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Abstract

The effect of a splitting rule on random forests (RF) is systematically studied for regression and 

classification problems. A class of weighted splitting rules, which includes as special cases CART 

weighted variance splitting and Gini index splitting, are studied in detail and shown to possess a 

unique adaptive property to signal and noise. We show for noisy variables that weighted splitting 

favors end-cut splits. While end-cut splits have traditionally been viewed as undesirable for single 

trees, we argue for deeply grown trees (a trademark of RF) end-cut splitting is useful because: (a) 

it maximizes the sample size making it possible for a tree to recover from a bad split, and (b) if a 

branch repeatedly splits on noise, the tree minimal node size will be reached which promotes 

termination of the bad branch. For strong variables, weighted variance splitting is shown to 

possess the desirable property of splitting at points of curvature of the underlying target function. 

This adaptivity to both noise and signal does not hold for unweighted and heavy weighted splitting 

rules. These latter rules are either too greedy, making them poor at recognizing noisy scenarios, or 

they are overly ECP aggressive, making them poor at recognizing signal. These results also shed 

light on pure random splitting and show that such rules are the least effective. On the other hand, 

because randomized rules are desirable because of their computational efficiency, we introduce a 

hybrid method employing random split-point selection which retains the adaptive property of 

weighted splitting rules while remaining computational efficient.
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1 Introduction

One of the most successful ensemble learners is random forests (RF), a method introduced 

by Leo Breiman (Breiman, 2001). In RF, the base learner is a binary tree constructed using 

the methodology of CART (Classification and Regression Tree) (Breiman et al., 1984); a 

recursive procedure in which binary splits recursively partition the tree into homogeneous or 

near-homogeneous terminal nodes (the ends of the tree). A good binary split partitions data 

from the parent tree-node into two daughter nodes so that the ensuing homogeneity of the 

daughter nodes is improved from the parent node. A collection of ntree > 1 trees are grown 

in which each tree is grown independently using a bootstrap sample of the original data. The 

terminal nodes of the tree contain the predicted values which are tree-aggregated to obtain 

the forest predictor. For example, in classification, each tree casts a vote for the class and the 

majority vote determines the predicted class label.
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RF trees differ from CART as they are grown nondeterministically using a two-stage 

randomization procedure. In addition to the randomization introduced by growing the tree 

using a bootstrap sample, a second layer of randomization is introduced by using random 

feature selection. Rather than splitting a tree node using all p variables (features), RF selects 

at each node of each tree, a random subset of 1 ≤ mtry ≤ p variables that are used to split the 

node where typically mtry is substantially smaller than p. The purpose of this two-step 

randomization is to decorrelate trees and reduce variance. RF trees are grown deeply, which 

reduces bias. Indeed, Breiman’s original proposal called for splitting to purity in 

classification problems. In general, a RF tree is grown as deeply as possible under the 

constraint that each terminal node must contain no fewer than nodesize ≥ 1 cases.

The splitting rule is a central component to CART methodology and crucial to the 

performance of a tree. However, it is widely believed that ensembles such as RF which 

aggregate trees are far more robust to the splitting rule used. Unlike trees, it is also generally 

believed that randomizing the splitting rule can improve performance for ensembles. These 

views are reflected by the large literature involving hybrid splitting rules employing random 

split-point selection. For example, Dietterich (2000) considered bagged trees where the split-

point for a variable is randomly selected from the top 20 split-points based on CART 

splitting. Perfect random trees for ensemble classification (Cutler and Zhao, 2001) randomly 

chooses a variable and then chooses the split-point for this variable by randomly selecting a 

value between the observed values from two randomly chosen points coming from different 

classes. Ishwaran et al. (2008, 2010) considered a partially randomized splitting rule for 

survival forests. Here a fixed number of randomly selected split-points are chosen for each 

variable and the top split-point based on a survival splitting rule is selected. Related work 

includes Geurts et al. (2006) who investigated extremely randomized trees. Here a single 

random split-point is chosen for each variable and the top split-point is selected.

The most extreme case of randomization is pure random splitting in which both the variable 

and split-point for the node are selected entirely at random. Large sample consistency results 

provides some rationale for this approach. Biau, Devroye, and Lugosi (2008) proved Bayes-

risk consistency for RF classification under pure random splitting. These results make use of 

the fact that partitioning classifiers such as trees approximate the true classification rule if 

the partition regions (terminal nodes) accumulate enough data. Sufficient accumulation of 

data is possible even when partition regions are constructed independently of the observed 

class label. Under random splitting, it is sufficient if the number of splits kn used to grow the 

tree satisfies kn/n → 0 and kn → ∞. Under the same conditions for kn, Genuer (2012) 

studied a purely random forest, establishing a variance bound showing superiority of forests 

to a single tree. Biau (2012) studied a non-adaptive RF regression model proposed by 

Breiman (2004) in which split-points are deterministically selected to be the midpoint value 

and established large sample consistency assuming kn as above.

At the same time, forests grown under CART splitting rules have been shown to have 

excellent performance in a wide variety of applied settings, suggesting that adaptive splitting 

must have benefits. Theoretical results support these findings. Lin and Jeon (2006) 

considered mean-squared error rates of estimation in nonparametric regression for forests 

constructed under pure random splitting. It was shown that the rate of convergence cannot be 
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faster than M−1(log n) −(p−1) (M equals nodesize), which is substantially slower than the 

optimal rate n−2q/(2q+p) [q is a measure of smoothness of the underlying regression function; 

Stone (1980)]. Additionally, while Biau (2012) proved consistency for non-adaptive RF 

models, it was shown that successful forest applications in high-dimensional sparse settings 

requires data adaptive splitting. When the variable used to split a node is selected adaptively, 

with strong variables (true signal) having a higher likelihood of selection than noisy 

variables (no signal), then the rate of convergence can be made to depend only on the 

number of strong variables, and not the dimension p. See the following for a definition of 

strong and noisy variables which shall be used throughout the manuscript [the definition is 

related to the concept of a “relevant” variable discussed in Kohavi and John (1997)].

Definition 1: If X is the p-dimensional feature and Y is the outcome, we call a variable X ⊆ 
X noisy if the conditional distribution of Y given X does not depend upon X. Otherwise, X 
is called strong. Thus, strong variables are distributionally related to the outcome but noisy 
variables are not.

In this paper we formally study the effect of splitting rules on RF in regression and 

classification problems (Sections 2 and 3). We study a class of weighted splitting rules 

which includes as special cases CART weighted variance splitting and Gini index splitting. 

Such splitting rules possess an end-cut preference (ECP) splitting property (Morgan and 

Messenger, 1973; Breiman et al., 1984) which is the property of favoring splits near the edge 

for noisy variables (see Theorem 4 for a formal statement). The ECP property has generally 

been considered an undesirable property for a splitting rule. For example, according to 

Breiman et al. (Chapter 11.8; 1984), the delta splitting rule used by THAID (Morgan and 

Messenger, 1973) was introduced primarily to suppress ECP splitting.

Our results, however, suggest that ECP splitting is very desirable for RF. The ECP property 

ensures that if the ensuing split is on a noisy variable, the split will be near the edge, thus 

maximizing the tree node sample size and making it possible for the tree to recover from the 

split downstream. Even for a split on a strong variable, it is possible to be in a region of the 

space where there is near zero signal, and thus an ECP split is of benefit in this case as well. 

Such benefits are realized only if the tree is grown deep enough—but deep trees are a 

trademark of RF. Another aspect of RF making it compatible with the ECP property is 

random feature selection. When p is large, or if mtry is small relative to p, it is often the case 

that many or all of the candidate variables will be noisy, thus making splits on noisy 

variables very likely and ECP splits useful. Another benefit occurs when a tree branch 

repeatedly splits on noise variables, for example if the node corresponds to a region in the 

feature space where the target function is flat. When this happens, ECP splits encourage the 

tree minimal node size to be reached rapidly and the branch terminates as desired.

While the ECP property is important for handling noisy variables, a splitting rule should also 

be adaptive to signal. We show that weighted splitting exhibits such adaptivity. We derive the 

optimal split-point for weighted variance splitting (Theorem 1) and Gini index splitting 

(Theorem 8) under an infinite sample paradigm. We prove the population split-point is the 

limit of the empirical split-point (Theorem 2) which provides a powerful theoretical tool for 
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understanding the split-rule [this technique of studying splits under the true split function 

has been used elsewhere; for example Buhlmann and Yu (2002) looked at splitting for 

stumpy decision trees in the context of subagging]. Our analysis reveals that weighted 

variance splitting encourages splits at points of curvature of the underlying target function 

(Theorem 3) corresponding to singularity points of the population optimizing function. 

Weighted variance splitting is therefore adaptive to both signal and noise. This appears to be 

a unique property. To show this, we contrast the behavior of weighted splitting to the class of 

unweighted and heavy weighted splitting rules and show that the latter do not possess the 

same adaptivity. They are either too greedy and lack the ECP property (Theorem 7), making 

them poor at recognizing noisy variables, or they have too strong an ECP property, making 

them poor at identifying strong variables. These results also shed light on pure random 

splitting and show that such rules are the least desirable. Randomized adaptive splitting rules 

are investigated in Section 4. We show that certain forms of randomization (Theorem 10) are 

able to preserve the useful properties of a splitting rule while significantly reducing 

computational effort.

1.1 A simple illustration

As a motivating example, n = 1000 observations were simulated from a two-class problem in 

which the decision boundary was oriented obliquely to the coordinate axes of the features. In 

total p = 5 variables were simulated: the first two were defined to be the strong variables 

defining the decision boundary; the remaining three were noise variables. All variables were 

simulated independently from a standard normal distribution. The first row of panels in 

Figure 1 displays the decision boundary for the data under different splitting rules for a 

classification tree grown to purity. The boundary is shown as a function of the two strong 

variables. The first panel was grown under pure random splitting (i.e., the split-point and 

variable used to split a node were selected entirely at random), the remaining panels used 

unweighted, heavy weighted and weighted Gini index splitting, respectively (to be defined 

later). We observe random splitting leads to a heavily fragmented decision boundary, and 

that while unweighted and heavy weighted splitting perform better, unweighted splitting is 

still fragmented along horizontal and vertical directions, while heavy weighted splitting is 

fragmented along its boundary.

The latter boundaries occur because (as will be demonstrated) unweighted splitting 

possesses the strongest ECP property, which yields deep trees, but its relative insensitivity to 

signal yields a noisy boundary. Heavy weighted splitting does not possess the ECP property, 

and this reduces overfitting because it is shallower, but its boundary is imprecise because it 

also has a limited ability to identify strong variables. The best performing tree is weighted 

splitting. However, all decision boundaries, including weighted splitting, suffer from high 

variability—a well known deficiency of deep trees. In contrast, consider the lower row 

which displays the decision boundary for a forest of 1000 trees grown using the same 

splitting rule as the panel above it. There is a noticeable improvement in each case; however, 

notice how forest boundaries mirror those found with single trees: pure random split forests 

yield the most fragmented decision boundary, unweighted and heavy weighted are better, 

while the weighted variance forest performs best.
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This demonstrates, among other things, that while forests are superior to single trees, they 

share the common property that their decision boundaries depend strongly on the splitting 

rule. Notable is the superior performance of weighted splitting, and in light of this we 

suggest two reasons why its ECP property has been under-appreciated in the CART 

literature. One explanation is the potential benefit of end-cut splits requires deep trees 

applied to complex decision boundaries—but deep trees are rarely used in CART analyses 

due to their instability. A related explanation is that ECP splits can prematurely terminate 

tree splitting when nodesize is large: a typical setting used by CART. Thus, we believe the 

practice of using shallow trees to mitigate excess variance explains the lack of appreciation 

for the ECP property. See Torgo (2001) who discussed benefits of ECP splits and studied 

ECP performance in regression trees.

