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NaCl and osmolarity produce different responses in
organum vasculosum of the lamina terminalis neurons,
sympathetic nerve activity and blood pressure

Brian J. Kinsman1,2, Kirsteen N. Browning2 and Sean D. Stocker1

1Department of Medicine, Division of Renal-Electrolyte, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
2Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA

Key points

� Changes in extracellular osmolarity stimulate thirst and vasopressin secretion through a
central osmoreceptor; however, central infusion of hypertonic NaCl produces a greater
sympathoexcitatory and pressor response than infusion of hypertonic mannitol/sorbitol.

� Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense changes in
extracellular osmolarity and NaCl.

� In this study, we discovered that intracerebroventricular infusion or local OVLT injection
of hypertonic NaCl increases lumbar sympathetic nerve activity, adrenal sympathetic nerve
activity and arterial blood pressure whereas equi-osmotic mannitol/sorbitol did not alter any
variable.

� In vitro whole-cell recordings demonstrate the majority of OVLT neurons are responsive to
hypertonic NaCl or mannitol. However, hypertonic NaCl stimulates a greater increase in
discharge frequency than equi-osmotic mannitol.

� Intracarotid or intracerebroventricular infusion of hypertonic NaCl evokes a greater increase
in OVLT neuronal discharge frequency than equi-osmotic sorbitol.

� Collectively, these novel data suggest that subsets of OVLT neurons respond differently to
hypertonic NaCl versus osmolarity and subsequently regulate body fluid homeostasis. These
responses probably reflect distinct cellular mechanisms underlying NaCl- versus osmo-sensing.

Abstract Systemic or central infusion of hypertonic NaCl and other osmolytes readily stimulate
thirst and vasopressin secretion. In contrast, central infusion of hypertonic NaCl produces a greater
increase in arterial blood pressure (ABP) than equi-osmotic mannitol/sorbitol. Although these
responses depend on neurons in the organum vasculosum of the lamina terminalis (OVLT), these
observations suggest OVLT neurons may sense or respond differently to hypertonic NaCl versus
osmolarity. The purpose of this study was to test this hypothesis in Sprague-Dawley rats. First,
intracerebroventricular (ICV) infusion (5 μl/10 min) of 1.0 M NaCl produced a significantly greater
increase in lumbar sympathetic nerve activity (SNA), adrenal SNA and ABP than equi-osmotic
sorbitol (2.0 osmol l−1). Second, OVLT microinjection (20 nl) of 1.0 M NaCl significantly raised
lumbar SNA, adrenal SNA and ABP. Equi-osmotic sorbitol did not alter any variable. Third, in
vitro whole-cell recordings demonstrate that 50% (18/36) of OVLT neurons display an increased
discharge to both hypertonic NaCl (+7.5 mM) and mannitol (+15 mM). Of these neurons,
56% (10/18) displayed a greater discharge response to hypertonic NaCl vs mannitol. Fourth, in
vivo single-unit recordings revealed that intracarotid injection of hypertonic NaCl produced a
concentration-dependent increase in OVLT cell discharge, lumbar SNA and ABP. The responses
to equi-osmotic infusions of hypertonic sorbitol were significantly smaller. Lastly, ICV infusion of
0.5 M NaCl produced significantly greater increases in OVLT discharge and ABP than ICV infusion
of equi-osmotic sorbitol. Collectively, these findings indicate NaCl and osmotic stimuli produce
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different responses across OVLT neurons and may represent distinct cellular processes to regulate
thirst, vasopressin secretion and autonomic function.
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Abbreviations ABP, arterial blood pressure; aCSF, artificial cerebrospinal fluid; AP, action potential; ENaC, epithelial
sodium channel; ICV, intracerebroventricular; KRB, oxygenated Krebs buffer; NMDG, N-methyl-D-glucamine; OVLT,
organum vasculosum of the lamina terminalis; PVN, paraventricular nucleus; SFO, subfornical organ; SNA, sympathetic
nerve activity; SON, supraoptic nucleus; VP, vasopressin.

Introduction

Extracellular fluid osmolality is a consistent and vital
variable that contributes to body fluid homeostasis.
Elevations in either plasma or cerebrospinal fluid (CSF)
osmolality as low as 1–3% stimulate motivated behaviours,
stimulate neuroendocrine function, and alter sympathetic
nerve activity (SNA) and arterial blood pressure (ABP) to
maintain an osmotic set point that preserves body fluid
homeostasis (Verney, 1947; Bourque, 2008). A multitude
of studies have established a causative relationship between
increases in plasma or CSF osmolality and the genesis
of behavioural thirst and vasopressin (VP) secretion,
regardless of the osmotic solute (Dunn et al. 1973; Buggy
et al. 1979; McKinley et al. 1980a, b; Thrasher et al. 1980a,
b; Thompson et al. 1986). Curiously, the ability of hyper-
osmotic perturbations to increase ABP varies depending
on the solute. Specifically, central infusion of hypertonic
NaCl elevates ABP much more than hypertonic sugar
osmolytes (i.e. sorbitol, mannitol) (Bunag & Miyajima,
1984; Tiruneh et al. 2013; Frithiof et al. 2014). This
dichotomy has important implications regarding NaCl-
versus osmosensory function as sodium and chloride are
the major ubiquitous extracellular osmolytes to elicit
osmoregulatory responses to osmotic challenges imposed
by dehydration and high dietary NaCl intake.

