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Summary

We leveraged IDH wild-type glioblastomas, derivative neurospheres, and single cell gene 

expression profiles to define three tumor-intrinsic transcriptional subtypes designated as proneural, 

mesenchymal, and classical. Transcriptomic subtype multiplicity correlated with increased 

intratumoral heterogeneity and presence of tumor microenvironment. In silico cell sorting 

identified macrophages/microglia, CD4+ T lymphocytes, and neutrophils in the glioma 

microenvironment. NF1 deficiency resulted in increased tumor-associated macrophages/microglia 

infiltration. Longitudinal transcriptome analysis showed that expression subtype is retained in 55% 

of cases. Gene signature-based tumor microenvironment inference revealed a decrease in invading 

monocytes and a subtype-dependent increase in macrophages/microglia cells upon disease 

recurrence. Hypermutation at diagnosis or at recurrence associated with CD8+ T cell enrichment. 

Frequency of M2 macrophages detection associated with short-term relapse after radiation therapy.

Graphical abstract

Wang et al. define three IDH wild-type glioblastoma-intrinsic gene expression subtypes, which are 

partly shaped by the tumor immune environment. NF1 deficiency results in increased macrophage/

microglia infiltration. Comparison of matched primary and recurrent tumors reveals frequent 

expression subtype changes.
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Introduction

The intrinsic capacity of glioblastoma (GBM) tumor cells to infiltrate normal brain impedes 

surgical eradication and predictably results in high rates of early recurrence. To better 

understand determinants of GBM tumor evolution and treatment resistance, The Cancer 

Genome Atlas Consortium (TCGA) performed high dimensional profiling and molecular 

classification of nearly 600 GBM tumors (Brennan et al., 2013; Cancer Genome Atlas 

Research, 2008; Ceccarelli et al., 2016; Noushmehr et al., 2010; Verhaak et al., 2010). 

TCGA identified common mutations in genes such as TP53, EGFR, IDH1, and PTEN as 

well as the frequent and concurrent presence of abnormalities in the p53, RB, and receptor 

tyrosine kinase pathways. Unsupervised transcriptome analysis additionally revealed four 

clusters, referred to as classical (CL), mesenchymal (MES), neural (NE), and proneural 

(PN), that were tightly associated with genomic abnormalities (Verhaak et al., 2010). The 

PN and MES expression subtypes have been most consistently described in the literature 

with PN relating to a more favorable outcome and MES relating to poor survival (Huse et 

al., 2011; Phillips et al., 2006; Zheng et al., 2012), but these findings were affected by the 

relatively favorable outcome of IDH mutant GBMs which are consistently classified as PN 

(Noushmehr et al., 2010; Verhaak et al., 2010). PN to MES switching upon disease 

recurrence has been implicated in treatment resistance in GBM relapse (Bao et al., 2006; 

Bhat et al., 2013; Ozawa et al., 2014; Phillips et al., 2006), but the frequency and relevance 

of this phenomenon in glioma progression remains ambiguous.

GBM tumor cells, along with the tumor microenvironment, together create a complex milieu 

that ultimately promotes tumor cell transcriptomic adaptability and disease progression 

(Olar and Aldape, 2014). The presence of tumor-associated stroma results in a MES tumor 

gene signature and poor prognosis in colon cancers (Isella et al., 2015). Furthermore, the 

association between MES gene expression signature and reduced tumor purity has been 

identified as a common theme across cancers (Martinez et al., 2015; Yoshihara et al., 2013). 
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Tumor-associated macrophages (TAMs), including either of peripheral origin or representing 

brain-intrinsic microglia in glioma (Gabrusiewicz et al., 2016; Hambardzumyan et al., 

2015), have been proposed as regulators of PN-to-MES transition through NF-κB activation 

(Bhat et al., 2013) and may provide growth factor-mediated proliferative signals which could 

be therapeutically targeted (Patel et al., 2014; Pyonteck et al., 2013; Yan et al., 2015).

Here, we explored the properties of the microenvironment in different GBM gene expression 

subtypes before and after therapeutic intervention.

Results

Transcriptomic analysis of glioma single cells, neurospheres, and tumor biopsies 
identifies GBM-specific intertumoral heterogeneity

We set out to elucidate the tumor-intrinsic and tumor microenvironment-independent 

transcriptional heterogeneity of GBMs by identifying genes uniquely expressed by glioma 

cells and not by tumor-associated host cells. We performed RNA sequencing of 133 single 

cells isolated from three GBMs (Lee et al., 2017) and compiled transcriptomes of an 

additional 672 single cells isolated from five GBMs (Patel et al., 2014). A set of 596 out of 

the 805 single cells passed quality control procedures and were determined to be single 

glioma cells (SGCs, Figure S1A). We observed that 14,656 of 22,870 unique genes were 

expressed in at least 5% of the 596 SGCs and were considered candidate bona fide glioma 

genes (BFGs) (Figure S1B).

To filter genes that were expressed by both GBM cells and the tumor microenvironment, we 

collected a cohort of 37 GBMs from which we derived glioma sphere-forming cell cultures 

(GSCs). Following RNA sequencing of this set, we performed pairwise gene expression 

comparison and identified 3,099 genes significantly overexpressed in GBM compared to 

their derivative GSCs (FDR adjusted t-test p value < 0.01). Removing these candidate 

microenvironment marker genes reduced the BFG list to 13,165 genes (Figure S1C).

Finally, we analyzed the RNA sequencing data of 30 cellular tumors and 19 matching 

leading edges of eight GBM surgery specimens from the Ivy Glioblastoma Atlas Project 

(Ivy GAP, http://glioblastoma.alleninstitute.org/). Cellular tumors are considered near 100% 

tumor cells versus no more than 10% tumor cells in the leading edge. We identified 5,978 

genes significantly greater expressed in leading edge compared to matching cellular tumor 

(FDR adjusted t-test p values < 0.01), resulting in discarding 1,636 genes from the BFG list 

(Figure S1D). Of the 11,529 genes on the resulting BFG list, 7,425 genes are represented on 

the Affymetrix U133A microarray used to profile the TCGA GBM cohort. (Figure 1A, 

Figure S1E, Table S1).

GBMs with IDH mutations (IDHmut) represent 5% of the cases and have distinct biological 

properties and confer favorable clinical outcomes compared to IDH wild-type (IDH-WT) 

GBMs (Brennan et al., 2013; Cancer Genome Atlas Research et al., 2015; Ceccarelli et al., 

2016; Noushmehr et al., 2010). Using the filtered BFG/U133A set, we performed consensus 

non-negative matrix factorization clustering to identify three distinct subtypes comprising 

369 IDH-WT GBMs (Figure 1B, Figure 1C, Table S1). When comparing the clustering 
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result with the previously defined PN, NE, CL, and MES classification (Brennan et al., 

2013; Verhaak et al., 2010), the three subtypes were strongly enriched for MES, PN, and CL 

GBMs, respectively (Figure S1F). Consequently, we designated the groups as MES, PN, and 

CL. None of the three subtypes were enriched for the NE subtype, suggesting the neural 

phenotype is non-tumor specific. The NE subtype has previously been related to the tumor 

margin where increased normal neural tissue is likely to be detected (Gill et al., 2014; Sturm 

et al., 2012), and such contamination might explain why the neural subtype was the only 

subtype to lack characteristic gene abnormalities (Brennan et al., 2013; Li et al., 2013). To 

be able to classify external GBM samples, we implemented a single sample gene set 

enrichment analysis (ssGSEA) based equivalent distribution resampling classification 

strategy using 50-gene signatures for each subtype (Figure 1D, Table S1) to assign each 

sample three empirical classification p values by which we determined the significantly 

activated subtype(s). The overlap between 50-gene signatures and the previously reported 

transcriptional subtype signatures (Verhaak et al., 2010) ranged from 42% to 54% (Figure 

S1G). We prepared an R-library to enable others to evaluate our approach (Method S1). To 

assess the robustness of our GBM subtype classification method, we compared cluster 

assignments of 144 TCGA GBM samples profiled using both RNA sequencing and 

Affymetrix U133A microarrays, and the assessment revealed 93% concordance (Figure 

S1H, Table S2). The 93% concordance was an improvement over the 77% subtype 

concordance determined using previously reported methods (Verhaak et al., 2010). In fact, 

classifying TCGA GBMs using the updated 50-gene signatures resulted in classification 

concordances ranging from 93% to 100% when comparing across different batches, different 

compositions of IDH-WT/IDHmut cases, and different RNAseq expression measurements 

(Figure S1I-S1K). Notably, we found high classification stability in small sample sizes, such 

as 85% concordance in cohorts of ten randomly selected samples (Figure S1L). We 

additionally evaluated the distribution of somatic variants across the three molecular 

subtypes (Figure 1E) and confirmed the strong associations between subtypes and genomic 

abnormalities in previously reported driver genes (Brennan et al., 2013; Verhaak et al., 

2010).

