inactivating RHEB and suppressing

mTORC1. Moreover, AMPK is able to inhibit mTORC1

activity by phosphorylating RAPTOR directly [79].

In addition to key enzymes and kinases, AMPK also

regulates various transcription factors or co-activators to

mediate metabolic reprogramming and enhance cellular

survival under metabolic stress. For example, AMPK

activates FOXO3a to enhance stress resistance, glucose

metabolism, and cell survival [129]. By contrast, AMPK

inhibits the lipogenic transcription factor SREBP-1c,

another means to suppress lipogenesis [130]. AMPK also

phosphorylates and stabilizes TP53 through inhibition of

the SIRT1-mediated TP53 deacetylation [131]. A promi-

nent regulator of mitochondrial biogenesis and function is

PGC-1a. Overexpression of PGC-1a in cultured cells

promotes energy expenditure and increase cardiac mito-

chondrial biogenesis [132, 133]. AMPK phosphorylates

PGC-1 directly to enhance its transcriptional activity and

thereby promote mitochondrial biogenesis [134]. In mice

expressing a dominant-negative AMPK transgene, mito-

chondrial biogenesis cannot be induced by energy

deprivation in the skeletal muscle [135]. Taken together, by

orchestrating a systemic cellular response to metabolic

stress, AMPK activation reduces ATP consumption but

enhances ATP production, thereby restoring energy

homeostasis.

Implications of the AMPK-mediated HSF1

suppression in DM

Emerging studies have begun to shed light on the previ-

ously unappreciated link between metabolic stress and the

HSF1-mediated PSR. A recent study revealed that meta-

bolic stress, provoked by metformin or nutrient

deprivation, inactivates the HSF1-mediated PSR through

AMPK [55]. Upon activation, AMPK phosphorylates

HSF1 at Ser121 directly, which impairs its nuclear

translocation and DNA binding and subsequently renders

cells vulnerable to proteotoxic stress [55]. Intriguingly,

heat stress suppresses AMPK and its mediated MSR [55].

Moreover, AMPK can also suppress the PSR indirectly

through PGC-1a. Another recent study showed that both

PGC-1a and HSF1, through physical associations, are co-

localized on several HSP gene promoters [93]. Importantly,

PGC-1a acts as a repressor of the HSF1-mediated HSP

transcription [93]. Thus, under metabolic stress AMPK is

able to suppress the activation of HSF1 and its mediated

PSR, both directly and indirectly.

Metformin, a metabolic stressor that potently activates

AMPK, is a first-line medicine to treat T2D and prescribed

to over 120 million people worldwide [136]. Instead of

acting on LKB1 or AMPK directly, metformin mobilizes

AMPK by inhibiting complex I of the mitochondrial

electron transport chain, thereby causing cellular energetic

stress [136]. Beyond lowering blood glucose levels by

improving insulin sensitivity [137], metformin also pre-

vents massive accumulation of autophagic vacuoles and

thereby alleviates b-cell death in T2D patients [138].

Congruently, a long-term follow-up study reveals that

metformin treatment reduces the mortality of T2D patients

by 36 % [139].

Undoubtedly, metformin exerts a wide array of benefi-

cial metabolic effects on T2D; however, emerging

evidence reveals that metformin is also able to suppress the

HSF1-mediated PSR through AMPK activation [55]. Thus,

through disruption of proteostasis, metformin may not

protect pancreatic b-cells, especially those suffering from

IAPP amyloidogenesis, or even exacerbate their failure in

T2D. Importantly, this new finding further suggests that

activation of HSF1 and its mediated PSR, in combination

with metformin, may represent a more effective therapeutic

strategy for T2D.

Metabolic control of the PSR in neurodegenerative
disorders

Disruption of proteostasis in neurodegenerative

disorders

It has been well recognized that disruption of proteostasis

is causally associated with aging and age-related diseases,

particularly neurodegenerative disorders, in humans. Neu-

rodegenerative disorders, including Huntington’s disease

(HD) and Alzheimer’s disease (AD), are often character-

ized by protein misfolding, aggregation, and

amyloidogenesis. Impaired cellular stress responses and

diminished capacity of cellular machineries to clear
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misfolded and aggregated proteins likely contribute to

severe disruption of proteostasis in these neurodegenerative

disorders [140].

Protective roles of HSF1 and HSPs

in neurodegenerative disorders

HD is an autosomal dominant neurodegenerative disease

caused by expansion of the CAG trinucleotides, encoding

for glutamine, in the first exon of the HTT gene [141, 142].