The primary set of osmosensitive neurons is located
within sensory circumventricular organs such as the sub-
fornical organ (SFO) and the organum vasculosum of the
lamina terminalis (OVLT) (Bourque, 2008; Kinsman et al.
2017a). The SFO and OVLT sit outside the blood–brain
barrier and, as a consequence, are uniquely poised to detect
alterations in plasma and CSF osmolality (Broadwell
& Brightman, 1976; McKinley et al. 1983). Peripheral
or central administration of hypertonic solutes activate
OVLT and SFO neurons, as evidenced by elevated nuclear
c-Fos immunoreactivity (Oldfield et al. 1991, 1994;
Solano-Flores et al. 1993; Larsen & Mikkelsen, 1995; Taylor
et al. 2008; Kinsman et al. 2014). Furthermore, hyper-
tonic NaCl and sorbitol/mannitol independently elicit
excitatory responses from OVLT and SFO neurons in vitro
(Sayer et al. 1984; Sibbald et al. 1988; Vivas et al. 1990;
Anderson et al. 2000; Ciura & Bourque, 2006; Kinsman

et al. 2017b). Limited in vivo single unit recordings
also indicate that peripheral or central hypertonic NaCl
stimulates increases in OVLT and SFO discharge frequency
(Gutman et al. 1988; Honda et al. 1990; Nation et al. 2016;
Kinsman et al. 2017b). In turn, OVLT and SFO neurons
activate downstream targets in thalamico-cortical circuits
to stimulate thirst (Denton et al. 1999; Hollis et al. 2008), in
the supraoptic (SON) and paraventricular (PVN) nuclei
to increase VP secretion, and in the PVN to alter SNA
and ABP (Ferguson & Kasting, 1986; Gutman et al. 1988;
Oldfield et al. 1994; Larsen & Mikkelsen, 1995; Richard &
Bourque, 1995; Hochstenbach & Ciriello, 1996; Shi et al.
2008; Kinsman et al. 2017b). The functional significance of
these cellular responses is highlighted by studies in which
lesion or pharmacological inhibition of the SFO or OVLT
attenuates thirst, VP secretion and pressor responses to
hypertonic NaCl (Thrasher et al. 1982; Lind et al. 1984;
Mangiapane et al. 1984; McKinley et al. 1999; Shi et al.
2007; Tiruneh et al. 2013; Kinsman et al. 2017b).

Although OVLT (and SFO) neurons sense changes
in extracellular NaCl concentrations and osmolarity,
previous studies have not assessed whether OVLT
neurons respond differently to hypertonic NaCl versus
mannitol/sorbitol. Differences in the response magnitudes
or within distinct populations of OVLT neurons may
explain the dichotomy in osmotic regulation of thirst and
VP secretion versus NaCl-driven changes in autonomic
function and ABP. Furthermore, such findings may suggest
distinct cellular mechanisms underlying NaCl- versus
osmosensory function. Consequently, we conducted a
series of novel in vivo neurophysiological experiments and
in vitro whole cell patch-clamp experiments to determine
the extent by which hypertonic NaCl versus mannitol or
sorbitol exerted differential effects on OVLT neurons, SNA
and ABP.

Methods

Ethical approval

All experimental procedures conform to the National
Institutes of Health Guide for the Care and use
of Laboratory Animals and were approved by the
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Institutional Animal Care and Use Committee at the
Pennsylvania State College of Medicine (#46442) and
the University of Pittsburgh (#16129731). Experiments
were conducted in male Sprague-Dawley rats (250–400 g,
Charles River Laboratories, Wilmington, MA, USA)
housed in a temperature-controlled room (22 ± 1°C)
with a 12 h dark/light cycle. Rats were fed standard chow
(Teklad Global Diet 2018, Harlan, Indianapolis, IN, USA)
and given access to deionized water ad libitum. Anaesthesia
and euthanasia methods are described below for each
experimental protocol. In all experiments, the level of
anaesthesia was assessed by the lack of a withdrawal reflex
to a foot pinch. The investigators conform to the ethical
principles and animal ethics checklist required by The
Journal of Physiology.