Multi-activation of subtype signatures associated with intratumoral heterogeneity

We observed that 29/369 (8%) TCGA samples showed significant enrichment of multiple 

ssGSEA scores (empirical classification p value < 0.05), suggesting that these cases activate 

more than one transcriptional subtype (Figure 2A). To quantify such transcriptional 

heterogeneity, a score ranging from 0 to 1 was defined to quantitatively evaluate the 

simplicity of subtype activation based on order statistics of ssGSEA score. Samples with 

high simplicity scores activated a single subtype and those with lowest simplicity scores 

activated multiple subtypes. All multi-subtype TCGA samples scored simplicities of less 

than 0.05 (Figure 2A). To determine whether transcriptional heterogeneity associated with 

genomic intratumoral heterogeneity, we correlated simplicity scores, total mutation rates, 

and subclonal mutation rates. Included in the analysis were 224 TCGA GBMs with available 

whole exome sequencing data (Kim et al., 2015), and ABSOLUTE (Carter et al., 2012) 

determined high tumor purity (> 0.7) to equalize the mutation detection sensitivity (Aran et 

al., 2015). Although not significant (Wilcoxon rank test p value = 0.30), the total mutation 

rate was less in the bottom 50% of samples with lowest simplicity scores versus the top 50% 
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with highest simplicity scores. Meanwhile, the subclonal mutation rate and fraction was 

significantly higher (Wilcoxon rank test p value = 0.03 and 0.02, respectively) in samples 

with lowest simplicity scores (Figure 2B, Table S3), suggesting that increased intratumoral 

heterogeneity associates with increased transcriptional heterogeneity.

We compared outcomes amongst the three transcriptional groups and observed no significant 

differences (Figure S2A). However, upon restricting the analysis to those samples with high 

simplicity scores (> 0.99, n = 74, top 20% cases), we discovered median survival of 11.5, 

14.7, and 17.0 months in MES, CL, and PN cases, respectively, which revealed a significant 

survival difference between MES and non-MES cases (log rank test, p value = 0.03) (Figure 

2C, Table S4). Consistent with this trend, greater simplicity scores correlated with relatively 

favorable outcome within the PN subtype while outcome remained unchanged within the CL 

subtype and the MES subtype (Figure S2B, C, D).

Single GBM cell RNA sequencing recently suggested that GBMs are comprised of a 

mixture of tumor cells with variable GBM subtype footprints (Patel et al., 2014). Within this 

dataset, we compiled the RNA sequenced transcriptomes of 501 single glioma cells in 

addition to the bulk tumor derived from five primary GBMs (Table S4) to investigate the 

intratumoral transcriptional heterogeneity at the single glioma cell level. In four of five cases 

(MGH26, MGH28, MGH29 and MGH30), the bulk tumor samples were classified in the 

same primary subtype as the majority of their single cells (Figure 2D). Our analysis suggests 

that the heterogeneity observed at the single cell level is captured in the expression profile of 

the bulk tumor.

Transcriptional subtypes differentially activate the immune microenvironment

Despite restricting the cluster analysis to genes exclusively expressed by GBM cells, we 

found that tumor purity predictions based on ABSOLUTE were significantly reduced in 

GBM classified as MES (Figure 3A). This was corroborated by gene expression based 

predictions of tumor purity using the ESTIMATE method (Student T-test p value < 2.2e-16; 

Figure 3B) (Yoshihara et al., 2013). The ESTIMATE method has been optimized to quantify 

tumor-associated fibroblasts and immune cells (Yoshihara et al., 2013), and the convergence 

of decreased ABSOLUTE and decreased ESTIMATE tumor purity confirms previous 

indications of increased presence of macrophages/microglia and neuroglial cells in MES 

GBM (Bao et al., 2006; Engler et al., 2012; Gabrusiewicz et al., 2016; Ye et al., 2012). The 

mean simplicity score of samples classified as MES was 0.48 which was significantly less 

than mean simplicity scores of samples classified as PN (Wilcoxon rank test p value < 

0.003) and CL (Wilcoxon rank test p value < 1.13e-5), confirming increased transcriptional 

heterogeneity.

Tumor-associated macrophages are a major source of tumor-associated non-neoplastic cells. 

In the brain, macrophages can be categorized as microglia, the resident macrophages in the 

central nervous system, and circulation-derived monocytes. Comparison of transcriptional 

levels of the macrophages/microglial markers integrin subunit alpha M (ITGAM, also 

known as CD11B) and allograft inflammatory factor 1 (AIF1, also known as IBA1) in 37 

GBM-neurosphere pairs revealed that the two genes are not expressed in cultured cells but 

were highly transcribed in GBM, in particular in those classified as mesenchymal (Figure 
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3C). We found increased ITGAM and AIF1 protein expression in six GBM transcriptionally 

characterized as mesenchymal, compared to 12 non-MES GBM (Figure 3D). An unbiased 

quantification of macrophage/microglial (AIF1+) percentage using the Caliper Vectra image 

system and InForm software (Figure S3A, S3B) in twelve of these cases showed that the 

frequency of AIF1+ cells was significantly greater in MES (n = 4) vs. non-MES (n = 8) 

(median 38% vs. 16%, Wilcoxon rank test p value < 2.2e-16). (Figure S3A, S3B).

To comprehensively determine the cellular components of the tumor microenvironment 

across different transcriptional subtypes, we used the CIBERSORT in silico cytometry 

method (Newman et al., 2015). Upon filtering samples with classification simplicity scores 

less than 0.05, we evaluated 22 different immune cell types in 86 PN, 137 CL, and 106 MES 

samples (Table S5). We found that the tumor promoting M2 macrophage gene signature 

(Hambardzumyan et al., 2015) showed a greater association with the MES subtype (13%) 

relative to the PN (5%) and CL (6%) subtypes (Figure 3E), consistent with previous analysis 

of the TCGA database (Doucette et al., 2013; Gabrusiewicz et al., 2016). In addition to the 

M2 macrophage gene signature, there was also a significantly greater fraction of MES 

samples that expressed the proinflammatory M1 macrophage (Wilcoxon rank test p value = 

0.004) and neutrophil (Wilcoxon rank test p value = 1.31e-12) gene signatures. Meanwhile, 

the activated natural killer cell gene signature (Wilcoxon rank test p value = 5.5e-4) was 

significantly reduced in the MES subtype and the resting memory CD4+ T cell gene 

signature (Wilcoxon rank test p value = 2.56e-7) was significantly reduced in the PN 

subtype. The association of the tumor-intrinsic MES GBM subtype with increased levels of 

M2 macrophages may imply that these GBMs are candidates for therapies directed against 

tumor-associated macrophages (Pyonteck et al., 2013). Likewise, the activated dendritic cell 

gene signature (Wilcoxon rank test p value = 3.0e-4) (Figure 3E) was significantly greater in 

the CL subtype, suggesting this subtype may benefit from dendritic cell vaccines (Palucka 

and Banchereau, 2012). This result contrasts a previous study suggesting that MES GBM 

patients treated with dendritic cell vaccination were likely to benefit (Prins et al., 2011).

Molecular classification based on tumor-specific DNA methylation profiles identified six 

distinct subtypes of primary glioma, including three IDHmut classes (M1 – M3) and three 

IDH-WT groups (M4 – M6) (Ceccarelli et al., 2016). We compared the frequency of 

immune cells across the three IDH-WT DNA methylation subtypes consisting of 87, 157, 

and 33 cases in LGm4, LGm5, and LGm6, respectively (Figure S3C). Among the 22 

immune cell types we examined, we observed increases in neutrophils (Mood's test p value 

< 0.01) and M2 macrophages in LGm5. LGm5 was found to be enriched for the MES 

expression subtype in the original publication.