Huntingtin proteins with the polyglutamine (polyQ) tract

are prone to misfolding and aggregation, resulting in neu-

ronal toxicity [143]. The clinical symptoms of HD include

the progressive movement disorders, dementia, cognitive

impairment, and a shorten lifespan. In various HD models,

it has been shown that HSF1 suppresses the aggregation of

polyQ proteins; by contrast, loss of HSF1 accelerates its

accumulation [144]. Overexpression of a constitutively

active HSF1 in R6/2 mice, a widely used transgenic HD

model, reduces polyQ aggregation and rescues body weight

loss [145]. Furthermore, activation of HSF1 by the small

molecule HSF1A ameliorates polyQ misfolding and pro-

tects neuronal precursor cells from toxicity in a Drosophila

model of polyQ-mediated neurodegeneration [146]. Inter-

estingly, nuclear factor of activated T cells (NFAT) appears

to be required for the HSF1-mediated suppression of polyQ

aggregation. Deletion of NFAT exacerbates polyQ aggre-

gation and shortens the lifespan of R6/2 mice [147].

Mechanistically, NFAT and HSF1 cooperate to induce the

expression of PDZ domain containing 3 (PDZD3) and aB-
Crystallin/HSPB5, two important players in preventing

polyQ aggregation [147].

Another polyQ disease is spinal and bulbar muscular

atrophy (SBMA), an adult-onset motor neuron disease

caused by the expression of CAC repeats in the gene

coding androgen receptor (AR) [148–150]. Heterozygous

deletion of Hsf1 increases accumulation of pathogenic AR

in both neural and non-neural tissues, and aggravates

neurodegeneration in AR-97Q mice, a popular transgenic

model for SBMA [151]. Conversely, lentiviral delivery of

Hsf1 into the motor cortex and striatum suppresses AR

accumulation and alleviates neurodegeneration in these

mice [151].

Worldwide nearly 44 million people are afflicted with

AD, one of the most devastating neurodegenerative dis-

orders. AD is characterized by the progressive loss of

cholinergic neurons, leading to behavioral, motor and

cognitive impairments [152]. Amyloids are protein

aggregates that are enriched for b-sheet structures and

resistant to degradation. Deposition of Ab peptides, called

amyloid plaque, is the primary pathological feature of AD

and results in impaired synaptic activity and neuronal

damage [153]. Ab peptides are generated from the

amyloid precursor protein (APP) through b- and c-sec-
retase cleavages [154]. Another key pathological feature

of AD is aggregation of the microtube-associated protein

Tau, also known as neurofibrillary tangle, in the brain

[155]. Hyper-phosphorylation of Tau proteins results in

increased Tau aggregation and microtubule destabiliza-

tion, causing neurodegeneration [156, 157]. In a mouse

AD model expressing the human APP transgene, Ab
accumulates to form insoluble amyloid plaques in the

brain; and HSF1 suppresses the formation of Ab amyloids

and ameliorates cognitive deficits [158]. Furthermore, in

the Samaritan Alzheimer’s rat model in which Ab pep-

tides are infused directly into the ventricles of the brain,

lentiviral delivery of HSF1 into the cerebella markedly

reverses the reduction in the number of Purkinje cell

bodies [159]. These beneficial effects of HSF1 are

believed to be mediated primarily through HSP expres-

sion. Congruently, HSP70 has been shown to protect

against neurodegeneration in the central nervous system

[160–162]. HSP70 not only suppresses the toxicity of Ab
accumulation by interfering with Ab homeostasis, but also

blocks Ab self-assembly and thereby suppresses the pro-

duction of toxic Ab [163, 164]. Also, HSP70 promotes

the clearance of Ab by up-regulating the insulin-degrad-

ing enzyme (IDE) [165]. Moreover, HSP70 can interact

with Tau proteins, thereby blocking its aggregation and

promoting its degradation [166, 167]. In addition to

HSP70, HSP90 also assists Tau degradation via the pro-

teasomal and autophagic-lysosomal pathways [166, 168].

Moreover, HSP90 binds misfolded Ab to prevent it from

aggregating [169, 170].

Implications of the AMPK-mediated HSF1

suppression in neurodegenerative disorders

In neurodegenerative disorders, cellular energy homeosta-

sis is frequently disrupted. For example, in HD and AD

mitochondrial biogenesis is impaired [171]. In the brain,

AMPK is activated by ischemia, hypoxia, and glucose

shortage, all of which provoke metabolic stress and are

associated with AD [172–174].

Recent studies have implicated AMPK in neurodegen-

erative disorders directly, including HD and AD. The

oxidative stress, induced by the mutant HTT with polyQ

expansion, activates AMPKa1 and causes neurotoxicity in

striatal progenitor cells and in the striatum of R6/2 HD

mice [175]. Congruently, alleviation of oxidative stress

suppresses AMPK activation and mitigates the neurotoxi-

city in mice, suggesting a causative role of AMPK

activation in the progression of HD [175]. AD is frequently

associated with aberrant energy metabolism, including

reduced glucose uptake, mitochondrial dysfunction,

impaired cholesterol metabolism, and disrupted calcium
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homeostasis [176–179]. It has been shown that AMPK,

activated by the aggregation of Ab peptides, phosphory-

lates Tau proteins directly at Thr231 and Ser296/404,

interrupting the binding of Tau to microtubules and causing

Tau aggregation in primary mouse neurons [180, 181].