In vivo experiments

General procedures. Rats were initially anaesthetized
with isoflurane (2–3% in 100% O2) and prepared
for ABP measurements (brachial arterial catheter) and
simultaneous recording of multiple sympathetic nerves
(lumbar, renal, splanchnic and adrenal) as described
previously (Ward et al. 2011; Simmonds et al. 2014;
Steiner et al. 2014; Stocker et al. 2015; Kinsman et al.
2017b). Briefly, the lumbar sympathetic nerve was iso-
lated through a ventral midline incision after gentle
retraction of the vena cavae, isolated and placed on
bipolar stainless steel electrodes, and insulated with
KWIK-SIL (World Precision Instruments, Sarasota, FL,
USA). The renal, splanchnic and adrenal sympathetic
nerves were isolated through a left retroperitoneal incision
and gentle retraction of the kidney, placed on separate
sets of bipolar electrodes, and insulated with KWIK-SIL.
Retractors were removed, and both incisions were closed
with staples. An additional catheter was implanted in the
femoral artery and jugular vein. Animals were artificially
ventilated. PO2 (35–40 mmHg) and end-tidal CO2

(3.5–4.5%) were measured continuously by a GEMINI
Gas Respiratory Analyser (CWE, Inc., Ardmore, PA, USA)
maintained at the respective levels by adjusting ventilation
rate (60–80 bpm) or tidal volume (1 ml/100 g body
weight). Body temperature was measured continuously
via rectal probe (Sable Systems, Las Vegas, NV, USA)
and maintained at 37 ± 0.5°C by a water-circulating
blanket. After rats were placed into a stereotaxic head
frame, 26-gauge cannulae were implanted into the left
and right lateral ventricles (Simmonds et al. 2014). After
all surgical procedures were completed, anaesthesia was
replaced by inactin (120 mg kg−1, I.V.). Animals also
received a continuous infusion of 0.75% NaCl and 0.25%
glucose (0.5 ml h−1, I.V.). To gain access to the OVLT in a
subset of experiments, the rat was placed supine into the
stereotaxic frame. The ventral surface of the hypothalamus
was visualized through a ventral midline approach by

removal of the hard and soft palate as described pre-
viously (Leng & Dyball, 1991; Kinsman et al. 2017b).
Experiments began at 60 min after all surgical procedures
were completed.

Sympathetic and ABP responses during ICV infusion of
hypertonic NaCl vs sorbitol. Rats were prepared as
described above for SNA recordings and brain cannulae
in the lateral ventricle. Animals were pretreated with
the VP antagonist Manning Compound (10 μg kg−1,
I.V.) to prevent the vasconstrictive effects of VP and iso-
late sympathetically mediated changes in ABP. Then, ICV

infusion (5 μl for 10 min) of 1 M NaCl or 2 osmol l−1

sorbitol was performed in a randomized manner, and
variables were recorded for an additional 60 min. We
have previously reported that ICV infusion of 1 M NaCl
increases CSF [Na+] �4–5 mM (Stocker et al. 2015). Each
animal received both ICV infusions separated by >1 h
when variables returned to baseline values for at least
30 min. Solutions were prepared in artificial CSF (aCSF)
containing (in mM): 128 NaCl, 3 KCl, 1.2 CaCl2, 0.8 MgCl2,
3.4 glucose, 5 HEPES adjusted to pH 7.4. Animals were
killed via an overdose of inactin (250 mg kg−1, I.V.) and
cardiac transection. Variables were averaged in 1 min bins.
The area under the curve was calculated as the average
10 min peak response.

OVLT-specific effects of hypertonic NaCl vs sorbitol on
SNA and ABP. Animals were prepared for SNA recordings
and ventral hypothalamic exposure as described above.
Initially, the OVLT was identified functionally by a
sympathoexcitatory and pressor response (>5 mmHg)
to microinjection of 1 M NaCl (20 nl over 60 s) using
coordinates in reference to the rostral end of the optic
chiasm: −0.6 to 1.2 mm caudal, 0.0 mm lateral and
1.3–1.6 mm depth relative to the ventral surface. The
pipette was moved in 200 μm steps rostral-caudally until
a sympathoexcitatory response was observed and required
up to two injections. The pipette was removed and rinsed
with aCSF (5×). Then, hypertonic sorbitol (2 osmol l−1

dissolved in aCSF) or NaCl (1 M) was microinjected in a
randomized manner separated by 45 min. Variables were
recorded for an additional 45 min. Variables were averaged
in 1 min bins. Responses were analysed and compared
between a 1 min peak versus a 5 min baseline.