NF1 deficiency of tumor cells increases infiltration of tumor associated macrophages/
microglia

MES GBMs frequently deactivate NF1 through genomic copy loss or somatic mutations 

(Verhaak et al., 2010). Formation of dermal neurofibromas in the context of NF1 loss of 

heterozygosity has been reported to be context and microenvironment dependent, suggesting 

that NF1 may play a role in organizing the microenvironment (Le et al., 2009). NF1 deleted/

mutated GBMs showed reduced tumor purity compared to GBMs with wild-type NF1 
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(Wilcoxon rank test p value = 7e-4), and specifically within the MES subtype (Wilcoxon 

rank test p value = 0.017) (Figure S4A). Consequently, the M2 macrophage gene signature is 

significantly greater in NF1 deficient cases (Figure S4B, Wilcoxon rank test p value = 5e-3 

and 0.084). To further establish the association of NF1 deficiency with infiltration of tumor 

associated macrophages/microglia, we performed immunofluorescence (IF) staining of AIF1 

and NF1 on six TCGA IDH-WT GBMs. We observed an inverse correlation between NF1 

and AIF1 staining (Wilcoxon rank test p values < 0.05, Figure 4A, B). We quantified this 

effect by measuring the distance between NF1 deficient tumor cells and macrophages/

microglia through an immunohistochemistry (IHC) based automated quantitative pathology 

imaging system. We found that AIF1+ cells were in significantly closer proximity to NF1- 

cells than NF1+ cells across 30 human GBMs (Wilcoxon rank test p values < 1e-3, Figure 

4C, D). Consequently, the number of AIF1+ cells significantly decreased with increasing 

NF1 expression (Wilcoxon rank test p values < 0.01, Figure 4E). These results suggest that 

NF1 deactivation may promote macrophages/microglia recruitment in tumors. We evaluated 

the effect of NF1 deactivation on macrophages/microglia recruitment in vitro. We knocked 

down NF1 using two different hairpins in TS603 human NF1 wild-type glioma cells (Figure 

4F, G)(Rohle et al., 2013), and measured the recruitment of both human cultured microglial 

cells and freshly isolated GBM associated macrophages using a transwell assay (Figure 4H, 

I, J, K). NF1 knock down resulted in a 47% and 56% increase in recruitment of freshly 

isolated GBM associated macrophage cells for shRNA #5 and #8, respectively (Figure 4K, 

paired Student t-test p values < 0.05). Consistent with this, recruitment of human microglia 

cells increased by 44% and 21% following NF1 knockdown by shRNA #5 and #8, 

respectively (Figure 4J, paired Student t-test p values < 0.05). These data substantiate the 

hypothesis that NF1 deactivation in glioma cells results in macrophages/microglia attraction.

Taken together, our in silico analyses and biological validations demonstrate that genomic 

alteration-induced NF1 deficiency of tumor cells drives macrophages/microglia infiltration 

into the tumor-associated microenvironment.

Phenotypic plasticity upon GBM recurrence

GBM has long been hypothesized to progress along a PN to MES axis (Phillips et al., 2006). 

To determine the relevance of this transition process in IDH-WT glioma evolution, we 

performed a longitudinal analysis of the subtype classification and tumor-associated 

microenvironment in sample pairs obtained at diagnosis and first disease recurrence from 

124 glioma patients. The cohort included 96 initial GBM and first recurrence pairs, eight 

pairs of primary low grade glioma and matching secondary GBM, and 20 pairs of primary 

and recurrent low grade glioma. Gene expression profiles of 78 tumor pairs were generated 

using transcriptome sequencing, and profiles of the remaining pairs were generated using 

Affymetrix (n = 31) and Illumina (n = 15) microarrays. To facilitate exploration of this 

dataset, we have made it available through a webportal (http://recur.bioinfo.cnio.es/) 

associated with GlioVis (Bowman et al., 2017). We used a gene expression signature 

(Baysan et al., 2012) to determine that 33 of 124 cases were IDHmut or hypermethylated 

(known as the GCIMP phenotype) at presentation and recurrence (Table S6). We used the 

renewed gene signatures and classification method to determine molecular subtype of the 91 

pairs of IDH-WT cases and found that expression class remained consistent after disease 
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recurrence for 50 of 91 IDH-WT cases (55%) (Figure 5A). The MES subtype was most 

stable (65%) while the CL (51%) and PN (41%) subtypes were less frequently retained. Ten, 

thirteen, and eighteen post-treatment tumors switched subtypes to become CL, MES and PN 

at disease recurrence, respectively, indicating that PN and MES increased in frequency after 

recurrence while the CL subtype was least frequently found (Figure 5A). The CL expression 

subtype was previously found to be most sensitive to intensive therapy, suggesting that 

therapy provides a competitive advantage for non-CL cells (Verhaak et al., 2010), which 

may be tied into the reduced EGFR expression frequency at recurrence (van den Bent et al., 

2015), that may explain the reduced post-treatment incidence of the CL subtype. Despite a 

numerical increase in frequency of the MES subtype from primary disease (n = 37) to 

recurrent tumor (n = 42), the difference was not significant (Proportion test p value = 0.27).

We observed a significant difference in transcriptional simplicity between primary GBM 

retaining their expression subtype and those that switched to a different phenotype (Figure 

5B). GBMs with a primary tumor simplicity score greater than average (0.46), indicating 

lower transcriptional heterogeneity, were classified as the same subtype in 30 of 45 (67%) 

cases, compared to 20 of 46 (43%) cases with primary tumor simplicity scores below 

average (Fisher exact test p value = 0.02) that switched subtype.

For comparison, we additionally performed the M1 – M6 DNA methylation based 

classification on 27 pairs of primary/recurrent gliomas (Table S6). DNA methylation subtype 

switched upon tumor progression in four of 27 cases. Of the four cases that switched DNA 

methylation class, one has been described as an example of extreme divergent evolution 

(Kim et al., 2015), with overlap in mutations between primary and recurrent tumor sample 

of less than 10%. The other three cases with switched methylation classes showed 

substantial differences in DNA copy number profiles between primary and recurrent tumors 

(Figure S5A), similarly suggesting significant genomic divergence. These results suggest 

that DNA methylome based classification has higher consistency between different time 

points compared to transcriptome subtypes (15% of 27 pairs per methylome subtype vs. 

55% of 91 pairs per transcriptome subtype, Fisher's exact test p value = 1.7e-4).

Microenvironment transitions upon GBM recurrence

Debulking surgery, radiotherapy, and chemotherapy provide therapeutic benefit but induce 

tumor evolution by providing a competitive advantage to therapy resistant glioma cells. The 

tumor microenvironment plays an important role in providing nutrients and may influence 

the evolutionary process. We explored this possibility by comparing the tumor-associated 

microenvironment in primary and recurrent GBMs using CIBERSORT (Table S6) (Newman 

et al., 2015). A comparison between 91 primary and recurrent IDH-WT tumors revealed a 

decrease in monocyte gene signature expression at recurrence, suggesting relative depletion 

of circulation derived monocytes (Figure 5C). Next, we dissected microenvironment 

fluctuations between diagnosis and recurrent tumors across different subtype combinations. 

Primary non-MES (CL or PN) tumors showed relatively high tumor purity and, 

consequently, recurrent MES tumors classified as non-MES demonstrated a relatively global 

decrease of immune cells while non-MES cases transitioning to MES at recurrence 

represented increased immune cell fractions (Figure 5D). In contrast to the trend of 
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monocyte depletion, the imputed M2 macrophage frequency was significantly higher at 

recurrence in cases transitioning to MES (Figure 5E). This observation converges with the 

higher predicted fraction of M2 macrophages in primary MES GBM relative to primary non-

MES GBM. We validated the increase in macrophages using immunostaining of AIF1 

expression in two primary-recurrent GBM pairs which were classified as CL to MES (Figure 

5F). AIF1 immunoexpression was restricted to macrophages/microglia, cells exhibiting 

either ameboid or ramified morphology, with no expression in glioma tumor cells (Figure 

5F, Figure S3). Quantitative analysis of microglia frequency using Inform software for 

automated pathology imaging processing confirmed a significantly higher presence (p value 

= 2.25e-11 and 2.12e-13 for patient #1 and #2, respectively) of AIF1+ cells at MES 

recurrence (Figure 5G, Figure S3). These findings further solidify the association between 

MES GBM and macrophage/microglia and extend this mutual relationship to disease 

recurrence. Compared to primary MES tumors, MES tumors at recurrence showed an 

increase in transcriptional activity associated with non-polarized M0 macrophages, which 

has been previously described (Gabrusiewicz et al., 2016), but also dendritic cells. In 

contrast, primary PN GBM were found to contain significantly higher fractions of five 

immune cell categories compared to recurrent PN GBM, indicating a relative absence of 

immune infiltration in PN GBM upon recurrence.