2 Regression forests

We begin by first considering the effect of splitting in regression settings. We assume the 

learning (training) data is ℒ = {(X1, Y1),…, (Xn, Yn)} where (Xi, Yi)1≤i≤n are i.i.d. with 

common distribution ℙ. Here, Xi ∈ ℝp is the feature (covariate vector) and Yi ∈ ℝ is a 

continuous outcome. A generic pair of variables will be denoted as (X, Y) with distribution 

ℙ. A generic coordinate of X will be denoted by X. For convenience we will often simply 

refer to X as a variable. We assume that

(1)

where f : ℝp → ℝ is an unknown function and (εi)1≤i≤n are i.i.d., independent of (Xi)1≤i≤n, 

such that (εi) = 0 and  where 0 < σ2 < ∞.

2.1 Theoretical derivation of the split-point

In CART methodology a tree is grown by recursively reducing impurity. To accomplish this, 

each parent node is split into daughter nodes using the variable and split-point yielding the 

greatest decrease in impurity. The optimal split-point is obtained by optimizing the CART 

splitting rule. But how does the optimized split-point depend on the underlying regression 

function f? What are its properties when f is flat, linear, or wiggly? Understanding how the 

split-point depends on f will give insight into how splitting affects RF.

Consider splitting a regression tree T at a node t. Let s be a proposed split for a variable X 
that splits t into left and right daughter nodes tL and tR depending on whether X ≤ s or X > s; 

i.e., tL = {Xi ∈ t, Xi ≤ s} and tR = {Xi ∈ t, Xi > s}. Regression node impurity is determined 

by within node sample variance. The impurity of t is
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where Ȳt is the sample mean for t and N is the sample size of t. The within sample variance 

for a daughter node is

where ȲtL is the sample mean for tL and NL is the sample size of tL (similar definitions 

apply to tR). The decrease in impurity under the split s for X equals

where p̂(tL) = NL/N and p̂(tR) = NR/N are the proportions of observations in tL and tR, 

respectively.

Remark 1: Throughout we will define left and right daughter nodes in terms of splits of the 

form X ≤ s and X > s which assumes a continuous X variable. In general, splits can be 

defined for categorical X by moving data points left and right using the complementary 

pairings of the factor levels of X (if there are L distinct labels, there are 2L−1 − 1 distinct 

complementary pairs). However, for notational convenience we will always talk about splits 

for continuous X, but our results naturally extend to factors.

The tree T is grown by finding the split-point s that maximizes Δ̂(s, t) (Chapter 8.4; Breiman 

et al., 1984). We denote the optimized split-point by ŝN. Maximizing Δ̂(s, t) is equivalent to 

minimizing

(2)

In other words, CART seeks the split-point ŝN that minimizes the weighted sample variance. 

We refer to (2) as the weighted variance splitting rule.

To theoretically study ŝN, we replace Δ̂(s, t) with its analog based on population parameters:

where Δ(t) is the conditional population variance

and Δ(tL) and Δ(tR) are the daughter conditional variances
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and p(tL) and p(tR) are the conditional probabilities

One can think of Δ(s, t) as the tree splitting rule under an infinite sample setting. We 

optimize the infinite sample splitting criterion in lieu of the data optimized one (2). Shortly 

we describe conditions showing that this solution corresponds to the limit of ŝN. The 

population analog to (2) is

(3)

Interestingly, there is a solution to (3) for the one-dimensional case (p = 1). We state this 

formally in the following result.

Theorem 1: Let ℙt denote the conditional distribution for X given that X ∈ t. Let ℙtL(·) and 
ℙtR(·) denote the conditional distribution of X given that X ∈ tL and X ∈ tR, respectively. Let 
t = [a, b]. The minimizer of (3) is the value for s maximizing

(4)

If f(s) is continuous over t and ℙt has a continuous and positive density over t with respect to 
Lebesgue measure, then the maximizer of (4) satisfies

(5)

This solution is not always unique and is permissible only if a ≤ s ≤ b.

In order to justify our infinite sample approach, we now state sufficient conditions for ŝN to 

converge to the population split-point. However, because the population split-point may not 

be unique or even permissible according to Theorem 1, we need to impose conditions to 

ensure a well defined solution. We shall assume that Ψt has a global maximum. This 

assumption is not unreasonable, and even if Ψt does not meet this requirement over t, a 

global maximum is expected to hold over a restricted subregion t′ ⊂ t. That is, when the 

tree becomes deeper and the range of values available for splitting a node become smaller, 

we expect Ψt′ to naturally satisfy the requirement of a global maximum. We discuss this 

issue further in Section 2.2.
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Notice in the following result we have removed the requirement that f is continuous and 

replaced it with the lighter condition of square-integrability. Additionally, we only require 

that ℙt satisfies a positivity condition over its support.

Theorem 2: Assume that f ∈ ℒ2(ℙt) and 0 < ℙt{X ≤ s} < 1 for a < s < b where t = [a, b]. If 
Ψt(s) has a unique global maximum at an interior point of t, then the following limit holds as 
N → ∞

Note that s∞ is unique.

2.2 Theoretical split-points for polynomials

In this section, we look at Theorems 1 and 2 in detail by focusing on the class of polynomial 

functions. Implications of these findings to other types of functions are explored in Section 

2.3. We begin by noting that an explicit solution to (5) exists when f is polynomial if X is 

assumed to be uniform.

Theorem 3: Suppose that . If ℙt is the uniform distribution on t = [a, 
b], then the value for s that minimizes (3) is a solution to

(6)

where Uj = cj/(j + 1) + acj+1/(j + 2) + ⋯ + aq−j cq/(q + 1) and Vj = cj/(j + 1) + bcj+1/(j + 2) + 

⋯ + bq−j cq/(q + 1). To determine which value is the true maximizer, discard all solutions not 
in t (including imaginary values) and choose the value which maximizes

(7)

Example 1: As a first illustration, suppose that f(x) = c0 + c1x for x ∈ [a, b]. Then, U0 = c0 

+ ac1/2, V0 = c0 + bc1/2 and U1 = V1 = c1/2. Hence (6) equals
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If c1 ≠ 0, then s = (a + b)/2; which is a permissible solution. Therefore for simple slope-

intercept functions, node-splits are always at the midpoint.

Example 2: Now consider a more complicated polynomial, f(x) = 2x3 − 2x2 − x where x ∈ 
[−3, 3]. We numerically solve (6) and (7). The solutions are displayed recursively in Figure 

2. The first panel is the optimal split over the root node [−3, 3]. There is one distinct solution 

s = −1.924. The second panel is the optimal split over the daughters arising from the first 

panel. The third panel are the optimal splits arising from the second panel, and so forth.

The derivative of f is f′(x) = 6x2 − 4x − 1. Inspection of the derivative shows that f is 

increasing most rapidly for −3 ≤ x ≤ −2, followed by 2 ≤ x ≤ 3, and then −2 < x < 2. The 

order of splits in Figure 2 follows this pattern, showing that node splitting tracks the 

curvature of f, with splits occurring first in regions where f is steepest, and last in places 

where f is flattest.

Example 2 (continued): Our examples have assumed a one-dimensional (p = 1) scenario. 

To test how well our results extrapolate to higher dimensions we modified Example 2 as 

follows. We simulated n = 1000 values from

(8)

using f as in Example 2, where (εi)1≤i≤n were i.i.d. N(0, σ2) variables with σ = 2 and 

(Xi)1≤i≤n were sampled independently from a uniform [−3, 3] distribution. The additional 

variables (Ui,k)1≤k≤D were also sampled independently from a uniform [−3, 3] distribution 

(we set d = 10 and D = 13). The first 1 ≤ k ≤ d of the Ui,k are signal variables with signal C1 

= 3, whereas we set C2 = 0 so that Ui,k are noise variables for d + 1 ≤ k ≤ D. The data was fit 

using a regression tree under weighted variance splitting. The data-optimized split-points ŝN 

for splits on X are displayed in Figure 3 and closely track the theoretical splits of Figure 2. 

Thus, our results extrapolate to higher dimensions and also illustrate closeness of ŝN to the 

population value s∞.

The near-exactness of the split-points of Figures 2 and 3 is a direct consequence of Theorem 

2. To see why, note that with some rearrangement, (7) becomes

where Aj, Bj are constants that depend on a and b. Therefore Ψt is a polynomial. Hence it 

will achieve a global maximum over t or over a sufficiently small subregion t′.

To further amplify this point, Figure 4 illustrates how Ψt′(s) depends on t′ for f(x) of 

Example 2. The first subpanel displays Ψt(s) over the entire range t = [−3, 3]. Clearly it 
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achieves a global maximum. Furthermore, when [−3, 3] is broken up into contiguous 

subregions t′, Ψt′(s) becomes nearly concave (last three panels) and its maximum becomes 

more pronounced. Theorem 2 applies to each of these subregions, guaranteeing ŝN converges 

to s∞ over them.

2.3 Split-points for more general functions

The contiguous regions in Figure 4 (panels 3,4 and 5) were chosen to match the stationary 

points of Ψt (see panel 2). Stationary points identify points of inflection and maxima of Ψt 

and thus it is not surprising that Ψt′ is near-concave when restricted to such t′ subregions. 

The points of stationarity, and the corresponding contiguous regions, coincide with the 

curvature of f. This is why in Figures 2 and 3, optimal splits occur first in regions where f is 

steepest, and last in places where f is flattest.

We now argue in general, regardless of whether f is a polynomial, that the maximum of Ψt 

depends heavily on the curvature of f. To demonstrate this, it will be helpful if we modify 

our distributional assumption for X. Let us assume that X is uniform discrete with support 

= {αk}1≤k≤K. This is reasonable because it corresponds to the data optimized split-point 

setting. The conditional distribution of X over t = [a, b] is

It follows (this expression holds for all f):

(9)

Maximizing (9) results in a split-point s∞ such that the squared sum of f is large either to the 

left of s∞ or right of s∞ (or both). For example, if there is a contiguous region where f is 

substantially high, then Ψt will be maximized at the boundary of this region.

Example 3: As a simple illustration, consider the step function f(x) = 1{x>1/2} where x ∈ [0, 

1]. Then,

When s ≤ 1/2, the maximum of Ψt is achieved at the largest value of αk less than or equal to 

1/2. In fact, Ψt is increasing in this range. Let α− = max{αk : αk ≤ 1/2} denote this value. 

Likewise, let α+ = min{αk : αk > 1/2} denote the smallest αk larger than 1/2 (we assume 

there exists at least one αk > 1/2 and at least one αk ≤ 1/2). We have
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The following bound holds when s ≥ α̂+ > 1/2:

Therefore the optimal split point is s∞ = α−: this is the value in the support of X closest to 

the point where f has the greatest increase; namely s = 1/2. Importantly, observe that s∞ 
coincides with a change in the sign of the derivative of Ψt. This is because Ψt increases over 

s ≤ 1/2, reaching a maximum at α−, and then decreases at α+. Therefore s ∈ [α−, α+) is a 

stationary point of Ψt.