All microinjections were performed using single-barrel
glass micropipettes (20–30 μm outer diameter) connected
to a picopump and monitored with an eyepiece
reticule. Injection sites were marked by addition of
rhodamine (sorbitol) or fluorescein isothiocyanate (NaCl)
beads (0.2%, Molecular Probes, Carlsbad, CA, USA)
to the respective solution. Animals were killed via
exsanguination and transcardial perfusion with 4%
paraformaldehyde. Brains were post-fixed overnight,
sectioned at 50 μm on a vibratome, and mounted
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to visualize injection sites with a Leica DM6000b
epifluorescence microscope in Volocity 6.3 software
(PerkinElmer, Waltham, MA, USA).

In vivo single-unit responses of OVLT neurons to intra-
carotid infusion of hypertonic NaCl vs sorbitol. Rats
were prepared as described above using a ventral
approach to access the OVLT. Intracarotid infusion of
hypertonic NaCl and sorbitol were performed via a
non-occlusive catheter (heat-stretched PE-10) inserted
into the ascending pharyngeal artery and then advanced
1.5 mm past the carotid bifurcation and into the inter-
nal carotid artery. Single-unit recordings were performed
with glass electrodes (10–25 M�), filled with 4% neuro-
biotin (dissolved in 0.5% sodium acetate, pH 7.4) and
an intracellular amplifier in bridge mode (Axoclamp 2B,
Molecular Devices, Sunnyvale, CA, USA). The OVLT was
probed for spontaneously active units in 2 μm steps. Once
a unit was isolated, neuronal responses to intracarotid
infusion (50 μl) of NaCl (0.15, 0.3 or 0.5 M) or sorbitol
(1.0 osmol l−1) were tested in a randomized order and
separated by >5 min. All solutions were prepared in iso-
tonic saline and flushed through the intracarotid catheter
with isotonic saline infusion (150 μl over 15 s). Assuming
carotid blood flow is 5.5 ml min−1 in a rat (Guyton &
Hartley, 1985), these infusions of 0.15, 0.3 and 0.5 M NaCl
or 1.0 osmol l−1 sorbitol should acutely increase carotid
blood osmolality by 0, 3 and 7%, respectively. All variables
were averaged in 1 s bins. Discharge responses, SNA and
mean ABP were compared between a 30 s baseline versus
a 4 s peak response.

At the end of single-unit recordings, cells were juxta-
cellularly labelled as described previously (Pinault, 1996;
Stocker & Toney, 2005; Kinsman et al. 2017b) by applying
current pulses (200 ms, 50% duty cycle) of increasing
amplitude (1.0–8.0 nA) delivered through the recording
electrode for 20–180 s of entrainment. Then, animals
were perfused transcardially with 4% paraformaldehyde.
Brains were post-fixed overnight, sectioned at 50 μm on
a vibratome and incubated with streptavidin AlexaFluor
488 or 594 to visualize filled cells (or recording sites) with
a Leica DM6000b epifluorescence microscope in Volocity
6.3 software (PerkinElmer).

In vivo single-unit responses to ICV infusion of hyper-
tonic NaCl vs sorbitol. A separate group of rats was pre-
pared as described above including ICV brain cannulas
and an intracarotid catheter. The OVLT was exposed
using a ventral approach. After a spontaneously active
unit was identified, neuronal responses to intracarotid
injection of 0.5 M NaCl (50 μl) were tested to identify an
NaCl-responsive OVLT neuron as described above. Then,
neuronal responses to ICV infusion (2.5 μl for 5 min)
of 0.5 M NaCl and 1.0 osmol l−1 sorbitol (dissolved in
aCSF) were tested in a randomized order separated by

30 min. A smaller infusion rate and concentration was used
here versus other experiments to facilitate shorter response
duration to permit sufficient time to test both ICV infusion
per unit. At the end of recordings, units were juxta-
cellularly labelled and brains harvested as described above.
Discharge responses to ICV infusions were compared
between a 3 min baseline and 1 min peak discharge
response.

In vitro electrophysiology

Whole-cell patch-clamp recordings of OVLT neurons
were performed as described previously in our laboratory
(Kinsman et al. 2017b). Briefly, rats were anaesthetized
deeply with 5% isoflurane and decapitated. The brains
were extracted rapidly into oxygenated (95% O2/5%
CO2), ice-cold N-methyl-D-glucamine (NMDG)-based
aCSF (composition in mM): 98 NMDG, 2.5 KCl, 1.2
NaH2PO4, 20 HEPES, 91 HCl, 10 MgSO4, 0.5 CaCl2, 25
NaHCO3, 11 D-glucose (pH 7.39 and 295 mosmol l−1).
Coronal slices containing the OVLT were cut at 250 μm
thickness on a vibratome with a sapphire blade (Delaware
Diamond Knives, Wilmington, DE, USA). Slices were then
incubated at 33 ± 1°C in oxygenated NMDG aCSF for
15 min, then transferred to oxygenated Krebs buffer (KRB;
composition in mM): 126 NaCl, 25 NaHCO3, 2.5 KCl,
1.2 MgCl2, 2.4 CaCl2, 1.2 NaH2PO4 and 11 D-glucose
(pH 7.4 and 295 mosmol l−1) to incubate for an additional
90 min prior to cell recordings. Slices were continuously
bathed in the slice chamber (500 μl) by KRB via a
gravity-fed perfusion system at 2–3 ml min−1 and warmed
to 31 ± 0.5°C with an SF-28 inline heater and TC-324B
temperature controller (Warner Instruments, Hamden,
CT, USA).