We evaluated the effect of transcriptional subtype on patient survival. The analysis was 

restricted to 54 cases for whom annotation on overall survival (OS) time and time to disease 

progression (PFS) were available and with high simplicity scores, indicating low 

transcriptional heterogeneity. Patients whose primary tumor was classified as MES trended 

towards adverse overall survival (logrank test p = 0.09 with HR = 1.68) (Figure 6A). This 

pattern was retained in patients whose recurrent glioma was classified as MES, again 

trending towards significance (logrank test p = 0.11 with HR = 1.60) (Figure 6B). 

Consequently, cases for whom both primary and recurrent tumor were classified as MES 

subtype showed the least favorable outcome, suggesting an additive effect of transcriptional 

subtype at different time points (Figure 6C, Figure S5B, S5C, S5D).

Treatment-induced immunological microenvironment changes upon GBM recurrence

Temozolomide (TMZ) treatment of gliomas can induce hypermutation (Hunter et al., 2006; 

Kim et al., 2015). Missense mutations may generate neoantigens that can be recognized by 

CD8+ T cells (Schumacher and Schreiber, 2015). Exome mutation data were accessible for 

45 pairs in our cohort. Six recurrent GBM (HMR) were identified as being hypermutated 

(>=400 SNVs). The mutation spectrum of the six HMRs were characteristic of a typical 

TMZ induced mutational signature (Figure S6) (Alexandrov et al., 2013). For the five pairs 

of HMR with transcriptomes available, the predicted frequency of CD8+ T cells was 

significantly increased at recurrence in comparison to their primary tumors (Wilcoxon rank 

test p value = 8e-3) (Figure 7A). This observation was corroborated by comparing seven 

hypermutated primary GBMs to 238 non-hypermutated GBMs (Wilcoxon rank test p 

value=0.031) (Figure 7B). The observation suggests that patients with hypermutated tumors 

may have a more immunological reactive microenvironment that may be responsive to 

immune checkpoint inhibitors (Sharma and Allison, 2015).
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Preclinical studies suggested radiation may increase the recruitment of T cells in the tumor 

microenvironment (Deng et al., 2014; Zeng et al., 2013). As such, we compared the 

microenvironment of primary GBM treated with radiation therapy and separated short term 

relapses (PFS < 6 months, n = 27) from late relapses (PFS > 12 months, n = 21) (Table S7). 

We observed no significant differences between primary tumors with short-term and long-

term relapse. When comparing relapse GBMs, we found that short-term relapse GBMs 

showed a significantly higher predicted presence of M2 macrophages and CD4+ T cells 

(CD4+ T memory resting and CD4+ follicular helper cells) after radiation, compared to long-

term relapse tumors (Figure 7C). M2 macrophages have been speculated to play a role in 

resistance to radiotherapy (Meng et al., 2010; Ruffell and Coussens, 2015) and macrophage 

targeting immunotherapy (Pyonteck et al., 2013; Ries et al., 2014) may play a 

radiosensitizing role. The increase of CD4+ T cells at recurrence of short term relapse 

tumors points towards inhibiting CTLA-4 as adjuvant therapy to radiation.

Discussion

Transcriptome profiling of tumor samples is a commonly used modality for interrogating 

pathway functionality and phenotype based patient classification. The transcriptional 

footprint left by the tumor microenvironment, which may constitute 10-80% of cells in a 

tumor biopsy (Yoshihara et al., 2013), can obscure the true activity of the signaling network 

(Isella et al., 2015; Kim and Verhaak, 2015). Here, we employed in silico methods to 

integrate mRNA expression profiles from glioma samples and glioma cell culture models to 

provide insights into glioma-intrinsic pathway activities and classification, and to 

deconvolute the glioma associated stroma into its immunological cellular components.

GBM expression subtype classification has emerged as an important concept to better 

understand the biology of this devastating disease (Dunn et al., 2012; Huse et al., 2011; 

Sturm et al., 2014). Robust classification of new GBM tumors is therefore critical to ensure 

consistency in reporting between different studies. Our updated methods, released through a 

R-library, were found to be highly robust and provide a standardized strategy for 

classification of gliomas. The transcriptional glioma subtypes defined through clustering 

based on tumor-intrinsic genes strongly overlapped with the proneural, classical, and 

mesenchymal subtypes but identified the neural subtype as normal neural lineage 

contamination. We observed that the mesenchymal GBM subtype continued to associate 

with the presence of tumor-associated glial and microglia cells. Mesenchymal glioma cell 

differentiation status has been found to correlate with enrichment of macrophages/microglia 

(Bhat et al., 2013; Kreutzberg, 1996). Our results confirm that a macrophage/microglia rich 

microenvironment can shape a mesenchymal glioma cell phenotype. However, we also 

found that genetic deactivation of NF1 associated with attracting macrophages/microglia, 

suggested that a two-way interaction exists between tumor cells and microenvironment. 

Further studies are needed to identify the mechanism of NF1 regulated chemotaxis, which 

may result in the development of agents that are able to repress the recruitment of 

macrophages/microglia as a therapeutic modality.

Longitudinal analysis of tumor samples is complicated by the lack of tissue collections 

including such pairs. Through aggregation of several datasets, we compiled a cohort of 124 
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glioma pairs, including 91 pairs of IDH-WT tumors. Comparison of pairs of initial gliomas 

and first disease recurrence did not identify the trend of proneural GBM transitioning to a 

mesenchymal phenotype that has often been suspected (Phillips et al., 2006). Mesenchymal 

subtype at diagnosis and at disease recurrence correlated with relatively poor outcome. The 

immune microenvironment of recurrent IDH-WT GBM showed a reduction in blood derived 

monocytes which may reflect lower penetration through the blood brain barrier as a result of 

radiotherapy (van Vulpen et al., 2002). While the frequency of M2 macrophage/microglia 

was increased in recurrent mesenchymal GBM compared to primary non-mesenchymal 

GBM, the overall fraction of M2 macrophage/microglia remained stable. This possibly 

suggests that the majority of these cells are derived from resident CNS macrophages rather 

than through active recruitment from the circulation. Our analysis resulted in two insights 

with potentially important therapeutic implications. We showed an association between the 

presence of M2 macrophages and poor response to ionizing radiotherapy. While further 

optimization of macrophage inhibiting agents is required before they become clinically 

useful (Quail et al., 2016), our results may provide an imperative for combination of 

radiotherapy and M2 macrophage inhibiting agents (Pyonteck et al., 2013; Xu et al., 2014). 

Second, we identified a correlation between hypermutation and increased frequency of 

CD8+ lymphocytes, both at primary diagnosis and at disease recurrence, albeit with different 

mutational signatures. This subset of patients may be responsive to checkpoint inhibition 

blockade, to which limited successes have been reported (Bouffet et al., 2016; Johanns et al., 

2016).

In summary, our study defines a strategy to determine transcriptional subtype and associates 

expression subtypes to the tumor-associated immuno-environment. Our findings may aid in 

the implementation of immunotherapy approaches (Blank et al., 2016) in a disease type with 

very limited treatment options. Collectively, our results improve our understanding of 

determinants of GBM subtype classification, elucidate the critical impact of the tumor 

microenvironment, and provide handles on the interpretation of transcriptional profiling of 

glioma.

Contact for Reagent and Resource Sharing

Further information and requests for reagents may be directed to, and will be fulfilled by the 

Lead Contact: Roel G.W. Verhaak (roel.verhaak@jax.org)

Experimental Model and Subject Details

Cell lines and cell culture

Patient-derived glioma stem cells (GSCs, TS603) were described previously (Hu et al., 

2016). The GSCs were cultured in NSC proliferation media (Millipore Corporation, 

Billerica, MA) with 20 ng/ml EGF and 20 ng/ml bFGF. Human microglia cells were 

purchased from ScienCell and were cultured in microglia completed media as recommended 

by vendor. GBM patient-derived macrophages were isolated by CD14 microbeads using 

immunomagnetic method as described previously(Gabrusiewicz et al., 2016).

Wang et al. Page 12

Cancer Cell. Author manuscript; available in PMC 2018 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The pLKO.1 shRNAs for targeting NF1 were purchased from Sigma. Lentiviruses were 

produced in 293T cells (ATCC) with packaging system (pCMVR8.74, pMD2.G, Addgene) 

as per Vendor's instruction.

Human GBM biospecimens for RNA sequencing

The GBM tumor tissues were collected and named in the order that they were acquired. The 

primary tumors matched sphere cell lines were isolated from fresh tissues. Each tissue was 

enzymatically and mechanically dissociated into single cells and grown in DMEM/F12 

media supplemented with B27 (Invitrogen), EGF (20 ng/ml), and bFGF (20 ng/ml), resulting 

in neurosphere growth. All cell lines were tested to exclude the presence of Mycoplasma 

infection. Human tissue collection was performed with written informed consent from 

patients, using a protocol approved by the institutional review board (IRB) of The University 

of Texas M.D. Anderson Cancer Center (LAB04-0001, PA16-0408),.