Example 4: As further illustration that Ψt depends on the curvature of f, Figure 5 displays 

the optimized split-points ŝN for the Blocks, Bumps, HeaviSine and Doppler simulations 

described in Donoho and Johnstone (1994). We set n = 400 in each example, but otherwise 

followed the specifications of Donoho and Johnstone (1994), including the use of a fixed 

design xi = i/n for X. Figure 6 displays the derivative of Ψt for t = [0, 1], where Ψt was 

calculated as in (9) with  = {xi}1≤i≤n. Observe how splits in Figure 5 generally occur 

within the contiguous intervals defined by the stationary points of Ψt. Visual inspection of 

Ψt′ for subregions t′ confirmed Ψt′ achieved a global maximum in almost all examples (for 

Doppler, Ψt′ was near-concave). These results, when combined with Theorem 2, provide 

strong evidence that ŝN closely approximates s∞.

We end this section by noting evidence of ECP splitting occurring in Figure 5. For example, 

for Blocks and Bumps, splits are observed near the edges 0 and 1 even though Ψt has no 

singularities there. This occurs, because once the tree finds the discernible boundaries of the 

spiky points in Bumps and jumps in the step functions of Blocks (by discernible we mean 

signal is larger than noise), it has exhausted all informative splits, and so it begins to split 

near the edges. This is an example of ECP splitting, a topic we discuss next.

2.4 Weighted variance splitting has the ECP property

Example 1 showed that weighted variance splits at the midpoint for simple linear functions 

f(x) = c0 + c1x. This midpoint splitting behavior for a strong variable is in contrast to what 

happens for noisy variables. Consider when f is a constant, f(x) = c0. This is the limit as c1 

→ 0 and corresponds to X being a noisy variable. One might think weighted variance 

splitting will continue to favor midpoint splits, since this would be the case for arbitrarily 
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small c1, but it will be shown that edgesplits are favored in this setting. As discussed earlier, 

this behavior is referred to as the ECP property.

Definition 2: A splitting rule has the ECP property if it tends to split near the edge for a 
noisy variable. In particular, let ŝN be the optimized split-point for the variable X with 
candidate split-points x1 < x2 < · · · < xN. The ECP property implies that ŝN will tend to split 
towards the edge values x1 and xN if X is noisy.

To establish the ECP property for weighted variance splitting, first note that Theorem 1 will 

not help in this instance. The solution (5) is

which holds for all s. The solution is indeterminate because Ψt(s) has a constant derivative. 

Even a direct calculation using (9) will not help. From (9),

The solution is again indeterminate because Ψt(s) is constant and therefore has no unique 

maximum.

To establish the ECP property we will use a large sample result due to Breiman et al. 

(Chapter 11.8; 1984). First, observe that (2) can be written as

Therefore minimizing D̂(s, t) is equivalent to maximizing

(10)

Consider the following result (see Theorem 10 for a generalization of this result).

Theorem 4: (Theorem 11.1; Breiman et al., 1984). Let (Zi)1≤i≤N be i.i.d. with finite variance 
σ2 > 0. Consider the weighted splitting rule:
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(11)

Then for any 0 < δ < 1/2 and any 0 < τ < ∞:

(12)

and

(13)

Theorem 4 shows (11) will favor edge splits almost surely. To see how this applies to (10), 

let us assume X is noisy. By Definition 1, this implies that the distribution of Y given X does 

not depend on X, and therefore Yi ∈ tL has the same distribution as Yi ∈ tR. Consequently, 

Yi ∈ tL and Yi ∈ tR are i.i.d. and because order does not matter we can set Z1 = Yi1, …, ZN 

= YiN where i1, …, iN are the indices of Yi ∈ t ordered by Xi ∈ t. From this, assuming 

Var(Yi) < ∞, we can immediately conclude (the result applies in general for p ≥ 1):

Theorem 5: Weighted variance splitting possesses the ECP property.

2.5 Unweighted variance splitting

Weighted variance splitting determines the best split by minimizing the weighted sample 

variance using weights proportional to the daughter sample sizes. We introduce a different 

type of splitting rule that avoids the use of weights. We refer to this new rule as unweighted 

variance splitting. The unweighted variance splitting rule is defined as

(14)

The best split is found by minimizing D̂
U(s, t) with respect to s. Notice that (14) can be 

rewritten as
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The following result shows that rules like this, which we refer to as unweighted splitting 

rules, possess the ECP property.

Theorem 6: Let (Zi)1≤i≤N be i.i.d. such that . Consider the unweighted splitting 
rule:

(15)

Then for any 0 < δ < 1/2:

(16)

and

(17)

2.6 Heavy weighted variance splitting

We will see that unweighted variance splitting has a stronger ECP property than weighted 

variance splitting. Going in the opposite direction is heavy weighted variance splitting, 

which weights the node variance using a more aggressive weight. The heavy weighted 

variance splitting rule is

(18)

The best split is found by minimizing D̂
H(s, t). Observe that (18) weights the variance by 

using the squared daughter node size, which is a power larger than that used by weighted 

variance splitting.

Unlike weighted and unweighted variance splitting, heavy variance splitting does not 

possess the ECP property. To show this, rewrite (18) as
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This is an example of a heavy weighted splitting rule. The following result shows that such 

rules favor center splits for noisy variables. Therefore they are the greediest in the presence 

of noise.

Theorem 7: Let (Zi)1≤i≤N be i.i.d. such that . Consider the heavy-weighted splitting 
rule:

(19)

Then for any 0 < δ < 1/2:

(20)

and

(21)

2.7 Comparison of split-rules in the one-dimensional case

The previous results show that the ECP property only holds for weighted and unweighted 

splitting rules, but not heavy weighted splitting rules. For convenience, we summarize the 

three splitting rules below:

Definition 3: Splitting rules of the form (11) are called weighted splitting rules. Those like 
(15) are called unweighted splitting rules, while those of the form (19) are called heavy 
weighted splitting rules.

Example 5: To investigate the differences between our three splitting rules we used the 

following one-dimensional (p = 1) simulation. We simulated n = 100 observations from
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where Xi was drawn independently from a uniform distribution on [−3, 3] and εi was drawn 

independently from a standard normal. We considered three scenarios: (a) noisy (c0 = 1, c1 = 

0); (b) moderate signal (c0 = 1, c1 = 0.5); and (c) strong signal (c0 = 1, c1 = 2).

The simulation was repeated 10,000 times independently. The optimized splitpoint ŝN under 

weighted, unweighted and heavy weighted variance splitting was recorded in each instance. 

We also recorded ŝN under pure random splitting where the splitpoint was selected entirely 

at random. Figure 7 displays the density estimate for ŝN for each of the four splitting rules. 

In the noisy variable setting, only weighted and unweighted splitting exhibit ECP behavior. 

When the signal increases moderately, weighted splitting tends to split in the middle, which 

is optimal, whereas unweighted splitting continues to exhibit ECP behavior. Only when 

there is strong signal, does unweighted splitting finally adapt and split near the middle. In all 

three scenarios, heavy weighted splitting splits towards the middle, while random splitting is 

uniform in all instances.

The example confirms our earlier hypothesis: weighted splitting is the most adaptive. In 

noisy scenarios it exhibits ECP tendencies but with even moderate signal it shuts off ECP 

splitting enabling it to recover signal.

Example 4 (continued): We return to Example 4 and investigate the shape of Ψt under the 

three splitting rules. As before, we assume X is discrete with support  = {1/n, 2/n, …, 1}. 

For each rule, let Ψt denote the population criterion function we seek to maximize. 

Discarding unnecessary factors, it follows that Ψt can be written as follows (this holds for 

any f):

Ψt functions for Blocks, Bumps, HeaviSine and Doppler functions of Example 4 are shown 

in Figure 8. For weighted splitting, Ψt consistently tracks the curvature of the true f (see 

Figure 5). For unweighted splitting, Ψt is maximized near the edges, while for heavy 

weighted splitting, the maximum tends towards the center.

2.8 The ECP statistic: multivariable illustration

The previous analyses looked at p = 1 scenarios. Here we consider a more complex p > 1 

simulation as in (8). To facilitate this analysis, it will be helpful to define an ECP statistic to 

quantify the closeness of a split to an edge. Let ŝN be the optimized split for the variable X 
with values x1 < x2 < · · · < xN in a node t. Then, ŝN = xj for some 1 ≤ j ≤ N – 1. Let j(ŝN) 

denote this j. The ECP statistic is defined as
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The ECP statistic is motivated by the following observations. The closest that ŝN can be to 

the right most split is when j(ŝN) = N – 1, and the closest that ŝN can be to the left most split 

is when j(ŝN) = 1. The second term on the right chooses the smallest of the two distance 

values and divides by the total number of available splits, N – 1. This ratio is bounded by 

1/2. Subtracting it from 1/2 yields a statistic between 0 and 1/2 that is largest when the split 

is nearest an edge and smallest when the split is away from an edge.

n = 1000 values were sampled from (8) using 25 noise variables (thus increasing the 

previous D = 13 to D = 35). Figure 9 displays ecp(ŝN) values as a function of node depth for 

X (non-linear variable with strong signal), U1 (linear variable with moderate signal), and 

Ud+1 (a noise variable) from 100 trees. Large points in red indicate high ECP values, smaller 

points in blue are moderate ECP values, and small black points are small ECP values.

For weighted splitting (top panel), ECP values are high forX near −1 and 1.5. This is 

because the observed values of Y are relatively constant in the range [−1, 1.5] which causes 

splits to occur relatively infrequently in this region, similar to Figure 3, and endcut splits to 

occur at its edges. Almost all splits occur in [−3, −1) and (1.5, 3] where Y is non-linear in X, 

and many of these occur at relatively small depths, reflecting a strong X signal in these 

regions. For U1, ECP behavior is generally uniform, although there is evidence of ECP 

splitting at the edges. The uniform behavior is expected, because U1 contributes a linear 

term to Y, thus favoring splits at the midpoint, while edge splits occur because of the 

moderate signal: after a sufficient number of splits, U1’s signal is exhausted and the tree 

begins to split at its edge. For the noisy variable, strong ECP behavior occurs near the edges 

−3 and 3.

Unweighted splitting (second row) exhibits aggressive ECP behavior for X across much of 

its range (excluding [−1, 1.5], where again splits of any kind are infrequent). The 

predominate ECP behavior indicates that unweighted splitting has difficulty in discerning 

signal. Note the large node depths due to excessive end-cut splitting. For U1, splits are more 

uniform but there is aggressive ECP behavior at the edges. Aggressive ECP behavior is also 

seen at the edges for the noisy variable. Heavy weighted splitting (third row) registers few 

large ECP values and ECP splitting is uniform for the noisy variable. Node depths are 

smaller compared to the other two rules.

The bottom panel displays results for restricted weighted splitting. Here weighted splitting 

was applied, but candidate split values x1 < · · · < xN were restricted to xL < · · · < xU for L = 

[Nδ] and U = [N(1 – d)] where 0 < δ < 1/2 and [z] rounds z to the nearest positive integer. 

This restricts the range of split values so that splits cannot occur near (or at) edges x1 or xN 

and thus by design discourages end-cut splits. A value of δ = .20 was used (experimenting 

with other δ values did not change our results in any substantial way). Considering the 

bottom panel, we find restricted splitting suppresses ECP splits, but otherwise its split-values 

and their depth closely parallel those for weighted splitting (top panel).

To look more closely at the issue of split-depth, Table 1 displays the average depth at which 

a variable splits for the first time. This statistic has been called minimal depth by Ishwaran et 

al. (2010, 2011) and is useful for assessing a variable’s importance. Minimal depth for 
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unweighted splitting is excessively large so we focus on the other rules. Focusing on 

weighted, restricted weighted, and heavy weighted splitting, we find minimal depth identical 

for X, while minimal depth for linear variables are roughly the same, although heavy 

weighted splitting’s value is smallest—which is consistent with the rules tendency to split 

towards the center, which favors linearity. Over noise variables, minimal depth is largest for 

weighted variance splitting. It’s ECP property produces deeper trees which pushes splits for 

noise variables down the tree. It is notable how much larger this minimal depth is compared 

with the other two rules—and in particular, restricted weighting. Therefore, combining the 

results of Table 1 with Figure 9, we can conclude that restricted weighted splitting is closest 

to weighted splitting, but differs by its inability to produce ECP splits. Because of this useful 

feature, we will use restricted splitting in subsequent analyses to assess the benefit of the 

ECP property.