Whole-cell recordings were made with borosilicate
patch-pipettes pulled to resistance of 5–8 M� when
filled with potassium gluconate intracellular solution
(composition in mM): 128 potassium gluconate, 10 KCl,
0.3 CaCl2, 1 MgCl2, 10 HEPES, 1 EGTA, 4 MgATP, 2
Na2phosphocreatine and 0.3 NaGTP adjusted to pH 7.35
with KOH and osmolarity 280 ± 2 mosmol l−1. Data
were acquired in Clampex 10.3 software with an Axopatch
200B amplifier (Molecular Devices) at a rate of 10 kHz,
filtered at 2 kHz and digitized with a Digidata 1440A
interface before being saved on a personal computer and
analysed in Clampfit 10.7 (Molecular Devices) and Spike
2.0 software. Only neuronal recordings maintaining a
series resistance (i.e. pipette + access resistance) <20 M�

were considered of acceptable quality. Liquid junction
potential was measured as −12.1 mV and was digitally
corrected for post hoc in Clampfit 10.7.

In vitro OVLT neuron excitation by hypertonic NaCl
vs mannitol. Current-clamp recordings evaluated OVLT
neurons that were spontaneously firing action potentials
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(AP) when held at approximately −55 ± 2 mV
with current injection. Firing rates were recorded in
response to baseline KRB (3–5 min, 295 mosmol l−1),
+15 mosmol (3 min, +7.5 mM NaCl or +15 mM

mannitol, 310 mosmol l−1) and wash-out KRB (5–10 min,
295 mosmol l−1). Neuronal responses to both NaCl
and mannitol were tested in a randomized sequence.
Hypertonic solutions were prepared by adding NaCl or
mannitol to KRB. All solution osmolarities were measured
in triplicate by freezing point depression using a 3320
Micro Osmometer (Advanced Instruments, Norwood,
MA, USA). OVLT neurons were classified as NaCl-sensitive
and/or mannitol-sensitive by evidence of a 25% or greater
increase in peak AP firing rate averaged over the final
1 min interval of each stimulus. Neurons were classified
post hoc as dual responsive, NaCl responsive, mannitol
responsive or non-responsive by the response criteria
stated above. Only one OVLT slice was obtained per
rat and one or two OVLT neurons were recorded per
slice.

In vitro OVLT neuron passive membrane properties.
Current–voltage relationships were analysed in voltage
clamp by holding OVLT neurons at −50 mV and applying
400 ms duration, 10 mV hyperpolarizing current steps
from −50 to −120 mV. A linear regression was derived
from the I–V relationship from −80 to −50 mV. Resting
membrane potential was calculated as the x-intercept of
the regression equation. Input resistance was calculated
from the difference in current between −60 and −70 mV
holding potentials

Statistics

Analyses and graphs were prepared with SigmaPlot 11
(Systat Software, Chicago, IL, USA). All data are presented
as mean ± SEM. In vivo experiments were analysed by
one- or two-way ANOVA. When significant F values were
obtained, post hoc comparisons were analysed through
paired or independent t tests with a layered Bonferroni
correction.

For in vitro cell recordings, the proportion of
OVLT neurons in each stimulus response category was
compared between stimulus application sequences using
a chi-square test of independence. These AP firing rates
were analysed within each response group by one-way
repeated-measures ANOVA. When significant F values
were obtained, layered Bonferroni paired t tests were
performed to evaluate differences in AP firing rates
from baseline in response to hypertonic NaCl versus
mannitol. The change in AP firing rate compared to
baseline was calculated for each neuron response to
NaCl and mannitol, and compared within each response
group using Wilcoxon signed rank tests. OVLT neuron
passive membrane properties were compared between

response groups by one-way ANOVA. The delta AP
firing rates to hypertonic NaCl versus mannitol were
compared between OVLT neuron subgroups by two-way
ANOVA and layered Bonferroni independent t tests.
P < 0.05 was considered statistically significant for all
comparisons.