Tissues from nine pairs of initial and matched recurrent GBMs were obtained from Henry 

Ford Hospital in accordance with institutional policies and all patients provided written 

consent, with approval from the Institutional Review Boards (Henry Ford Hospital IRB 

protocol #402).

The frozen tissue from 44 patients with initial and recurrent GBM that received resection at 

Samsung Medical Center and Seoul National University Hospital were provided by Dr. 

Nam's lab. Surgery specimens were obtained in accordance to the Institutional Review 

Board (IRB) of the Samsung Medical Center (No. 2010-04-004) and Seoul National 

University Hospital (No. C-1404-056-572), with written informed consent from all patients.

Method Details

Generation of the primary and recurrent glioma RNA-Seq datasets

U133A array profiles for 533 primary GBM, and RNA-Seq data for 166 primary and 13 

recurrent GBM were obtained from the TCGA portal https://tcga-data.nci.nih.gov/tcga/. 

Mutation calls and DNA copy number profiles were obtained for all samples, where 

available. All non-TCGA data used in this study is publicly available as raw data. Processed 

primary/recurrence expression data can be analyzed through GlioVis portal http://

recur.bioinfo.cnio.es/.

Regarding the pairs of primary and recurrent gliomas from from Henry Ford Hospital (n = 

12), all RNA samples tested were obtained from frozen specimens. All of the recurrent 

GBMs had been previously treated with chemotherapy and radiation. Three cases had a 

history of lower grade astrocytoma prior to the first GBM (HF-2869/HF-3081/HF-3162). 

Tumors were selected solely on the basis of availability. RNA-Seq libraries were generated 

using RNA Truseq reagents (Illumina, San Diego, CA, USA) and paired-end sequenced 

using standard Illumina protocols. Read length was 76 base pairs for cases sequenced by 

TCGA and from Henry Ford (processed at MD Anderson).

RNA-Seq data on frozen tissue from 44 patients with initial and recurrent GBM from 

Samsung Medical Center and Seoul National University Hospital were provided by Dr. 
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Nam's lab. Affymetrix CEL files of 39 pairs of initial and recurrent glioma were retrieved 

from the Gene Expression Omnibus (GEO accession GSE4271, GSE42670, GSE62153)(Joo 

et al., 2013; Kwon et al., 2015; Phillips et al., 2006). The expression profiles of the 23 pairs 

from GSE4271 were determined using Affymetrix HG-U133 GeneChips, the 1 pairs from 

GSE42670 were analyzed using the Affmetrix HuGene-1-0-st platform, the 15 pairs from 

GSE62153 were analyzed using Illumina Human HT-12 V4.0 expression BeadChip. The 

RNA sequencing data of 14 and 5 pairs of primary and recurrent low grade glioma were 

from TCGA LGG cohort and available through the European Genome-phenome Archive 

(EGA; http://www.ebi.ac.uk/ega/), EGAS00001001255, (Mazor et al., 2015), respectively. 

The RNA sequencing data of 9 pairs of primary and recurrent glioblastoma have been 

submitted to EGA under accession number EGAS00001001033. Genome wide DNA copy 

number profiling and exome sequencing on thirteen TCGA tumor pairs and nine of ten 

Henry Ford tumor pairs were performed and data was analyzed using standard protocols and 

pipelines as previously described (Kim et al., 2015)

Evaluating datasets integrating stability of the classification system

To evaluate the cross platform classification stability, we collected RNA sequencing data of 

162 primary GBMs (Brennan et al., 2013) for which an Affymetrix HT-U133A gene 

expression profile was also available from the TCGA dataset. We observed a low Pearson 

Correlation Coefficient (< 0.15) between RNA sequencing based reads per kilobase of 

transcript per million reads (RPKM) and Affymetrix HT-U133A profiles in eighteen cases 

and these were removed from further analysis. This results in 144 pairs of transcriptomes to 

assess the concordance between classification results of the newly developed 50-gene 

signatures based classification system between RNAseq and microarray based profiling 

platform. As shown in Figure S1H, a total of 134 (93%) cases received the same subtype 

across different platforms.

There are several commonly used metrics for quantifying the expression on RNA-seq 

platform, such as reads per kilobase per million mapped reads (RPKM), k-mers per kilobase 

per million mapped k-mers (KPKM) and transcripts per million (TPM)(Patro et al., 2014). 

To evaluate the subtyping concordance when using different expression quantification 

metrics, we collected a set of 46 samples with transcriptome profiled and quantified outside 

of our lab with three metrics RPKM, KPKM and TPM. As shown in Figure S1I, our 

classification system achieved a 100% consistence while using different quantification 

metrics.

For some of the GBM datasets, not every IDH status was determined when using the 

classification system. We evaluated the interference of embedded non-IDH-WT samples in a 

GBM cohort. A set of 369 cases in the TCGA GBM cohort are IDH-WT and GCIMP-, 42 

and 122 cases are IDHmut/GCIMP+ and status unknown, respectively. We performed the 

classification system on the 369 IDH-WT cases and entire 533 GBMs separately. Then we 

compared the classification results of the 369 IDH-WT cases in two different runs. As 

shown in Figure S1J, 97% IDH-WT GBMs received the same subtyping results.

Integrating datasets from various sources may be impacted by batch effects. We have 111 

and 179 RNA sequenced profiles of GBMs collected independently from TCGA dataset and 
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Samsung Medical Center. We combined the 290 samples from the two datasets together and 

performed the classification. While comparing the subtyping results with the subtypes 

identified in separate dataset, as shown in Figure S1K, 13 cases showed different subtypes, 

resulting in a 93% concordance.

As the classification system using resampling method to build a background distribution for 

determining the empirical p values for classification, the sample size of inputted dataset for 

performing the classification has an impact on the subtyping results. To evaluate this effect, 

we randomly selected samples from the 533 TCGA GBMs profiled using microarray or the 

111 in house (SMC samples) RNA sequenced GBMs and performed the classification 

system independently, and we repeated the random selection procedures 50 times. Then we 

compared the subtyping results within the randomly generated sample sets with the 

classification results received using the entire 533 TCGA or 111 SMC GBMs. As shown in 

Figure S1L (left), the newly developed classification achieved a 90% concordance between 

sample sets with size >= 20 and the entire 533 TCGA or 111 SMC GBMs. Upon removing 

non-simplex samples from the original sample sets, the classification performance per 

sample size improves (Figure S1L, right).

Transcriptome data processing

The latest version of custom CDF files (Version19, http://brainarray.mbni.med.umich.edu) 

(Dai et al., 2005; Sandberg and Larsson, 2007) were used to map probes from the 

Affymetrix HG-U133A and HuGene-1_0-st GeneChip platforms to the Ensemble transcript 

database, combined in one probe set per gene, and normalized using the AROMA package 

with default parameters, resulting in RMA normalized and log transformed gene expression 

values (Bengtsson et al., 2009). All RNA sequencing data was processed by the PRADA 

pipeline (Torres-Garcia et al., 2014). Briefly, reads were aligned using BWA against the 

genome and transcriptome. After initial mapping, the aligned reads were filtered out if their 

best placements are only mapped to unique genomic coordinates. Quality scores are 

recalibrated using the Genome Analysis Toolkit (GATK), and duplicate reads are flagged 

using Picard. Mapped features were quantified and normalized per kilo base of transcript per 

million reads (RPKM) and were converted to a log2 scale to represent a gene expression 

level. RPKM values measuring the same gene that mapped to the Ensemble transcript with 

longest size were selected to obtain one expression value per gene and sample. RPKM 

values were converted to a log2 scale to represent gene expression level. The statistical 

environment R was used to perform all the statistical analysis and graph plots.