2.9 Regression benchmark results

We used a large benchmark analysis to further assess the different splitting rules. In total, we 

used 36 data sets of differing size n and dimension p (Table 2). This included real data (in 

capitals) and synthetic data (in lower case). Many of the synthetic data were obtained from 

the mlbench R-package (Leisch and Dimitriadou, 2009) (e.g., data sets listed in Table 2 

starting with “friedman” are the class of Friedman simulations included in the package). The 

entry “simulation.8” is simulation (8) just considered. A RF regression (RF-R) analysis was 

applied to each data set using parameters (ntree, mtry, nodesize) = (1000, [p/3]+, 5) where 

[z]+ rounds z to the first largest integer. Weighted variance, unweighted variance, heavy 

weighted variance and pure random splitting rules were used for each data set. Additionally, 

we used the restricted weighted splitting rule described in the previous section (δ = .20). 

Meansquared- error (MSE) was estimated using 10-fold cross-validation. In order to 

facilitate comparison of MSE across data, we standardized MSE by dividing by the sample 

variance of Y. All computations were implemented using the randomForestSRC R-

package (Ishwaran and Kogalur, 2014).

To systematically compare performance we used univariate and multivariate non-parametric 

statistical tests described in Demsar (2006). To compare two splitting rules we used the 

Wilcoxon signed rank test applied to the difference of their standardized MSE values. To test 

for an overall difference among the various procedures we used the Iman and Davenport 

modified Friedman test (Demsar, 2006). The exact p-value for the Wilcoxon signed rank test 

are recorded along the upper diagonals of Table 3. The lower diagonal values record the 

corresponding test statistic where small values indicate a difference. The diagonal values of 

the table record the average rank of each procedure and were used for the Friedman test.

The modified Friedman test of equality of ranks yielded a p-value < 0.00001, thus providing 

strong evidence of difference between the methods. Overall, weighted splitting had the best 

overall rank, followed by restricted weighted splitting, unweighted splitting, heavy weighted 

splitting, and finally pure random splitting. To compare performance of weighted splitting to 

each of the other rules, based on the p-values in Table 3, we used the Hochberg step-down 

procedure (Demsar, 2006) which controls for multiple testing. Under a familywise error rate 

(FWER) of 0.05, the test rejected the null hypothesis that performance of weighted splitting 
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was equal to one of the other methods. This demonstrates superiority of weighted splitting. 

Other points worth noting in Table 3 are that while unweighted splitting’s overall rank is 

better than heavy weighted splitting, the difference appears marginal and considering Table 

2 we see there is no clear winner. In moderate-dimensional problems unweighted splitting is 

generally better, while heavy weighted splitting is sometimes better in high dimensions. The 

high-dimensional scenario is interesting and we discuss this in more detail below (Section 

2.9.1). Finally, it is clearly evident from Table 3 that pure random splitting is substantially 

worse than all other rules. Considering Table 2, we find its performance deteriorates as p 
increases. One exception is “noise” which is a synthetic data set with all noisy variables: all 

methods perform similarly here. In general, its performance is on par with other rules only 

when n is large and p is small (e.g. CMB data).

Figure 10 displays the average number of nodes by tree depth for each splitting rule. We 

observe the following patterns:

1. Heavy weighted splitting (green) yields the most symmetric node distribution. 

Because it does not possess the ECP property, and splits near the middle, it 

grows shallower balanced trees.

2. Unweighted splitting (red) yields the most skewed node distribution. It has the 

strongest ECP property and has the greatest tendency to split near the edge. Edge 

splitting promotes unbalanced deep trees.

3. Random (blue), weighted (black), and restricted weighted (magenta) splitting 

have node distributions that fall between the symmetric distributions of heavy 

weighted splitting and the skewed distributions of unweighted splitting. Due to 

suppression of ECP splits, restricted weighted splitting is the least skewed of the 

three and is closest to heavy weighted splitting, whereas weighted splitting due 

to ECP splits is the most skewed of the three and closest to unweighted splitting.

2.9.1 Impact of high dimension on splitting—To investigate performance differences 

in high dimensions, we ran the following two additional simulations. In the first, we 

simulated n = 250 observations from the linear model

(22)

where (εi)1≤i≤n were i.i.d. N(0, 1) and (Xi)1≤i≤n, (Ui,k)1≤i≤n were i.i.d. uniform[0, 1]. We set 

C0 = 1, C1 = 2 and C2 = 0. The Ui,k variables introduce noise and a large value of d was 

chosen to induce high dimensionality (see below for details). Because of the linearity in X, a 

good splitting rule will favor splits at the midpoint for X. Thus model (22) will favor heavy 

weighted splitting and weighted splitting, assuming the latter is sensitive enough to discover 

the signal. However, the presence of a large number of noise variables presents an interesting 

challenge. If the ECP property is not beneficial, then heavy weighted splitting will 

outperform weighted splitting; otherwise weighted splitting will be better (again, assuming it 
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is sensitive enough to find the signal). The same conclusion also applies to restricted 

weighted splitting. As we have argued, this rule suppresses ECP splits and yet retains the 

adaptivity of weighted splitting. Thus, if weighted splitting outperforms restricted weighted 

splitting in this scenario, we can attribute these gains to the ECP property. For our second 

simulation, we used the “friedman2.bigp” simulation of Table 2.

The same forest parameters were used as in Table 2. To investigate the effect of 

dimensionality, we varied the total number of variables in small increments. The left panel 

of Figure 11 presents the results for (22). Unweighted splitting has poor performance in this 

example, possible due to its overly strong ECP property. Restricted weighted splitting is 

slightly better than heavy weighted splitting, but weighted splitting has the best performance 

and its relative performance compared with heavy weighted and restricted weighted splitting 

increases with p. As we have discussed, we can attribute these gains as a direct consequence 

of ECP splitting. The right panel of Figure 11 presents the results for “friedman2.bigp”. 

Interestingly the results are similar, although MSE values are far smaller due to the strong 

non-linear signal.

3 Classification forests

Now we consider the effect of splitting in multiclass problems. As before, the learning data 

is ℒ = (Xi, Yi)1≤i≤n where (Xi, Yi) are i.i.d. with common distribution ℙ. Write (X, Y) to 

denote a generic variable with distribution ℙ. Here the outcome is a class label Y ∈ {1, …, 

J} taking one of J ≥ 2 possible classes.

We study splitting under the Gini index, a widely used CART splitting rule for classification. 

Let ϕ̂j(t) denote the class frequency for class j in a node t. The Gini node impurity for t is 

defined as

As before, Let tL and tR denote the left and right daughter nodes of t corresponding to cases 

{Xi ≤ s} and {Xi > s}. The Gini node impurity for tL is

where ϕ̂j(tL) is the class frequency for class j in tL. In a similar way define Γ̂(tR). The 

decrease in the node impurity is
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The quantity

is the Gini index. To achieve a good split, we seek the split-point maximizing the decrease in 

node impurity: equivalently we can minimize Ĝ(s, t) with respect to s. Notice that because 

the Gini index weights the node impurity by the node size, it can be viewed as the analog of 

the weighted variance splitting criterion (2).

To theoretically derive ŝN, we again consider an infinite sample paradigm. In place of Ĝ(s, 

t), we use the population Gini index

(23)

where Γ(tL) and Γ(tR) are the population node impurities for tL and tR defined as

where ϕj(tL) = ℙ{Y = j|X ≤ s, X ∈ t} and ϕj(tR) = ℙ{Y = j|X > s, X ∈ t}.

The following is the analog of Theorem 1 for the two-class problem.

Theorem 8: Let ϕ(s) = ℙ{Y = 1|X = s}. If ϕ(s) is continuous over t = [a, b] and ℙt has a 
continuous and positive density over t with respect to Lebesgue measure, then the value for s 
that minimizes (23) when J = 2 is a solution to

(24)

Theorem 8 can be used to determine the optimal Gini split in terms of the underlying target 

function, ϕ(x). Consider a simple intercept-slope model

(25)

Assume ℙt is uniform and that f(x) = c0 + c1x. Then, (24) reduces to
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Unlike the regression case, the solution cannot be derived in closed form and does not equal 

the midpoint of the interval [a, b].

It is straightforward to extend Theorem 2 to the classification setting, thus justifying the use 

of an infinite sample approximation. The square-integrability condition will hold 

automatically due to boundedness of ϕ(s). Therefore only the positive support condition for 

ℙt and the existence of a unique maximizer for Ψt is required, where Ψt(s) is

Under these conditions it can be shown that ŝN converges to the unique population split-

point, s∞, maximizing Ψt(s).

Remark 2: Breiman (1996) also investigated optimal split-points for classification splitting 

rules. However, these results are different than ours. He studied the question of what 

configuration of class frequencies yields the optimal split for a given splitting rule. This is 

different because it does not involve the classification rule and therefore does not address the 

question of what is the optimal split-point for a given ϕ(x). The optimal split-point studied in 

Breiman (1996) may not even be realizable.

3.1 The Gini index has the ECP property

We show that Gini splitting possesses the ECP property. Noting that

and that , we can rewrite the Gini index as

where Nj,L = Σi∈tL 1{Yi=j} and Nj,R = Σi∈tR 1{Yi=j}. Observe that minimizing Ĝ(s, t) is 

equivalent to maximizing
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(26)

In the two-class problem, J = 2, it can be shown this is equivalent to maximizing

which is a member of the class of weighted splitting rules (11) required by Theorem 4 with 

Zi = 1{Yi=1}.

This shows Gini splitting has the ECP property when J = 2, but we now show that the ECP 

property applies in general for J ≥ 2. The optimization problem (26) can be written as

where Zi(j) = 1{Yi=j}. Under a noisy variable setting, Zi(j) will be identically distributed. 

Therefore we can assume (Zi(j))1≤i≤n are i.i.d. for each j. Because the order of Zi(j) does not 

matter, the optimization can be equivalently described in terms of , where

We compare the Gini index for an edge split to a non-edge split. Let

For a left-edge split
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Apply Theorem 4 with τ = J to each of the J terms separately. Let An,j denote the first event 

in the curly brackets and let Bn,j denote the second event (i.e. Bn,j = {j* = j}). Then An,j 

occurs with probability tending to one, and because Σj ℙ(Bn,j) = 1, deduce that the entire 

expression has probability tending to 1. Applying a symmetrical argument for a right-edge 

split completes the proof.

Theorem 9: The Gini index possesses the ECP property.

3.2 Unweighted Gini index splitting

Analogous to unweighted variance splitting, we define an unweighted Gini index splitting 

rule as follows

(27)

Similar to unweighted variance splitting, the unweighted Gini index splitting rule possesses 

a strong ECP property.

For brevity we prove that (27) has the ECP property in two-class problems. Notice that we 

can rewrite (27) as follows

where Zi = 1{Yi=1} (note that ). This is a member of the class of unweighted splitting 

rules (15). Apply Theorem 6 to deduce that unweighted Gini splitting has the ECP property 

when J = 2.
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3.3 Heavy weighted Gini index splitting

We also define a heavy weighted Gini index splitting rule as follows

Similar to heavy weighted splitting in regression, heavy weighted Gini splitting does not 

possess the ECP property. When J = 2, this follows directly from Theorem 7 by observing 

that

which is a member of the heavy weighted splitting rules (19) with .