Moreover, in transgenic mice expressing a mutant human

APP, AMPK, activated by elevated intracellular calcium

levels, phosphorylates Tau proteins, leading to dendritic

spine loss and inducing AD [181]. Furthermore, AMPK

activation is reported to induce cell death in primary cor-

tical neurons by mediating glutamate release [182]. Also,

AMPK activation leads to hippocampal neuronal death

under drastic dietary restriction [183]. Of note, AMPK

activation may also aggravate neurodegeneration through

disruption of neuronal proteostasis (Fig. 3). A recent study

revealed that metabolic stressors including metformin

stimulate the AMPK-mediated HSF1 inactivation [55].

Moreover, another study showed that metformin activates

AMPK to up-regulate b-secretase, inducing the generation

of Ab peptides both extraneuronally and intraneuronally

[184]. It was also shown that metformin aggravates

tauopathy in mice by enhancing Tau protein aggregation

[185]. Importantly, it has been reported that in patients with

diabetes metformin use is associated with increased risk of

cognitive impairment [186]. Conversely, both pharmaco-

logical and genetic inhibition of AMPK signaling alleviate

the Ab-induced impairments in hippocampal synaptic

plasticity in mice [187]. Together, these findings support a

causative role of AMPK activation in the pathogeneses of

AD and other neurodegenerative disorders, and further

imply that AMPK inhibition may be a promising thera-

peutic strategy to improve neuronal proteostasis and

antagonize neurodegeneration. Importantly, it also suggests

that patients afflicted with neurodegenerative disorders

should be cautious to take metformin.

However, AMPK is also reported to inhibit Tau phos-

phorylation in vitro in the rat cortical neuron model

[188, 189]. In addition, acetylation of Tau protein inhibits

its ubiquitination and proteasomal degradation, causing

tauopathy [190]. By deacetylating Tau, SIRT1 prevents

accumulation of phosphorylated Tau proteins [190].

Interestingly, the expression of SIRT1 is diminished in AD

patients’ brains [191]. Thus, through activation of SIRT1,

AMPK could enhance the proteasomal degradation of Tau

Fig. 3 AMPK activation may disrupt neuronal proteostasis to

promote neurodegeneration. a In neurodegenerative disorders, accu-

mulation of protein aggregates and amyloids in neurons causes

AMPK activation, which, in turn, may inactivate the HSF1-mediated

PSR. This HSF1 inactivation leads to increased protein aggregates

and amyloids, exacerbating neurotoxicity and neurodegeneration.

b By contrast, AMPK inhibition may improve neuronal proteostasis

by enhancing the HSF1-mediated PSR, thus representing a promising

anti-neurodegeneration therapeutic strategy
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proteins and thereby prevent its aggregation. Furthermore,

mitochondrial dysfunction, a crucial contributing factor in

the pathogenesis of AD, is highly correlated with metabolic

stress in AD patients. Mitochondria are enriched in

synapses, which are highly metabolically active organelles

and maintain the normal functions of neurons. Accumula-

tion of Ab amyloids interferes with the electron transport

through the mitochondrial membrane, leading to mito-

chondrial dysfunction [192]. On the contrary, SIRT1, by

sensing basal NAD? levels, protects cells from mitochon-

drial dysfunction. Activation of SIRT1 promotes

mitochondrial biogenesis and subsequently antagonizes

metabolic stress [193]. Importantly, studies using Sirt1

knockout mice have shown that SIRT1 plays an important

role in activating AMPK and improving mitochondrial

functions [193]. Therefore, activated SIRT1-AMPK sig-

naling can rescue mitochondrial dysfunction and ultimately

prevent neural injury. In line with a protective role of

AMPK, rats treated with AICAR, an AMPK activator,

display mitigated AD-like pathologies and improved spa-

tial memory [194]. Furthermore, an epidemiological study

revealed that long-term metformin usage is associated with

mitigated cognitive decline and reduced risk of dementia in

T2D patients [195], suggesting a protective role of

metformin.

Taken together, contradictory evidence also exists

implying the beneficial roles of AMPK and metformin in

AD and other neurodegenerative disorders. Despite ample

evidence strongly implicating AMPK in neurodegenerative

disorders, its precise action still remains controversial. In

light of the widespread usage of metformin worldwide, this

question is of great importance to public health and war-

rants extensive investigations.

Summary and perspective

The evidence presented in this review illuminates an inti-

mate connection between metabolic state and proteostasis,

with a special emphasis on the regulation of HSF1 by

AMPK. While HSF1 senses proteotoxic stress and plays a

pivotal role in preserving cellular proteostasis by mediating

the PSR, AMPK senses metabolic stress and acts as a key

player in preserving cellular energy homeostasis by medi-

ating the MSR. Aberrancies in both proteome and energy

homeostasis are closely associated with age-related dis-

eases, including cancer, T2D, and neurodegenerative

disorders. Sharply contrasting with its pro-oncogenic role,

intriguingly, proteostasis protects against T2D and neu-

rodegeneration. Thus, the newly discovered metabolic

regulation of the PSR not only helps to better elucidate the

pathogeneses of these diseases but also may have important

implications in therapeutic interventions.
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