Deriving GBM intrinsic subtype signatures

We performed consensus non-negative matrix factorization (CNMF) clustering method to 

identify distinct subtypes among the 369 IDH-WT primary GBMs based on the 7,425 BFGs 

we established using single glioma cells, GBM-neurosphere pairs and comparison of core vs 

leading edge tumors. Genes were ranked according to their maximum absolute deviation 

(MAD) values from high to low in the 369 by 7425 expression matrix. When the 369 IDH-

WT GBMs were clustered into three subtypes, we received the highest average clustering 

cophenetic scores (Table S1), resulting the identification of three distinct subtypes among 

the 369 IDH-WT GBMs. A set of 256 GBMs was recognized as core samples based on a 
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positive silhouette width resulting 94, 70 and 92 cases were clustered as subtype1, subtype2 

and subtype3, respectively, which were later names as MES, PN and CL subtype. Signature 

genes per cluster were selected on the basis of differences in gene expression level and were 

considered significant if they reached the cut-off value with t-test p value < 1e-3 for higher 

expressed in this subtype, while also showing a significant lower expression with t-test p 

value < 1e-3 in the other two subtypes. 64, 50 and 330 genes were identified as candidate 

signature genes for MES, PN and CL, respectively. In the original gene signatures, genes 

could be either down-regulated or up-regulated, while only up-regulated genes (n = 50 per 

gene signature) were selected for revised gene signatures by keeping the same size of 

signature genes for each subtype as well.

Molecular classifications based on ssGSEA enrichment scores

Single sample gene set enrichment analysis was performed as follows. For a given GBM 

sample, gene expression values were rank-normalized and rank-ordered. The Empirical 

Cumulative Distribution Functions (ECDF) of the signature genes and the remaining genes 

were calculated. A statistic was calculated by integration of the difference between the 

ECDFs, which is similar to the one used in GSEA but is based on absolute expression rather 

than differential expression (Barbie et al., 2009). Since the ssGSEA test is based on the 

ranking of genes by expression level, the uncentered and log-transformed U133A and 

RPKM expression levels were used as input for ssGSEA. Since the scores of the three 

signatures were not directly comparable, we performed a resampling procedure to generate 

null distributions for each of the four subtypes. First we generated a large number of virtual 

samples in which each gene obtains its expression level by randomly selecting an expression 

value of the same gene in the remainder of the samples. Then, the three ssGSEA scores for 

each signature were calculated. Following this procedure, we generated a large number (>= 

1,00,000) of random ssGSEA scores for each subtype, to build the null distribution and to 

give empirical p values for the raw ssGSEA scores of each sample. By testing on multiple 

datasets with different sample sizes, we found the resampling generated distribution could be 

replaced with Student-T distribution (sample size > 30) or Normal distribution (sample size 

> 50) for getting very similar results. R-library with the code and expression matrices used is 

provided as Method S1.

Evaluate the simplicity of subtype activation

For a single sample, we decreased rank the empirical p values for each subtype to generate 

order statistics as RN–1, RN–2 … R1, R0. In particular, R0 equals to the minimum empirical p 

value and points to the dominant subtype, i.e., the most significantly activated subtype. The 

accumulative distance to the dominant subtype (ADDS) was defined as:

Similarly, the accumulative distance between non-dominant subtypes (ADNS) as:
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Obviously, the ADDS and ADNS are positive and negative correlated with single activation, 

respectively. Hence, we defined the simplicity score by combing ADDS and ADNS together 

and corrected with a constant  as follows:

Establishment of datasets of primary tumors and matched sphere cell lines

To minimize any batch effect the downstream molecular analyses were performed on 

identical cell culture batches. Total RNA from formalin fixed, paraffin embedded tumor 

tissues and matching neurospheres was prepared using the Masterpure complete DNA and 

RNA isolation kit (Epicenter) after proteinase K digestion per to the instructions from the 

manufacturer. Paired-end Illumina HiSeq sequencing assays were performed resulting in a 

medium number of 50 million 75bp paired end reads per sample. We employed the PRADA 

pipeline to process the RNA sequencing data (Torres-Garcia et al., 2014). In short, 

Burroughs-Wheeler alignment, Samtools, and Genome Analysis Toolkit were used to map 

short reads to the human genome (hg19) and transcriptome (Ensembl 64) and RPKM gene 

expression values were generated for each of the 135,994 transcripts of 21,165 protein 

coding genes in Ensembl database.

RNA isolation and qRT-PCR

GSCs (TS603) were infected by lentivirus carrying short hairpins to target NF1 gene. The 

pLKO.1 shRNAs were purchased from Sigma. The cells were harvested after 48 post-

infection and RNA was isolated with RNeasy® Mini Kit (Qiagen), and then used for first-

strand cDNA synthesis using random primers and SuperScriptIII Reverse Transcriptase 

(Invitrogen). qRT–PCR was performed using Power SYBR Green PCR Master Mix 

(Applied Biosystems). The sequences of NF1 primers are: forward-

CAGAGAGCCTTGAGGAAAACC, reverse- CTGGCTAACCACCTGGTATAAAC. The 

relative expression of genes was normalized using ribosomal protein L39 (forward-

CAGCTTCCCTCCTCTTCCTT, reverse- GCCAGGAATCGCTTAATCC) as a 

housekeeping gene.

Immunoblotting (IB), immunohistochemistry (IHC) and immunofluorescence (IF)

For immunoblotting, cells were harvested, washed with phosphate buffered saline, lysed in 

RIPA buffer (150 mM NaCl, 50 mM Tris [pH 8.0], 1.0% Igepal CA-630, 0.5% sodium 

deoxycholate, 0.1% sodium dodecyl sulfate [SDS]; Sigma); and frozen tumor sections were 

lysed using RPPA lysis buffer (1% Triton X-100 50mM HEPES pH 7.4, 150mM NaCl, 

1.5mM MgCl2, 1mM EGTA, 100mM NaF, 10mM Na pyrophosphate, 1mM Na3VO4, 10% 

glycerol). Both types of lysate buffer contain with protease inhibitor cocktail tablet complete 
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mini (Roche Diagnostics), phosphatase inhibitor cocktail 2 (Sigma) and 1 μM DTT, and 

centrifuged at 10,000 × g at 4°C for 15 min. Protein concentration was measured using the 

BCA kit (Thermo Scientific - Pierce #23225). Protein lysates were subjected to SDS-

polyacrylamide gel electrophoresis on 4-12% gradient polyacrylamide gel (NuPage, Thermo 

Fischer Scientific), transferred onto nitrocellulose membranes which were incubated with 

indicated primary antibodies, washed, and probed with HRP-conjugated secondary 

antibodies. The primary antibodies include ITGAM (CD11B) (Sigma Aldrich, 

#HPA002274), AIF1 (IBA1) (Wako, #016-20001), GFAP (Cell Signaling, #3670), NF1 

(clone McNFn27b, GeneTex, #GTX15776), Actin (Sigma Aldrich, A5044), Vinculin (EMD 

Millipore, # 05-386) and Tubulin (Cell Signaling, #2128).

For IHC staining, brain tumor sections were incubated with the primary antibodies for 1 

hour at room temperature (RT) or overnight at 4°C after deparaffinization, rehydration, 

antigen retrieval, quenching of endogenous peroxidase and blocking. The sections were 

incubated with horseradish peroxidase (HRP)-conjugated polymer (DAKO) for 40 minutes 

and then Diaminobenzidine using Ultravision DAB Plus Substrate Detection System 

(Thermo Fischer Scientific) for 1-10 minutes at RT, followed by hematoxylin staining. For 

IHC double staining, the tumor sections were incubated with MACH 2 Double Stain 2 

(Biocare Medical) for 20-30min; and then the sections were stained by Biocare's Warp Red 

(Biocare Medical) and subsequently by DAB detection system (Thermo Fischer Scientific) 

for 1-10 minutes at RT, followed by hematoxylin staining. The primary antibodies for IHC 

staining include AIF1 (Abcam, ab178864) and NF1 (clone McNFn27b, GeneTex 

#GTX15776).

For IF staining, OCT frozen brain sections were thawed at RT for 30 minutes, rinsed and 

rehydrated with phosphate buffered saline 3 times. After blocking with PBS buffer 

containing 10% FBS, 1% BSA and 0.3% Triton, the sections were incubated with the 

primary antibodies (AIF1, ab178864; NF1, GTX15776) overnight at 4°C. The samples were 

then incubated with species-appropriate donkey secondary antibodies coupled to AlexaFluor 

dyes (488, 594, Invitrogen) for 1 hour at RT. VECTASHIELD with DAPI (Vector 

Laboratories) was used to mount cover slips. The slides were analyzed using Leica DMi8 

microsystems.