Results

Sympathetic and ABP responses during ICV infusion of
hypertonic NaCl vs sorbitol

An initial set of experiments evaluated the extent by which
ICV infusion of hypertonic NaCl produced a differential
effect on SNA and ABP versus ICV infusion of equi-osmotic
sorbitol. There were no differences between hypertonic
NaCl and sorbitol trials for baseline mean ABP (89 ± 4
vs 85 ± 3 mmHg, respectively; P = 0.374) and heart rate
(360 ± 12 vs 358 ± 10 bpm, respectively; P = 0.816). As
previously reported (Simmonds et al. 2014; Stocker et al.
2015; Kinsman et al. 2017b), ICV infusion of 1 M NaCl
increased lumbar SNA, adrenal SNA and ABP (Fig. 1). On
the other hand, ICV infusion of equi-osmotic 2.0 osmol l−1

sorbitol (dissolved in aCSF) did not alter any variable
(Fig. 1). In fact, hypertonic NaCl produced significantly
greater increases in lumbar SNA, adrenal SNA and mean
ABP versus equi-osmotic sorbitol. There were no statistical
differences in renal SNA (P = 0.268), splanchnic SNA
(P = 0.310) or heart rate (P = 0.188) between 1 M NaCl vs
2 osmol sorbitol (Fig. 1B).

OVLT-specific effects of hypertonic NaCl vs sorbitol
on SNA and ABP

A second set of experiments was performed to assess
whether local OVLT injection of hypertonic NaCl
produced different effects on SNA and ABP versus
equi-osmotic sorbitol. There were no differences between
hypertonic NaCl and sorbitol injections for baseline ABP
(89 ± 7 vs 91 ± 6 mmHg, respectively; P = 0.421) and
heart rate (425 ± 18 vs 428 ± 12 bpm, respectively;
P = 0.780). As previously reported (Kinsman et al. 2017b),
OVLT injection of 1 M NaCl promptly increased lumbar
SNA, adrenal SNA, heart rate and mean ABP (Fig. 2A,
B). OVLT injection of equi-osmotic sorbitol did not
alter any variable. In fact, OVLT injection of 1 M NaCl
evoked a significantly greater increase in lumbar SNA,
adrenal SNA, heart rate and mean ABP than equi-osmotic
sorbitol (Fig. 2A, B). There were no statistical differences
in renal SNA (P = 0.161) or splanchnic SNA (P = 0.100)
between treatments (Fig. 2B). Histological verification of
OVLT injection sites confirmed injection of NaCl and
sorbitol were localized to overlapping regions of the OVLT
(Fig. 2C).
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In vitro OVLT neuron excitation by hypertonic NaCl vs
mannitol

In vitro experiments were then performed to investigate
whether these divergent effects of NaCl versus osmolality
on SNA and ABP reflect different responses of OVLT
neurons to these stimuli. Whole-cell patch-clamp
experiments were performed on OVLT neurons to assess
neuronal response to bath application of hypertonic NaCl
versus equi-osmotic mannitol. A total of 36 neurons were
recorded from 32 rats. Of these OVLT neurons, 50%
(18/36) displayed an increase in AP firing rates to both
hypertonic NaCl (1.26 ± 0.25 to 2.16 ± 0.36 Hz; P < 0.001)
and mannitol (1.13 ± 0.25 Hz to 1.58 ± 0.28 Hz; P < 0.01;
between osmotic treatments F3,51 = 6.859, P < 0.01) and
were deemed dual-responsive (Fig. 3Ai, Ci). Interestingly,
these dual-responsive OVLT neurons displayed a greater
change in AP firing rate in response to hypertonic NaCl
versus mannitol (0.90 ± 0.21 vs 0.45 ± 0.07 Hz; P < 0.01,
Fig. 3Di).

Smaller populations of OVLT neurons were responsive
to either hypertonic NaCl or hypertonic mannitol. For
example, 22% (8/36) of OVLT neurons displayed an
increase in AP firing rate to hypertonic NaCl (0.79 ± 0.26
to 1.65±0.39 Hz; P<0.001) but not mannitol (0.77±0.30
to 0.72 ± 0.27 Hz; P = 1.000, between osmotic treatments
F3,21 = 10.733, P < 0.001, Fig. 3Aii, Cii, Dii). In fact, 3/8
of these NaCl-sensitive OVLT neurons decreased AP firing

rate in response to hypertonic mannitol (Fig. 3Aii, Dii).
Conversely, 8% (3/36) of OVLT neurons demonstrated a
non-significant increase in AP firing rate in response to
mannitol (0.81 ± 0.28 to 2.35 ± 1.06 Hz; P = 0.189)
but no response to hypertonic NaCl (1.02 ± 0.46 to
0.98 ± 0.48 Hz; P = 0.606; between osmotic treatments
F3,6 = 4.032, P = 0.069, Fig. 3Aiii, Ciii, Diii). Finally, a
small population of OVLT neurons (19%, 7/36) did not
display a change in AP firing rates to either hypertonic
NaCl (0.84 ± 0.43 to 0.86 ± 0.45 Hz; P = 0.352) or hyper-
tonic mannitol (0.70 ± 0.31 to 0.60 ± 0.27 Hz; P = 0.121;
between osmotic treatments F3,18 = 1.662, P = 0.211;
Fig. 3Aiv, Civ, Div).