3.4 Comparing Gini split-rules in the one-dimensional case

To investigate the differences between the Gini splitting rules we used the following one-

dimensional two-class simulation. We simulated n = 100 observations for ϕ(x) specified as 

in (25) where f(x) = c0 + c1x and X was uniform [−3, 3]. We considered noisy, moderate 

signal, and strong signal scenarios, similar to our regression analysis of Figure 7. The 

experiment was repeated 10,000 times independently.

Figure 12 reveals a pattern similar to Figure 7. Once again, weighted splitting is the most 

adaptive. It exhibits ECP tendencies, but in the presence of even moderate signal it shuts off 

ECP splitting. Unweighted splitting is also adaptive but with a more aggressive ECP 

behavior.

3.5 Multiclass benchmark results

To further assess differences in the splitting rules we ran a large benchmark analysis 

comprised of 36 data sets of varying dimension and number of classes (Table 4). As in our 

regression benchmark analysis of Table 2, real data sets are indicated with capitals and 

synthetic data in lower case. The latter were all obtained from the mlbench R-package 

(Leisch and Dimitriadou, 2009). A RF classification (RF-C) analysis was applied to each 

data set using the same forest parameters as Table 2. Pure random splitting as well as 

weighted, unweighted and heavy weighted Gini splitting was employed. Restricted Gini 

splitting, defined as in the regression case, was also used (δ = .20).

Performance was assessed using the Brier score (Brier, 1950) and estimated by 10-fold 

cross-validation. Let p̂i,j := p̂ (Yi = j|Xi, ℒ) denote the forest predicted probability for event j 
= 1, …, J for case (Xi, Yi) ∈ , where  denotes a test data set. The Brier score was 

defined as
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The Brier score was used rather than misclassification error because it directly measures 

accuracy in estimating the true conditional probability ℙ{Y = j|X}. We are interested in the 

true conditional probability because a method that is consistent for estimating this value is 

immediately Bayes risk consistent but not vice-versa. See Gyorfi et al. (Theorem 1.1, 2002).

Tables 4 and 5 reveal patterns consistent with Tables 2 and 3. As in Table 2, random splitting 

is consistently poor with performance degrading with increasing p. The rank of splitting 

rules in Table 5 is consistent with Table 3, however statistical significance of pairwise 

comparisons are not as strong. The Hochberg step-down procedure comparing weighted 

splitting to each of the other methods did not reject the null hypothesis of equality between 

between weighted and unweighted splitting at a 0.05 FWER, however increasing the FWER 

to 16%, which matches the observed p-value for unweighted splitting, led to all hypotheses 

being rejected. The modified Friedman test of difference in ranks yielded a p-value < 

0.00001, thus indicating a strong difference in performance of the methods. We can 

conclude that splitting rules generally exhibit the same performance as in the regression 

setting, but performance gains for weighted splitting are not as strong.

Regarding the issue of dimensionality, there appears to be no winner over the high-

dimensional examples in Table 4: aging, brain, colon, leukemia, lymphoma, prostate and 

srbct. However, these are all microarray data sets and this could simply be an artifact of this 

type of data. To further investigate how p affects performance, we added noise variables to 

mlbench synthetic data sets (Figure 13). The dimension was increased systematically in each 

instance. We also included a linear model simulation similar to (22) with ϕ(x) specified as in 

(25) (see top left panel, “linear.bigp”). Figure 13 shows that when performance differences 

exist between rules, weighted splitting and unweighted splitting, which possess the ECP 

property, generally outperform restricted weighted and heavy weighted splitting. 

Furthermore, there is no example where these latter rules outperform weighted splitting.

4 Randomized adaptive splitting rules

Our results have shown that pure random splitting is rarely as effective as adaptive splitting. 

It does not possess the ECP property, nor does it adapt to signal. On the other hand, 

randomized rules are desirable because they are computationally efficient. Therefore as a 

means to improve computational efficiency, while maintaining adaptivity of a split-rule, we 

consider randomized adaptive splitting. In this approach, in place of deterministic splitting in 

which the splitting rule is calculated for the entire set of N available split-points for a 

variable, the splitting rule is confined to a set of split-points indexed by IN ⊆ {1, …, N}, 

where |IN| is typically much smaller than N. This reduces the search for the optimal split-

point from a maximum of N split-points to the much smaller |IN|.

For brevity, we confine our analysis to the class of weighted splitting rules. Deterministic 

(non-random) splitting seeks the value 1 ≤ m ≤ N − 1 maximizing (11). In contrast, 
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randomized adaptive splitting maximizes the split-rule by restricting m to IN. The optimal 

split-point is determined by maximizing the restricted splitting rule:

(28)

where RN = |IN| and (ZN,i)1≤i≤RN denotes the sequence of values {Zi : i ∈ IN}.

In principle, IN can be selected in any manner. The method we will study empirically selects 

nsplit candidate split-points at random, which corresponds to sampling RN-out-of-N values 

from {1, …, N} without replacement where RN = nsplit. This method falls under the general 

result described below, which considers the behavior of (28) under general sequences. We 

show (28) has the ECP property under any sequence (IN)N≥1 if the number of split-points RN 

increases to ∞. The result requires only a slightly stronger moment assumption than 

Theorem 4.

Theorem 10: Let (Zi)1≤i≤N be independent with a common mean and variance and assume 
supi (|Zi|q) < ∞ for some q > 2. Let (IN)N≥1 be a sequence of index sets such that RN → 
∞. Then for any 0 < δ < 1/2 and any 0 < τ < ∞:

(29)

and

(30)

Remark 3: As a special case, Theorem 10 yields Theorem 4 for the sequence IN = {1, …, 

N}. Note that while the moment condition is somewhat stronger, Theorem 10 does not 

require (Zi)1≤i≤N to be i.i.d. but only independent.

Remark 4: Theorem 10 shows that the ECP property holds if nsplit → ∞. Because any rate 

is possible, the condition is mild and gives justification for nsplit-randomization. However, 

notice that nsplit = 1, corresponding to the extremely randomized tree method of Geurts et 

al. (2006), does not satisfy the rate condition.

4.1 Empirical behavior of randomized adaptive splitting

To demonstrate the effectiveness of randomized adaptive splitting, we re-ran the RF-R 

benchmark analysis of Section 2. All experimental parameters were kept the same. 

Randomized weighted splitting was implemented using nsplit = 1, 5, 10. Performance values 
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are displayed in Table 6 based on the Wilcoxon signed rank test and overall rank of a 

procedure.

Table 6 shows that the rank of a procedure improves steadily with increasing nsplit. The 

modified Friedman test of equality of ranks rejects the null (p-value < 0.00001) while the 

Hochberg step-down procedure, which tests equality of weighted splitting to each of the 

other methods, cannot reject the null hypothesis of performance equality between weighted 

and randomized weighted splitting for nsplit = 10 at any reasonable FWER. This 

demonstrates the effectiveness of nsplit-randomization. Table 7 displays the results from 

applying nsplit-randomization to the classification analysis of Table 4. The results are 

similar to Table 6 (modified Friedman test p-value < 0.00001; step-down procedure did not 

reject equality between weighted and randomized weighted for nsplit = 10).

Remark 5: For brevity we have presented results of nsplit-randomization only in the context 

of weighted splitting, but we have observed that the properties of all our splitting rules 

remain largely unaltered under randomization: randomized unweighted variance splitting 

maintains a more aggressive ECP behavior, while randomized heavy weighted splitting does 

not exhibit the ECP property at all.

5 Discussion

Of the various splitting rules considered, the class of weighted splitting rules, which possess 

the ECP property, performed the best in our empirical studies. The ECP property, which is 

the property of favoring edge-splits, is important because it conserves the sample size of a 

parent node under a bad split. Bad splits generally occur for noisy variables but they can also 

occur for strong variables (for example, the parent node may be in a region of the feature 

space where the signal is low). On the other hand, non-edge splits are important when strong 

signal is present. Good splitting rules therefore have the ECP behavior for noisy or weak 

variables, but split away from the edge when there is strong signal.

Weighted splitting has this optimality property. In noisy scenarios it exhibits ECP 

tendencies, but in the presence of signal, it can shut off ECP splitting. To understand how 

this adaptivity arises, we found that optimal splits under weighted splitting occur in the 

contiguous regions defined by the singularity points of the population optimization function 

Ψt—thus, weighted splitting tracks the underlying true target function. To illustrate this 

point, we looked carefully at Ψt for various functions, including polynomials and complex 

nonlinear functions. Empirically, we observed that unweighted splitting is also adaptive, but 

it exhibits an aggressive ECP behavior and requires a stronger signal to split away from an 

edge. However, in some instances this does lead to better performance. Thus, it is 

recommended to use weighted splitting in RF analyses, but an unweighted splitting analysis 

could also be run and the forest with the smallest test-set error retained as the final predictor. 

Restricted weighted splitting in which splits are restricted from occurring at the edge, and 

hence which suppress ECP behavior, was generally found inferior to weighted splitting and 

is not recommended. In general, rules which do not possess ECP behavior are not 

recommended.
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Randomized adaptive splitting is an attractive compromise to deterministic (non-

randomized) splitting. It is computationally efficient and yet does not disrupt the adaptive 

properties of a splitting rule. The ECP property can be guaranteed under fairly weak 

conditions. Pure random splitting, however, is not recommended. Its lack of adaptivity and 

non-ECP behavior yields inferior performance in almost all instances except large sample 

settings with low dimensionality. Although large sample consistency and asymptotic 

properties of forests have been investigated under the assumption of pure random splitting, 

these results show that such studies mist be viewed only as a first (but important) step to 

understanding forests. Theoretical analysis of forests under adaptive splitting rules is 

challenging, yet future theoretical investigations which consider such rules are anticipated to 

yield deeper insight into forests.

While CART weighted variance splitting and Gini index splitting are known to be equivalent 

(Wehenkel, 1996), many RF users may not be aware of their interchangeability: our work 

reveals both are examples of weighted splitting and therefore share similar properties (in the 

case of two-class problems, they are equivalent). Related to this is work by Malley et al. 

(2012) who considered probability machines, defined as learning machines which estimate 

the conditional probability function for a binary outcome. They outlined advantages of 

treating two-class data as a nonparametric regression problem rather than as a classification 

problem. They described a RF regression method to estimate the conditional probability—an 

example of a probability machine. In place of Gini index splitting they used weighted 

variance splitting and found performance of the modified RF procedure to compare 

favorably to boosting, k-nearest neighbors, and bagged nearest neighbors. Our results which 

have shown a connection between the two types of splitting rules sheds light on these 

findings.
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Appendix: Proofs

Proof of Theorem 1

Let ℙε denote the measure for ε. By the assumed independence of X and ε, the conditional 

distribution of (X, ε) given X ≤ s and X ∈ t is the product measure ℙtL × ℙε. Furthermore, 

for each Borel measurable set A, we have
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(31)

Setting Y = f(X) + ε, it follows that

where we have used (31) in the last line. Recall that (ε) = 0 and (ε2) = σ2. Hence

and

Using a similar argument for p(tR)Δ(tR), deduce that

(32)

We seek to minimize D(s, t). However, if we drop the first two terms in (32), multiply by −1, 

and rearrange the resulting expression, it suffices to maximize Ψt(s). We will take the 

derivative of Ψt(s) with respect to s and find its roots. When taking the derivative, it will be 

convenient to rexpress Ψt(s) as

The assumption that f(s) is continuous ensures that the above integrals are continuous and 

differentiable over s ∈ [a, b] by the fundamental theorem of calculus. Another application of 

the fundamental theorem of calculus, making use of the assumption ℙt has a continuous and 

positive density, ensures that ℙt{X ≤ s}−1 and ℙt{X > s}−1 are continuous and differentiable 
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at any interior point s ∈ (a, b). It follows that Ψt(s) is continuous and differentiable for s ∈ 
(a, b). Furthermore, by the dominated convergence theorem, Ψt(s) is continuous over s ∈ [a, 
b].