Transwell assay

Transwell assays were performed in BD FluoroBlok 96-multiwell insert systems (8.0 μm 

pore sizes) as per manufacturer's protocol (BD biosciences). Human microglial cells or 

patient-derived microphages were seeded in transwell inserts at 1×104 cells/well. After 4 

hours starvation in DMEM/F-12 basal media (Thermo Fischer Scientific) at 37°C, 5% CO2 

incubator, the inserts were transferred into the basal chambers containing 5% FBS or GSC 

(TS603) with NF1 knocking down by shRNA in NSC growth media. After 24 hours 

incubation, the inserts were transferred into a second 96-well plate containing 4 μg/mL 

Calcein AM (BD biosciences) in DPBS. Incubate for 1 hour at 37°C, 5% CO2, fluorescence 

of invaded cells was read at wavelengths of 494/517 nm (Ex/Em) on fluorescent plate reader.
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Single-cell isolation and RNA sequencing data processing

We generated single cell RNA sequencing data as follows. From a single patient, we 

obtained two initial tumor samples from the right and left frontal lobes and a recurrent tumor 

from the left frontal lobe that emerged after concurrent chemoradiotherapy (CCRT) and 

EGFR-targeted treatment. After these three tumor tissues were dissociated, the C1™ Single-

Cell Auto Prep System (Fluidigm, San Francisco, CA, USA) with the SMARTer kit 

(Clontech, Mountain View, CA, USA) was used to capture single cells and to isolate cDNA 

from the cells. With the Nextera XT DNA Sample Prep Kit (Illumina) and HiSeq 2500, we 

sequenced the transcriptomes of 29, 60, and 44 single cells from left, right and relapse 

tumors, respectively. From the sequenced reads (100bp paired-end), 5′-end 30 nucleotides 

were trimmed and mapped on human genome assembly (hg19). For all 133 single cells, 

RPKM values of 23660 genes were obtained by DEGseq (R package) (Wang et al., 2010). 

To identify whether the in-house sequenced single cells were tumor cells, we first performed 

a gene signature based filtering as follows. We compiled the transcriptomes of four tumor 

astrocytes, six fetal astrocytes, twelve mature astrocytes, one neuron, five oligodendrocytes, 

three macrophages/microglia, and two endothelial cells from published datasets(Zhang et al., 

2016). Gene signatures of these human brain cell types were established by using 

CIBERSORT based on the compiled transcriptomes, and glioma cell signature as well. Then 

we assigned seven fraction scores for each of the 133 single cells using CIBERSORT based 

on the signature matrix of seven cell types. A single cell was assigned to the cell type with 

highest fraction score, hence to determine a single cell to be tumor or non-tumor cell 

(Newman et al., 2015). As a result, 98 of 133 cells were classified as tumor cells whereas the 

rest were identified as oligodendrocyte or microglia. Expression profiles of these 98 glioma 

cells were used for further analysis. A set of 95 of the 98 single cells with more than 5,000 

genes detected were retained in the consequent analyses. We also compiled 672 single cells 

from a published dataset (Patel et al., 2014). 502 of the 672 single cells expressed more than 

5,000 genes.

For more conservative identification of non-tumor-like case(s) in the 597 single cells, we 

performed an expression based CNV profiling analysis which is similar to the method used 

in previous publications (Patel et al., 2014). We identified 3,262 significantly differentially 

expressed genes (FDR<0.01) between TCGA tumors vs. normal cases. We then plotted the 

average expression per 60 gene window along genomic coordinates to infer the CNV. We 

clustered the gene expression estimated CNV profile of the 502 or 95 single cells together 

with eight non-tumor cells (human brain tissue isolated microglia, GSE80338)(Szulzewsky 

et al., 2016). For the 502 single cells, the unsupervised hierarchical clustering roughly 

identified eight major subgroups (group size>2), and all the non-tumor cells were clustered 

together with only one single cell (Figure S1A, left). For the 95 single cells, the eight non-

tumor cells and single cells we clustered into two separate clusters without mixture (Figure 

S1A, right). Notably, the CNV profile of the single cell subgroups shows a typical CNV 

pattern of gliomas such as amplification of chromosome 7/12 and deletion of chromosome 

9/10. We removed the single cell which was grouped together with non-tumor cells, and 

hence resulted a 596 single glioma cells population.

Wang et al. Page 19

Cancer Cell. Author manuscript; available in PMC 2018 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We analyzed the distribution of the gene express frequency in the 596 single glioma cells, 

and identified an abnormal low express frequency peak at 5%, while the frequency of genes 

which expressed in more than 5% single cells are approximately followed a uniform 

distribution. We reasoned that the genes expressed in less than 5% are highly suspected to be 

non-tumor cell intrinsically expressed and hence yield the abnormal distribution peak. By 

discarding the 8,214 genes expressed in less than 5% single cells, the retained 14,656 genes 

were considered as the candidate bona fide glioma genes.

Quantification and Statistical Analysis

For quantification of protein staining and measurement of distance between AIF1+ cells to 

NF1+ and NF- cells in GBM tumor sections, the IHC stained images were captured using 

Caliper Vectra Image System and analyzed data were generated using InForm software as 

described previously(Hu et al., 2016). In short, thirty scan fields were selected across the 

entire tumor section. In one tumor slide, the primary tumor of patient #2, nineteen scan 

fields were selected due to the small size of the tumor section. Percentages of the median 

and high levels (2+, 3+) of AIF1 were used for the comparison. AIF1+ cells were first located 

and the nearest NF1+ and NF1- cells within 40 pixels (∼28 μm) of each respective AIF1+ 

cell was defined and calculated using R package. Statistical analysis was performed by using 

Wilcoxon rank test.

Comparisons of neurosphere formation and gene expression by qRT-PCR were performed 

using the unpaired student's t-test. For all experiments with error bars, standard deviation 

was calculated to indicate the variation within each experiment and data, and values 

represent mean ± SD. All other statistical analyses were performed using R package 

(Version 3.2.5), and the detailed information about statistical methods were specified in 

figures/tables.

Data and Software Availability

Data Resources

The accession numbers for the whole transcriptome sequencing data generated in this study 

are EGAS00001001033 and EGAS00001002429.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

Glioblastoma expression subtypes have been related to genomic abnormalities, treatment 

response, and differences in tumor microenvironment. We defined tumor-intrinsic gene 

expression subtypes, which establishes a role for the tumor immune environment in 

shaping the tumor cell transcriptome. Notably, NF1 inactivation resulted in 

chemoattraction of macrophages/microglia. Comparison of matching primary and 

recurrent gliomas elucidated treatment-induced phenotypic tumor evolution, including 

expression subtype switching in nearly half of our cohort, as well as associations between 

microenvironmental components and treatment response. Characterization of the 

evolving glioblastoma transcriptome and tumor microenvironment aids in designing more 

effective immunotherapy trials. Our study provides a comprehensive transcriptional and 

cellular landscape of IDH wild-type glioblastoma during treatment modulated tumor 

evolution. All expression datasets are accessible through http://recur.bioinfo.cnio.es/.
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Highlights

- GBM-intrinsic transcriptional subtypes: proneural, classical, mesenchymal

- NF1 deficiency drives recruitment of tumor associated macrophages/microglia

- Resistance to radiotherapy may associate with M2 macrophage presence

- CD8+ T cells are enriched in temozolomide-induced hypermutated GBMs at 

recurrence
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Figure 1. Molecular classification of IDH-WT GBMs
(A) Filtering tumor associated microenvironment genes. (B) Defining an IDH-WT GBM 

cohort in TCGA. (C) Overview of NMF clustering procedures. (D) Heatmap of 50-gene 

signatures by gene expression subtype. Representative genes are shown for each subtype. 

(E) Frequency of subtype related somatic genomic alterations. Chi-square test was used to 

calculate the distribution difference among three subtypes per genomic variant. See also 

Figure S1, Tables S1 and S2, and Method S1.
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Figure 2. Multi activation of transcriptional subtypes associated with intratumoral heterogeneity
(A) The expression profiles of 369 IDH-WT GBMs were analyzed using Affymetrix 

U133A. The -log(empirical p value) of raw ssGSEA enrichment scores at each signature are 

shown as heatmaps, with dark blue representing no activation and bright red as highly 

activated. Yellow star indicates the secondary activated subtype (empirical p value < 0.05). 

For each panel, the first row shows simplicity score, and the second row indicates 

transcriptional subtype. (B) Comparison of mutation rate, subclonal mutation rate and 

subclonal mutation fraction between IDH-WT GBMs with high and low simplicity scores. p 

values were calculated using Wilcoxon rank test and shown at the top of each panel. 