OVLT neuron responsiveness was not dictated by
stimulus application order (χ2 = 2.3414, P = 0.505).
In addition, no significant differences were observed
between response groups on the basis of resting membrane
potential (in mV; dual responsive: −50.5 ± 3.8; NaCl:
−48.8 ± 7.0; mannitol: −47.0 ± 6.1; non-responsive:
−50.6 ± 5.6; P = 0.328) or input resistance (in M�;
dual responsive: 1956 ± 392; NaCl: 1862 ± 410; mannitol:
2163 ± 292; non-responsive: 2138 ± 451; P = 0.783).

A post hoc analysis of dual-responsive OVLT neurons
revealed two distinct populations by comparing the
magnitude of the discharge response to hypertonic NaCl
versus mannitol (�AP RateNaCl − �AP RateMann). This
comparison stratified OVLT neurons into two groups
based on whether the difference in response magnitude
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was less than or greater than 0.1 Hz (Fig. 4D). This
threshold for group stratification was less than the 25%
change in AP firing rate observed in response to either
hypertonic NaCl or mannitol. Group 1 dual-responsive
neurons (10/18) displayed a greater increase in AP firing
rate in response to hypertonic NaCl versus mannitol
(1.36 ± 0.31 vs 0.50 ± 0.09 Hz; P < 0.05; Fig. 4Ai, Bi,
C). On the other hand, the magnitude of the changes in
AP firing rate of Group 2 dual-responsive OVLT neurons
(6/18) was not different between hypertonic NaCl versus
hypertonic mannitol (0.32 ± 0.08 vs 0.27 ± 0.07 Hz,
P = 1.00; Fig. 4Aii, Bii, C). Two dual-responsive neurons
displayed a greater increase in AP firing rate in response
to hypertonic mannitol than NaCl and were excluded
from the above analysis. Curiously, the baseline firing
rates were significantly greater among Group 1 versus
Group 2 neurons (1.57 ± 0.32 vs 0.54 ± 0.26 Hz; P < 0.05,
Fig. 4B). Furthermore, the change in AP firing rates in
response to NaCl was greater in Group 1 versus Group 2
dual-responsive neurons (1.36 ± 0.31 vs 0.32 ± 0.08 Hz;
P < 0.05; across both osmotic treatments between groups
F1,28 = 9.026, P = 0.006; Fig. 4C).

In vivo single-unit responses of OVLT neurons to
intracarotid infusion of hypertonic NaCl vs sorbitol

A fourth set of experiments was performed to assess
in vivo discharge responses of OVLT neurons to

hypertonic NaCl and sorbitol through an acute intra-
carotid injection. Baseline mean ABP and heart rate
were 104 ± 3 mmHg and 397 ± 15 bpm, respectively.
A total of 25 neurons were recorded from 13 rats.
The majority of OVLT neurons (76%, 19/25) displayed
a concentration-dependent increase in cell discharge
to intracarotid injection of 0.15, 0.3 and 0.5 M NaCl
(Fig. 5A, B). Intracarotid injection of NaCl also produced
concentration-dependent increases in lumbar SNA and
mean ABP (Fig. 5A, B). It is noteworthy that the changes
in cell discharge preceded the changes in lumbar SNA and
mean ABP as reflected by a shorter latency (7 ± 1 vs 12 ± 1
vs 14 ± 2 s, respectively; P < 0.05). Intracarotid injection
of 1.0 osmol l−1 sorbitol dissolved in isotonic saline also
increased cell discharge and mean ABP (Fig. 5). However,
the magnitude of these responses was significantly less than
those observed during intracarotid injection of 0.5 M NaCl
(Fig. 5). Such differences were observed during analysis
of absolute values (Fig. 5B) or the change from baseline
values (Fig. 5C). It is noteworthy that a small population
of OVLT neurons displayed a decrease (12%, 3/25) or no
change (15%, 4/26) in cell discharge during intracarotid
injection of 0.5 M NaCl and 1.0 osmol l−1 sorbitol (data
not shown).

At the end of experiments, recorded neurons were
juxtacellularly labelled (Fig. 5D). Figure 5D illustrates an
example of an OVLT neuron with activity not entrained
to the current pules. After current pulses of increasing
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amplitude, cell discharge became entrained to the
current pulses. Entrainment was maintained for 20–180 s
depending on the neuron. Subsequent visualization of
the neurobiotin indicated OVLT responsive neurons were
distributed throughout the OVLT with processes that
coursed along the 3rd ventricle (Fig. 5Dii–iv).