Let h(s) denote the density for ℙt. For s ∈ (a, b)

Keeping in mind our assumption h(s) > 0, the two possible solutions that make the above 

derivative equal to zero are (5) and

(33)

Because Ψt(s) is a continuous function over a compact set [a, b], one of the solutions must 

be the global maximizer of Ψt(s), or the global maximum occurs at the edges of t.

We will show that the maximizer for Ψt(s) cannot be s = a, s = b, or the solution to (33), 

unless (33) holds for all s and Ψs(t) is constant. It follows by definition that

where the last line holds for any a < s < b due to Jensen’s inequality. Moreover, the 

inequality is strict with equality occurring only when (33) holds. Thus, the maximizer for 

Ψt(s) is some a < s0 < b such that , or Ψt(s) is a constant 

function and (33) holds for all s. In the first case, s0 = ŝN. In the latter case, the derivative of 

Ψt(s) must be zero for all s and (5) still holds, although it has no unique solution.

Proof of Theorem 2

Let X̃, X1,..., XN be i.i.d. with distribution ℙt. By the strong law of large numbers

(34)

Next we apply the strong law of large numbers to Δ̂(tL). First note that
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The right-hand side is finite because σ2 < ∞ and f2 is integrable (both by assumption). A 

similar argument shows that (1{X̃≤s}Y) < ∞. Appealing once again to the strong law of 

large numbers, deduce that for s ∈ (a, b)

where we have used that the denominators in the above expression are strictly positive by 

our positivity assumption for ℙt. Noting that the last line above equals Var(Y |X ≤ s,X ∈ t), it 
follows that

The above convergence can be shown to be uniform on compact sets [a′, b′] ⊂ (a, b) by 

appealing to a uniform law of large numbers. For example, the Glivenko-Cantelli theorem 

immediately guarantees that convergence of (34) is uniform over [a, b]. See Chapter 2 of 

Pollard (1984) for background on uniform convergence of empirical measures. Applying a 

symmetrical argument for the right daughter node tR, deduce that

The minimizer of D(s, t) is equivalent to the maximizer of Ψt(s). The conclusion follows by 

Theorem 2.7 of Kim and Pollard (1990) because Ψt has a unique global maximum (by 

assumption) and ŝN = Op(1) (because a ≤ s ≤ b).

Proof of Theorem 3

By Theorem 1, and using the fact that ℙt is a uniform distribution, the global minimum to 

(3) is the solution to

(35)
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where  for a ≤ α < β ≤ b. Multiply the right-hand side by (s − a)

(b − s), and substituting f(x) and solving, yields

Divide by (s − a)(b − s). Deduce that the right-hand side is

where u = s/a and v = s/b (if a = 0 the identity continues to hold under the convention that 

0j/0j = 1). With some rearrangement deduce (6).

To determine which solution from (35) minimizes (3), choose that value which maximizes 

(4). Algebraic manipulation allows one to express (4) as (7).

Proof of Theorem 4

The following is a slightly modified version of the proof given in Breiman et al. (1984). We 

provide a proof not only for the convenience of the reader, but also because parts of the 

proof will be reused later.

To start, we first show there is no loss of generality in assuming (Z1) = 0. Let 

 and  where μ = (Z1). Then

which is equivalent to maximizing

Therefore, we can assume (Z1) = 0. Hence,  and 

. Let C > 0 be an arbitrary constant. Kolmogorov’s inequality 

asserts that for independent variables (Ui)1≤i≤n with (Ui) = 0
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Let . Because Zi are independent with mean zero, deduce that

Similarly,

Therefore,

(36)

Let . By the law of the iterated logarithm (LIL) (Hartman and Wintner, 

1941)

which implies that for any 0 < θ < 2 and any integer m0 > 2

Hence for m0 chosen such that δC log(logm0) > 2/θ
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(37)

Because C can be made arbitrarily small, deduce from (37) and (36) that (12) holds. A 

symmetrical argument yields (13).

Proof of Theorem 6

We will assume (Z1) = 0 and later show that the assumption holds without loss of 

generality. Let . With a little bit of rearrangement we obtain

where

 are i.i.d. with mean zero, and

We will maximize AN,m+BN,m which is equivalent to minimizing ζN,m. This analysis will 

reveal that BN,m is uniformly smaller than AN,m asymptotically. The desired result follows 

from the asymptotic behavior of AN,m.

We begin with BN,m. We consider its behavior away from an edge. Let  and 

. Arguing as in the proof of Theorem 4, we have for any C > 0
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Applying a similar argument for , deduce that

Therefore we have established that

(38)

Now consider AN,m. We first consider its behavior away from an edge. Let , which 

is finite by our assumption . Let  and . Let C > 0 be 

an arbitrary constant. By Kolmogorov’s inequality

Using a similar argument for ,

(39)

Now we consider the behavior of AN,m near an edge. As in the proof of Theorem 4, let 

. Choose  and let m0 > 2 be an arbitrary integer. Even though 

S̃
m can be negative, we can deduce from the LIL that for any sequence rm ≥ 1
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(40)

We will need a bound for the following quantity

By Kolmogorov’s inequality, for any constant K >0,

(41)

The following lower bounds hold:

(42)

The last line follows from ℙ(AB) = ℙ(A) − ℙ(ABc) ≥ ℙ(A) − ℙ(Bc) for any two sets A and 

B. Choose m0 large enough so that
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Then the first term on the last line of (42) is bounded below by

which converges to 1 due to (40) with rm = lm/l0, where . Mean-while, the 

second term on the last line of (42) can be made arbitrarily close to 0 by selecting K large 

enough due to (41). Deduce that (42) can be made arbitrarily close to 1, and because C can 

be made arbitrarily small, it follows from (39) and (42) that

(43)

The limits (16) and (17) follow by combining results from above. To prove (16), note by 

(38) we have

Combining this with (43) yields (16). The limit (17) follows by symmetry. Therefore, this 

concludes the proof under the assumption (Z1) = 0. To show such an assumption holds 

without loss of generality, let μ = (Z1) and define

Rewrite ζN,m as follows

Simplifying, it follows that
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and therefore μ = 0 can be assumed without loss of generality.

Proof of Theorem 7

We can assume without loss of generality that (Z1) = 0 (the proof is similar to the proof 

used for Theorem 6 given above). Let . Some rearrangement yields

where AN,m = −σ2(m2 + (N − m)2)/N + Nσ2,

 are i.i.d. with mean zero and finite variance  (finiteness holds by our 

assumption of a fourth moment), and

In place of minimizing φN,m we will maximize AN,m + BN,m + CN,m. We will show that 

AN,m is the dominant term by showing

The result will follow from the asymptotic behavior of AN,m.

For brevity we only provide a sketch of the proof since many of the technical details are 

similar to that used in the proof of Theorem 6. We start with a bound for CN,m. By the LIL
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A similar analysis for the second term in CN,m, yields

Now we bound BN,m. Applying the LIL

Applying a similar analysis for the second term in BN,m, deduce that

To complete the proof we show that AN,m is the dominating term. Collecting terms,

The function g(m) = −2(m − N/2)2 is concave (quadratic) in m with a unique maximum at m 
= N/2. Furthermore,

Thus, AN,N/2 ≫ maxm |BN,m| + maxm CN,m is the dominating term. Because the optimal 

split point must be an integer, its value lies in the range m ∈ [N/2−1,N/2+1]. Deduce (20) 

and (21).

Proof of Theorem 8

For each measurable set A
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Because ϕ1(tL)(1 − ϕ1(tL)) = ϕ2(tL)(1 − ϕ2(tL)), it follows that

Using a similar argument for p(tR)Γ(tR), deduce that

(44)

Notice that this has a similar form to (32) with ϕ(x) playing the role of f(x) (the first term on 

the right of (44) and the first two terms on the right of (32) play no role). Indeed, we can 

simply follow the remainder of the proof of Theorem 1 to deduce the result.

Proof of Theorem 10

The proof is nearly identical to Theorem 4 except for the modifications required to deal with 

triangular arrays. Assume without loss of generality that (Zi) = 0. Let 

 and . Splits away from an edge are handled as 

in Theorem 4 with ZN,i substituted for Zi and RN substituted for N. It follows for any 

constant C > 0
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(45)

Now we consider the contribution of a split from a left edge split. To do so, we make use of 

a LIL for weighted sums. We use Theorem 1 of Lai and Wei (1982). Using their notation, we 

write , where aN,i = 1 for i ∈ IN, and aN,i = 0 otherwise. The values aN,i 

comprise a double array of constants {aN,i: N ≥ 1,−∞ < i < ∞}. By part (iii) of Theorem 1 

of Lai and Wei (1982), for any 0 < θ < 2

where . Now arguing as in the proof of Theorem 4, this implies

(46)

Because C can be made arbitrarily small, deduce from (46) and (45) that (29) holds. The 

limit (30) for a right-edge split follows by symmetry.
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Figure 1. 
Synthetic two-class problem where the true decision boundary is oriented obliquely to the 

coordinate axes for the first two features (p = 5). Top panel is the decision boundary for a 

single tree with nodesize = 1 grown under pure random splitting, unweighted, heavy 

weighted and weighted Gini index splitting (left to right). Bottom panel is the decision 

boundary for a forest of 1000 trees using the same splitting rule as the panel above it. Black 

lines indicate the predicted decision boundary. Blue and red points are the observed classes.
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Figure 2. 
Theoretical split-points for X under weighted variance splitting (displayed using vertical red 

lines) for f(x) = 2x3 − 2x2 − x (in blue) assuming a uniform [−3, 3] distribution for X.
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Figure 3. 
Data optimized split-points ŝN for X (in red) using weighted variance splitting applied to 

simulated data from the multivariate regression model (8). Blue curves are f(x) = 2x3 − 2x2 

− x of Figure 2.
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Figure 4. 

The first two panels are Ψt(s) and its derivative  for f(s) = 2s3−2s2− s where t = [−3, 3]. 