Boxplots represent 25th and 75th percentiles, with midlines indicating the median values and 

points within the boxes indicating the mean values. Whiskers extend to the lowest/highest 

values of the data sample exculding outliers. The notch displays the 95% confidence interval 

around the median. (C) Kaplan-Meier survival curve by subtype. (D) Transcriptome 

classification of five bulk tumor samples and 501 single GBM cells derived from them. The 

top two row of each panel show the dominant and secondary subtype of the GBM tumor 

bulk. The heatmap of each panel shows the empirical -log(p value) of the ssGSEA scores of 

the derived single GBM cells on each of the three subtype signatures. The bottom row shows 
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the subtype distribution of derived single GBM cells within the same GBM tumor of origin. 

See also Figure S2 and Tables S3 and S4.
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Figure 3. Transcriptional subtypes differentially activate the immune microenvironment
(A, B) Tumor purity of 364 and 369 TCGA IDH-WT GBM samples was determined by 

ABSOLUTE (A) and ESTIMATE (B), respectively. The difference in tumor purity between 

subtypes was evaluated using a two-sample Student t-test. (C) Comparison of ITGAM and 

AIF1 gene expression levels between GBM and derived neurosphere models. N.MES 

indicates non-mesenchymal cases. (D) The upper panel shows ssGSEA enrichment scores 

and associated expression subtype classifications. Bottom panels display protein expression 

of the microglial markers ITGAM and AIF1, astrocyte marker glial fibrillary acidic protein 

(GFAP) and the loading control tubulin and vinculin. (E) Comparison of immune cell 

fractions among subtypes. Immune cell fractions were estimated using CIBERSORT and 

corrected using ABSOLUTE purity scores per sample. The distribution of immune cell 

fractions of 86 PN, 136 CL and 104 MES IDH-WT GBMs with simplicity score>0.05 were 

shown by purple, skyblue and green boxplots, respectively. Median value difference of cell 

fraction among subtypes was evaluated using Mood's test. Boxplots represent 25th and 75th 

percentiles, with midlines indicating the median values and points within the boxes 

indicating the mean values. Whiskers extend to the lowest/highest values of the data sample 

excluding outliers (A-C, E). See also Figure S3 and Table S5.
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Figure 4. Decreased NF1 expression enhances the recruitment of macrophages/microglia in GBM
(A) Quantification of NF1 and AIF1 staining by Immunofluorescence (IF) in 6 GBMs from 

TCGA (IDH-WT). At least 3 regions from each tumor were analyzed (n=30 regions). (B) 

Representative IF images show NF1 and AIF1 staining TCGA IDH-WT GBMs. (C) 

Representative images with IHC double-staining and cell segmentation obtained from 

Caliper InForm analysis software show the close proximity of AIF1+ cells (red) and NF1- 

cells (blue) compared with NF1+ cells (green) in tumor sections from two GBM patients. 

(D) Boxplot of distances from AIF1+ cells to the nearest NF1- and NF1+ cells, respectively 

(4022 AIF1+ cells from 30 GBMs). (E) The appearance of AIF1+ cells within tumor 

sections with the various level of NF1 expression from 30 GBMs. (F) qRT-PCR for NF1 
mRNA levels in patient-derived GSCs (TS603) by the indicated short hairpins (shNT, non-

targeting short hairpin as control). Error bars represent SD of mean, n=3. (G) Immunoblot 

analysis of NF1 protein level in TS603 with short hairpins knocking down. (H, I) 

Representative IF images show the recruited human microglia (H) or GBM patient derived 

macrophages (I) by TS603 with NF1 knocking down in transwell assay. Cartoon depicting 

the experimental approach. (J, K) Quantification of recruited human microglia (J) or GBM 

patient derived macrophages (K) by TS603 with NF1 knocking down in transwell assay. 

Error bars represent SD of means from three independent experiments (J) or three biological 
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replications (K). *, **, *** indicated the Student t-test / Wilcoxon rank test p value <0.05, 

0.01, and 0.001, respectively, by paired student t test. Boxplots represent 25th and 75th 

percentiles, with midlines indicating the median values and points within the boxes 

indicating the mean values. Whiskers extend to the lowest/highest values of the data sample 

excluding outliers (A, D). See also Figure S4.

Wang et al. Page 32

Cancer Cell. Author manuscript; available in PMC 2018 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Microenvironment transition between 91 primary and paired recurrent IDH-WT GBM
(A) Rows and columns of the cross table represents subtype distribution frequency of 

primary and paired recurrent tumors, respectively. (B) Violin plots show the distribution of 

simplicity scores of pairs without (left) and with (right) subtype transition. (C) Red and blue 

boxplots represent the immune cell fraction distribution of each immune cell type. Immune 

cell fraction was calculated using CIBERSORT and adjusted using ESTIMATE purity 

scores. Difference between cell fraction of primary and paired recurrent tumors was 

calculated using Wilcoxon rank test. (D) The blue-to-red heatmap represents immune cell 

fraction changes upon tumor recurrence per subtype transitions which were list on the left of 

the heatmap. Fisher exact test was used to evaluate the distribution difference between 

patients with higher/lower immune cell fractions at tumor recurrence per subtype transition. 

N.MES indicates non-mesenchymal case. (E) Each dot represents a pair of primary and 

recurrent GBM with axes indicating M2 macrophage cell fraction. (F) Representative 

images of AIF1 IHC staining and corresponding score map obtained by InForm image 

analysis in two matched pairs of primary and recurrent GBM. Scale bar, 25 μm. (G) 

Unbiased quantification of AIF1+ percentage in primary and recurrent GBMs, statistical 

testing was performed using Wilcoxon rank test. Boxplots represent 25th and 75th 

percentiles, with midlines indicating the median values and points within the boxes 
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indicating the mean values. Whiskers extend to the lowest/highest values of the data sample 

exculding outliers (B, C, G). See also Figure S5 and Table S6.
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Figure 6. Survival analysis of paired IDH-WT GBM
(A) OS and PFS analyses between samples with different primary subtype. (B) Difference of 

survival time after secondary surgery between patients with non-MES and MES in primary 

tumors (left) and in recurrent tumors (right). (C) OS and PFS analyses between samples with 

difference recurrent subtype. See also Figure S5.
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Figure 7. Immune cell frequency comparison
(A) Blue and red diamond indicate individual primary and recurrent tumors. Dash line 

connects paired primary and recurrent tumors. (B) Blue and red circle indicate non-

hypermutated and hypermutated primary samples. (C) Sky blue/dark blue and orange/red 

boxplots indicate short- and long- term relapsed tumors, respectively. y-axis stands for 

immune cell fraction. Wilcoxon rank tests were used to examine the significance of the 

differences between groups, and p values were shown at top of each panel. Boxplots 

represent 25th and 75th percentiles, with midlines indicating the median values and points 

within the boxes indicating the mean values. Whiskers extend to the lowest/highest values of 

the data sample exculding outliers (A-C). See also Figure S6 and Table S7.
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal Anti-AIF1 Abcam Cat#:ab178846

Mouse monoclonal anti-GFAP (GA5) Cell Signaling Technology Cat# 3670 RRID:AB_10831828

Mouse monoclonal Anti-beta-Tubulin Cell Signaling Technology Cat# 2128, RRID:AB_823664)

Mouse monoclonal Anti-Vinculin EMD Millipore Cat# 05-386, RRID:AB_309711

Mouse monoclonal anti-NF1 (McNFn27b) GeneTex Cat#:GTX15776

Rabbit polyclonal anti-ITGAM Sigma-Aldrich Cat# HPA002274 RRID:AB_1078435

Mouse monoclonal Anti-Bovine alpha-Actinin Sigma-Aldrich Cat# A5044 RRID:AB_476737

Rabbit polyclonal Anti-Iba-1 Wako Cat# 016-20001 RRID:AB_839506

Chemicals, Peptides, and Recombinant Proteins

EGF Sigma-Aldrich Cat#: E9644

bFGF Sigma-Aldrich Cat# F0291

Calcein AM BD Biosciences Cat#564061

Critical Commercial Assays

RNA Truseq library prep kit Illumina Cat #.15042173

MasterPure™ Complete DNA and RNA Purification Kit Epicenter Cat# MC85200

BD FluoroBlok™ System BD Biosciences Cat# BD351161

MACH 2 Double Stain 2 Biocare Medical Cat# MRCT525G

SMARTer® PCR cDNA Synthesis Kit Clontech Cat# 634926

Nextera XT DNA Sample Prep Kit Illumina Cat#FC-131-1096

Deposited Data

RNA sequencing data European Genome-phenome Archive 
(EGA) EGAS00001001033

RNA sequencing data European Genome-phenome Archive 
(EGA) EGAS00001002429

Software and Algorithms

InForm software

Pannoramic Viewer

Integrative Genomics Viewer (IGV, Version2.3)

R package (Version 3.2.5)
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