Remaining panels are Ψt′(s) for t′ = [−3,−1.9], t′ = [−1.9, 1.5], t′ = [1.5, 3]. Blue vertical 

lines in first subpanel identify stationary points of Ψt(s).
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Figure 5. 
Data optimized split-points ŝN for X (in red) using weighted variance splitting for Blocks, 

Bumps, HeaviSine and Doppler simulations (Donoho and Johnstone, 1994). True functions 

are displayed in blue.
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Figure 6. 
Derivative of Ψt(s) for Blocks, Bumps, HeaviSine and Doppler functions of Figure 5, for 

Ψt(s) calculated as in (9).
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Figure 7. 
Density for ŝN under weighted variance (black), unweighted variance (red), heavy weighted 

variance (green) and random splitting (blue) where f(x) = c0+c1x for c0 = 1, c1 = 0 

(left:noisy), c0 = 1, c1 = 0.5 (middle: weak signal) and c0 = 1, c1 = 2 (right: strong signal).
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Figure 8. 
Ψt(s) for Blocks, Bumps, HeaviSine and Doppler functions of Example 4 for weighted 

(black), unweighted (red) and heavy weighted (green) splitting.
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Figure 9. 
ECP statistic, ecp(ŝN), from simulation (8). Circles are proportional to ecp(ŝN). Black, blue 

and red indicate low, medium and high ecp(ŝN) values.
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Figure 10. 
Average number of nodes by tree depth for weighted variance (black), restricted weighted 

(magenta), unweighted variance (red), heavy weighted variance (green) and random (blue) 

splitting for regression benchmark data from Table 2.
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Figure 11. 
Standardized MSE (×100) for high dimensional linear simulation (22) (left panel) and non-

linear simulation “friedman2.bigp” (right panel) as a function of p. Performance assessed 

using an independent test-set (n = 5000).
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Figure 12. 
Density for ŝN under Gini (black), unweighted Gini (red), heavy weighted Gini (green) and 

random splitting (blue) for ϕ(x) specified as in (25) for J = 2 with f(x) = c0 + c1x for c0 = 1, 

c1 = 0 (left: noisy), c0 = 1, c1 = 0.5 (middle: weak signal) and c0 = 1, c1 = 2 (right: strong 

signal).
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Figure 13. 
Brier score performance (×100) for synthetic high dimensional simulations as a function of p 
under weighted variance (black), restricted weighted (magenta), unweighted variance (red), 

and heavy weighted (green) Gini splitting. Performance assessed using an independent test-

set (n = 5000).
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Table 1

Depth of first split on X, linear variables , and noise variables  from simulation of Figure 9. 

Average values for  and  are displayed.

X nonlinear

 linear  noise

weighted 1.9 4.1 7.1

unweighted 5.9 26.6 34.1

heavy weighted 1.9 3.8 6.2

restricted weighted 1.9 3.9 6.4
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	Abstract
	1 Introduction
	Definition 1: If X is the p-dimensional feature and Y is the outcome, we call a variable X ⊆ X noisy if the conditional distribution of Y given X does not depend upon X. Otherwise, X is called strong. Thus, strong variables are distributionally related to the outcome but noisy variables are not.In this paper we formally study the effect of splitting rules on RF in regression and classification problems (Sections 2 and 3). We study a class of weighted splitting rules which includes as special cases CART weighted variance splitting and Gini index splitting. Such splitting rules possess an end-cut preference (ECP) splitting property (Morgan and Messenger, 1973; Breiman et al., 1984) which is the property of favoring splits near the edge for noisy variables (see Theorem 4 for a formal statement). The ECP property has generally been considered an undesirable property for a splitting rule. For example, according to Breiman et al. (Chapter 11.8; 1984), the delta splitting rule used by THAID (Morgan and Messenger, 1973) was introduced primarily to suppress ECP splitting.Our results, however, suggest that ECP splitting is very desirable for RF. The ECP property ensures that if the ensuing split is on a noisy variable, the split will be near the edge, thus maximizing the tree node sample size and making it possible for the tree to recover from the split downstream. Even for a split on a strong variable, it is possible to be in a region of the space where there is near zero signal, and thus an ECP split is of benefit in this case as well. Such benefits are realized only if the tree is grown deep enough—but deep trees are a trademark of RF. Another aspect of RF making it compatible with the ECP property is random feature selection. When p is large, or if mtry is small relative to p, it is often the case that many or all of the candidate variables will be noisy, thus making splits on noisy variables very likely and ECP splits useful. Another benefit occurs when a tree branch repeatedly splits on noise variables, for example if the node corresponds to a region in the feature space where the target function is flat. When this happens, ECP splits encourage the tree minimal node size to be reached rapidly and the branch terminates as desired.While the ECP property is important for handling noisy variables, a splitting rule should also be adaptive to signal. We show that weighted splitting exhibits such adaptivity. We derive the optimal split-point for weighted variance splitting (Theorem 1) and Gini index splitting (Theorem 8) under an infinite sample paradigm. We prove the population split-point is the limit of the empirical split-point (Theorem 2) which provides a powerful theoretical tool for understanding the split-rule [this technique of studying splits under the true split function has been used elsewhere; for example Buhlmann and Yu (2002) looked at splitting for stumpy decision trees in the context of subagging]. Our analysis reveals that weighted variance splitting encourages splits at points of curvature of the underlying target function (Theorem 3) corresponding to singularity points of the population optimizing function. Weighted variance splitting is therefore adaptive to both signal and noise. This appears to be a unique property. To show this, we contrast the behavior of weighted splitting to the class of unweighted and heavy weighted splitting rules and show that the latter do not possess the same adaptivity. They are either too greedy and lack the ECP property (Theorem 7), making them poor at recognizing noisy variables, or they have too strong an ECP property, making them poor at identifying strong variables. These results also shed light on pure random splitting and show that such rules are the least desirable. Randomized adaptive splitting rules are investigated in Section 4. We show that certain forms of randomization (Theorem 10) are able to preserve the useful properties of a splitting rule while significantly reducing computational effort.
	Definition 1: If X is the p-dimensional feature and Y is the outcome, we call a variable X ⊆ X noisy if the conditional distribution of Y given X does not depend upon X. Otherwise, X is called strong. Thus, strong variables are distributionally related to the outcome but noisy variables are not.In this paper we formally study the effect of splitting rules on RF in regression and classification problems (Sections 2 and 3). We study a class of weighted splitting rules which includes as special cases CART weighted variance splitting and Gini index splitting. Such splitting rules possess an end-cut preference (ECP) splitting property (Morgan and Messenger, 1973; Breiman et al., 1984) which is the property of favoring splits near the edge for noisy variables (see Theorem 4 for a formal statement). The ECP property has generally been considered an undesirable property for a splitting rule. For example, according to Breiman et al. (Chapter 11.8; 1984), the delta splitting rule used by THAID (Morgan and Messenger, 1973) was introduced primarily to suppress ECP splitting.Our results, however, suggest that ECP splitting is very desirable for RF. The ECP property ensures that if the ensuing split is on a noisy variable, the split will be near the edge, thus maximizing the tree node sample size and making it possible for the tree to recover from the split downstream. Even for a split on a strong variable, it is possible to be in a region of the space where there is near zero signal, and thus an ECP split is of benefit in this case as well. Such benefits are realized only if the tree is grown deep enough—but deep trees are a trademark of RF. Another aspect of RF making it compatible with the ECP property is random feature selection. When p is large, or if mtry is small relative to p, it is often the case that many or all of the candidate variables will be noisy, thus making splits on noisy variables very likely and ECP splits useful. Another benefit occurs when a tree branch repeatedly splits on noise variables, for example if the node corresponds to a region in the feature space where the target function is flat. When this happens, ECP splits encourage the tree minimal node size to be reached rapidly and the branch terminates as desired.While the ECP property is important for handling noisy variables, a splitting rule should also be adaptive to signal. We show that weighted splitting exhibits such adaptivity. We derive the optimal split-point for weighted variance splitting (Theorem 1) and Gini index splitting (Theorem 8) under an infinite sample paradigm. We prove the population split-point is the limit of the empirical split-point (Theorem 2) which provides a powerful theoretical tool for understanding the split-rule [this technique of studying splits under the true split function has been used elsewhere; for example Buhlmann and Yu (2002) looked at splitting for stumpy decision trees in the context of subagging]. Our analysis reveals that weighted variance splitting encourages splits at points of curvature of the underlying target function (Theorem 3) corresponding to singularity points of the population optimizing function. Weighted variance splitting is therefore adaptive to both signal and noise. This appears to be a unique property. To show this, we contrast the behavior of weighted splitting to the class of unweighted and heavy weighted splitting rules and show that the latter do not possess the same adaptivity. They are either too greedy and lack the ECP property (Theorem 7), making them poor at recognizing noisy variables, or they have too strong an ECP property, making them poor at identifying strong variables. These results also shed light on pure random splitting and show that such rules are the least desirable. Randomized adaptive splitting rules are investigated in Section 4. We show that certain forms of randomization (Theorem 10) are able to preserve the useful properties of a splitting rule while significantly reducing computational effort.
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	1.1 A simple illustration

	2 Regression forests
	2.1 Theoretical derivation of the split-point
	Remark 1: Throughout we will define left and right daughter nodes in terms of splits of the form X ≤ s and X > s which assumes a continuous X variable. In general, splits can be defined for categorical X by moving data points left and right using the complementary pairings of the factor levels of X (if there are L distinct labels, there are 2L−1 − 1 distinct complementary pairs). However, for notational convenience we will always talk about splits for continuous X, but our results naturally extend to factors.The tree T is grown by finding the split-point s that maximizes Δ̂(s, t) (Chapter 8.4; Breiman et al., 1984). We denote the optimized split-point by ŝN. Maximizing Δ̂(s, t) is equivalent to minimizing(2)In other words, CART seeks the split-point ŝN that minimizes the weighted sample variance. We refer to (2) as the weighted variance splitting rule.To theoretically study ŝN, we replace Δ̂(s, t) with its analog based on population parameters:where Δ(t) is the conditional population varianceand Δ(tL) and Δ(tR) are the daughter conditional variancesand p(tL) and p(tR) are the conditional probabilitiesOne can think of Δ(s, t) as the tree splitting rule under an infinite sample setting. We optimize the infinite sample splitting criterion in lieu of the data optimized one (2). Shortly we describe conditions showing that this solution corresponds to the limit of ŝN. The population analog to (2) is(3)Interestingly, there is a solution to (3) for the one-dimensional case (p = 1). We state this formally in the following result.Theorem 1: Let ℙt denote the conditional distribution for X given that X ∈ t. Let ℙtL(·) and ℙtR(·) denote the conditional distribution of X given that X ∈ tL and X ∈ tR, respectively. Let t = [a, b]. The minimizer of (3) is the value for s maximizing(4)If f(s) is continuous over t and ℙt has a continuous and positive density over t with respect to Lebesgue measure, then the maximizer of (4) satisfies(5)This solution is not always unique and is permissible only if a ≤ s ≤ b.In order to justify our infinite sample approach, we now state sufficient conditions for ŝN to converge to the population split-point. However, because the population split-point may not be unique or even permissible according to Theorem 1, we need to impose conditions to ensure a well defined solution. We shall assume that Ψt has a global maximum. This assumption is not unreasonable, and even if Ψt does not meet this requirement over t, a global maximum is expected to hold over a restricted subregion t′ ⊂ t. That is, when the tree becomes deeper and the range of values available for splitting a node become smaller, we expect Ψt′ to naturally satisfy the requirement of a global maximum. We discuss this issue further in Section 2.2.Notice in the following result we have removed the requirement that f is continuous and replaced it with the lighter condition of square-integrability. Additionally, we only require that ℙt satisfies a positivity condition over its support.Theorem 2: Assume that f ∈ ℒ2(ℙt) and 0 < ℙt{X ≤ s} < 1 for a < s < b where t = [a, b]. If Ψt(s) has a unique global maximum at an interior point of t, then the following limit holds as N → ∞Note that s∞ is unique.
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	2.2 Theoretical split-points for polynomials
	Theorem 3: Suppose that . If ℙt is the uniform distribution on t = [a, b], then the value for s that minimizes (3) is a solution to(6)where Uj = cj/(j + 1) + acj+1/(j + 2) + ⋯ + aq−j cq/(q + 1) and Vj = cj/(j + 1) + bcj+1/(j + 2) + ⋯ + bq−j cq/(q + 1). To determine which value is the true maximizer, discard all solutions not in t (including imaginary values) and choose the value which maximizes(7)Example 1: As a first illustration, suppose that f(x) = c0 + c1x for x ∈ [a, b]. Then, U0 = c0 + ac1/2, V0 = c0 + bc1/2 and U1 = V1 = c1/2. Hence (6) equalsIf c1 ≠ 0, then s = (a + b)/2; which is a permissible solution. Therefore for simple slope-intercept functions, node-splits are always at the midpoint.Example 2: Now consider a more complicated polynomial, f(x) = 2x3 − 2x2 − x where x ∈ [−3, 3]. We numerically solve (6) and (7). The solutions are displayed recursively in Figure 2. The first panel is the optimal split over the root node [−3, 3]. There is one distinct solution s = −1.924. The second panel is the optimal split over the daughters arising from the first panel. The third panel are the optimal splits arising from the second panel, and so forth.The derivative of f is f′(x) = 6x2 − 4x − 1. Inspection of the derivative shows that f is increasing most rapidly for −3 ≤ x ≤ −2, followed by 2 ≤ x ≤ 3, and then −2 < x < 2. The order of splits in Figure 2 follows this pattern, showing that node splitting tracks the curvature of f, with splits occurring first in regions where f is steepest, and last in places where f is flattest.Example 2 (continued): Our examples have assumed a one-dimensional (p = 1) scenario. To test how well our results extrapolate to higher dimensions we modified Example 2 as follows. We simulated n = 1000 values from(8)using f as in Example 2, where (εi)1≤i≤n were i.i.d. N(0, σ2) variables with σ = 2 and (Xi)1≤i≤n were sampled independently from a uniform [−3, 3] distribution. The additional variables (Ui,k)1≤k≤D were also sampled independently from a uniform [−3, 3] distribution (we set d = 10 and D = 13). The first 1 ≤ k ≤ d of the Ui,k are signal variables with signal C1 = 3, whereas we set C2 = 0 so that Ui,k are noise variables for d + 1 ≤ k ≤ D. The data was fit using a regression tree under weighted variance splitting. The data-optimized split-points ŝN for splits on X are displayed in Figure 3 and closely track the theoretical splits of Figure 2. Thus, our results extrapolate to higher dimensions and also illustrate closeness of ŝN to the population value s∞.The near-exactness of the split-points of Figures 2 and 3 is a direct consequence of Theorem 2. To see why, note that with some rearrangement, (7) becomeswhere Aj, Bj are constants that depend on a and b. Therefore Ψt is a polynomial. Hence it will achieve a global maximum over t or over a sufficiently small subregion t′.To further amplify this point, Figure 4 illustrates how Ψt′(s) depends on t′ for f(x) of Example 2. The first subpanel displays Ψt(s) over the entire range t = [−3, 3]. Clearly it achieves a global maximum. Furthermore, when [−3, 3] is broken up into contiguous subregions t′, Ψt′(s) becomes nearly concave (last three panels) and its maximum becomes more pronounced. Theorem 2 applies to each of these subregions, guaranteeing ŝN converges to s∞ over them.
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	2.3 Split-points for more general functions
	Example 3: As a simple illustration, consider the step function f(x) = 1{x>1/2} where x ∈ [0, 1]. Then,When s ≤ 1/2, the maximum of Ψt is achieved at the largest value of αk less than or equal to 1/2. In fact, Ψt is increasing in this range. Let α− = max{αk : αk ≤ 1/2} denote this value. Likewise, let α+ = min{αk : αk > 1/2} denote the smallest αk larger than 1/2 (we assume there exists at least one αk > 1/2 and at least one αk ≤ 1/2). We haveThe following bound holds when s ≥ α̂+ > 1/2:Therefore the optimal split point is s∞ = α−: this is the value in the support of X closest to the point where f has the greatest increase; namely s = 1/2. Importantly, observe that s∞ coincides with a change in the sign of the derivative of Ψt. This is because Ψt increases over s ≤ 1/2, reaching a maximum at α−, and then decreases at α+. Therefore s ∈ [α−, α+) is a stationary point of Ψt.Example 4: As further illustration that Ψt depends on the curvature of f, Figure 5 displays the optimized split-points ŝN for the Blocks, Bumps, HeaviSine and Doppler simulations described in Donoho and Johnstone (1994). We set n = 400 in each example, but otherwise followed the specifications of Donoho and Johnstone (1994), including the use of a fixed design xi = i/n for X. Figure 6 displays the derivative of Ψt for t = [0, 1], where Ψt was calculated as in (9) with 
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 = {xi}1≤i≤n. Observe how splits in Figure 5 generally occur within the contiguous intervals defined by the stationary points of Ψt. Visual inspection of Ψt′ for subregions t′ confirmed Ψt′ achieved a global maximum in almost all examples (for Doppler, Ψt′ was near-concave). These results, when combined with Theorem 2, provide strong evidence that ŝN closely approximates s∞.We end this section by noting evidence of ECP splitting occurring in Figure 5. For example, for Blocks and Bumps, splits are observed near the edges 0 and 1 even though Ψt has no singularities there. This occurs, because once the tree finds the discernible boundaries of the spiky points in Bumps and jumps in the step functions of Blocks (by discernible we mean signal is larger than noise), it has exhausted all informative splits, and so it begins to split near the edges. This is an example of ECP splitting, a topic we discuss next.
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	2.4 Weighted variance splitting has the ECP property
	Definition 2: A splitting rule has the ECP property if it tends to split near the edge for a noisy variable. In particular, let ŝN be the optimized split-point for the variable X with candidate split-points x1 < x2 < · · · < xN. The ECP property implies that ŝN will tend to split towards the edge values x1 and xN if X is noisy.To establish the ECP property for weighted variance splitting, first note that Theorem 1 will not help in this instance. The solution (5) iswhich holds for all s. The solution is indeterminate because Ψt(s) has a constant derivative. Even a direct calculation using (9) will not help. From (9),The solution is again indeterminate because Ψt(s) is constant and therefore has no unique maximum.To establish the ECP property we will use a large sample result due to Breiman et al. (Chapter 11.8; 1984). First, observe that (2) can be written asTherefore minimizing D̂(s, t) is equivalent to maximizing(10)Consider the following result (see Theorem 10 for a generalization of this result).Theorem 4: (Theorem 11.1; Breiman et al., 1984). Let (Zi)1≤i≤N be i.i.d. with finite variance σ2 > 0. Consider the weighted splitting rule:(11)Then for any 0 < δ < 1/2 and any 0 < τ < ∞:(12)and(13)Theorem 4 shows (11) will favor edge splits almost surely. To see how this applies to (10), let us assume X is noisy. By Definition 1, this implies that the distribution of Y given X does not depend on X, and therefore Yi ∈ tL has the same distribution as Yi ∈ tR. Consequently, Yi ∈ tL and Yi ∈ tR are i.i.d. and because order does not matter we can set Z1 = Yi1, …, ZN = YiN where i1, …, iN are the indices of Yi ∈ t ordered by Xi ∈ t. From this, assuming Var(Yi) < ∞, we can immediately conclude (the result applies in general for p ≥ 1):Theorem 5: Weighted variance splitting possesses the ECP property.
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	2.5 Unweighted variance splitting
	Theorem 6: Let (Zi)1≤i≤N be i.i.d. such that . Consider the unweighted splitting rule:(15)Then for any 0 < δ < 1/2:(16)and(17)
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	2.6 Heavy weighted variance splitting
	Theorem 7: Let (Zi)1≤i≤N be i.i.d. such that . Consider the heavy-weighted splitting rule:(19)Then for any 0 < δ < 1/2:(20)and(21)
	Theorem 7


	2.7 Comparison of split-rules in the one-dimensional case
	Definition 3: Splitting rules of the form (11) are called weighted splitting rules. Those like (15) are called unweighted splitting rules, while those of the form (19) are called heavy weighted splitting rules.Example 5: To investigate the differences between our three splitting rules we used the following one-dimensional (p = 1) simulation. We simulated n = 100 observations fromwhere Xi was drawn independently from a uniform distribution on [−3, 3] and εi was drawn independently from a standard normal. We considered three scenarios: (a) noisy (c0 = 1, c1 = 0); (b) moderate signal (c0 = 1, c1 = 0.5); and (c) strong signal (c0 = 1, c1 = 2).The simulation was repeated 10,000 times independently. The optimized splitpoint ŝN under weighted, unweighted and heavy weighted variance splitting was recorded in each instance. We also recorded ŝN under pure random splitting where the splitpoint was selected entirely at random. Figure 7 displays the density estimate for ŝN for each of the four splitting rules. In the noisy variable setting, only weighted and unweighted splitting exhibit ECP behavior. When the signal increases moderately, weighted splitting tends to split in the middle, which is optimal, whereas unweighted splitting continues to exhibit ECP behavior. Only when there is strong signal, does unweighted splitting finally adapt and split near the middle. In all three scenarios, heavy weighted splitting splits towards the middle, while random splitting is uniform in all instances.The example confirms our earlier hypothesis: weighted splitting is the most adaptive. In noisy scenarios it exhibits ECP tendencies but with even moderate signal it shuts off ECP splitting enabling it to recover signal.Example 4 (continued): We return to Example 4 and investigate the shape of Ψt under the three splitting rules. As before, we assume X is discrete with support 
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 = {1/n, 2/n, …, 1}. For each rule, let Ψt denote the population criterion function we seek to maximize. Discarding unnecessary factors, it follows that Ψt can be written as follows (this holds for any f):Ψt functions for Blocks, Bumps, HeaviSine and Doppler functions of Example 4 are shown in Figure 8. For weighted splitting, Ψt consistently tracks the curvature of the true f (see Figure 5). For unweighted splitting, Ψt is maximized near the edges, while for heavy weighted splitting, the maximum tends towards the center.
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	Theorem 8: Let ϕ(s) = ℙ{Y = 1|X = s}. If ϕ(s) is continuous over t = [a, b] and ℙt has a continuous and positive density over t with respect to Lebesgue measure, then the value for s that minimizes (23) when J = 2 is a solution to(24)Theorem 8 can be used to determine the optimal Gini split in terms of the underlying target function, ϕ(x). Consider a simple intercept-slope model(25)Assume ℙt is uniform and that f(x) = c0 + c1x. Then, (24) reduces toUnlike the regression case, the solution cannot be derived in closed form and does not equal the midpoint of the interval [a, b].It is straightforward to extend Theorem 2 to the classification setting, thus justifying the use of an infinite sample approximation. The square-integrability condition will hold automatically due to boundedness of ϕ(s). Therefore only the positive support condition for ℙt and the existence of a unique maximizer for Ψt is required, where Ψt(s) isUnder these conditions it can be shown that ŝN converges to the unique population split-point, s∞, maximizing Ψt(s).Remark 2: Breiman (1996) also investigated optimal split-points for classification splitting rules. However, these results are different than ours. He studied the question of what configuration of class frequencies yields the optimal split for a given splitting rule. This is different because it does not involve the classification rule and therefore does not address the question of what is the optimal split-point for a given ϕ(x). The optimal split-point studied in Breiman (1996) may not even be realizable.
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(|Zi|q) < ∞ for some q > 2. Let (IN)N≥1 be a sequence of index sets such that RN → ∞. Then for any 0 < δ < 1/2 and any 0 < τ < ∞:(29)and(30)Remark 3: As a special case, Theorem 10 yields Theorem 4 for the sequence IN = {1, …, N}. Note that while the moment condition is somewhat stronger, Theorem 10 does not require (Zi)1≤i≤N to be i.i.d. but only independent.Remark 4: Theorem 10 shows that the ECP property holds if nsplit → ∞. Because any rate is possible, the condition is mild and gives justification for nsplit-randomization. However, notice that nsplit = 1, corresponding to the extremely randomized tree method of Geurts et al. (2006), does not satisfy the rate condition.
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