In vivo single-unit responses to ICV infusion
of hypertonic NaCl vs sorbitol

A final set of experiments were performed to assess
neuronal responses in vivo to ICV infusion of hypertonic
NaCl versus sorbitol. There were no statistical differences
between hypertonic NaCl versus sorbitol infusions for
baseline mean ABP (113 ± 6 vs 113 ± 9 mmHg, P = 0.975,
n = 6) or heart rate (407 ± 7 vs 403 ± 9 bpm, P = 0.391,
n = 6). A total of six neurons were recorded from six
rats that received both ICV infusion of 0.5 M NaCl and
1.0 osmol l−1 sorbitol dissolved in aCSF. Initially, these

cells were identified as NaCl-responsive as intracarotid
injection of 0.5 M NaCl increased cell discharge (2.8 ± 1.0
to 12.8 ± 3.8 Hz; P < 0.05). Intracarotid injection of
sorbitol also appeared to increase cell discharge in these
neurons but the effect was not statistically significant
(2.7 ± 1.3 to 8.1 ± 2.0 Hz; P = 0.092 two-tailed). The
ICV infusion of 0.5 M NaCl significantly increased cell
discharge in these neurons from 2.4 ± 1.3 to 8.2 ± 2.7 Hz
(Fig. 6A, C). Although ICV infusion of 1.0 osmol l−1

sorbitol also appeared to increased cell discharge from
2.6 ± 0.8 to 4.3 ± 1.6 Hz, the effect was not statistically
significant (Fig. 6A, C; P = 0.055, two-tailed paired t test).
In only one of six OVLT neurons was the increase in
single-unit discharge similar in response to 0.5 M NaCl
and 1.0 osmol l−1 sorbitol (Fig. 6B). Statistical analysis
of the change in peak 2 min change in discharge for all
neurons and mean ABP revealed a significantly greater
increase in response to 0.5 M NaCl versus 1.0 osmol l−1

sorbitol (Fig. 6D).
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Discussion

Evidence suggests hypertonic NaCl and osmolality
stimulate similar increases in thirst and VP secretion but
differentially affect SNA and ABP. Despite observations
that NaCl- or osmosensing OVLT neurons mediate
these effects, whether OVLT neurons differentially
respond to hypertonic NaCl versus osmolarity was
unknown previously. The current series of experiments
provide several novel and insightful observations: (1)
ICV infusion of hypertonic NaCl produced significantly
greater increases in lumbar SNA, adrenal SNA and ABP
versus equi-osmotic sorbitol; (2) local OVLT injection
of hypertonic NaCl produced a greater increase in
SNA and ABP than equi-osmotic sorbitol; (3) in
vitro whole-cell recordings identified a population of
OVLT neurons responsive to both hypertonic NaCl and
mannitol but a subset of these neurons displayed a
greater increase in AP firing rate to hypertonic NaCl
versus mannitol; and (4) in vivo single-unit recordings
demonstrate intracarotid or ICV infusion of hypertonic
NaCl produced a significantly greater increase in OVLT
neuronal discharge versus equi-osmotic sorbitol. Taken
together, these findings indicate hypertonic NaCl and
osmolarity produce different cellular responses across
OVLT neurons and raise the possibility that different
cellular mechanisms may contribute to NaCl- versus
osmosensing to regulate thirst, VP and autonomic
function.

The prevailing theory indicates that a central
osmoreceptor, located in the periventricular hypo-
thalamus outside the blood–brain barrier, regulates thirst
and VP secretion (Bourque, 2008; Kinsman et al. 2017a).
Regardless of the osmotic solute, increased extracellular
osmolality is known to stimulate thirst and VP secretion
(Dunn et al. 1973; Buggy et al. 1979; McKinley et al.
1980a; Thrasher et al. 1980a,b; McKinley et al. 1980b;
Thompson et al. 1986). However, central hypertonic NaCl
increases ABP by a greater magnitude than hypertonic
sugar osmolytes (Bunag & Miyajima, 1984; Tiruneh et al.
2013; Frithiof et al. 2014; Stocker et al. 2015). Our findings
extend these observations as both ICV and intracarotid
infusion of hypertonic NaCl produced a greater increase
in lumbar SNA and adrenal SNA versus equi-osmotic
sorbitol. These observations suggest distinct mechanisms
underlie NaCl- versus osmo-sensing.

OVLT neurons represent the primary set of central
osmoreceptors and largely mediate thirst, VP secretion and
sympathoexcitation to hypernatraemia (Bourque, 2008;
Kinsman et al. 2017b). Immunocytochemical detection
of Fos and single-unit recordings have revealed the
presence of OVLT neurons responsive to hypertonic
NaCl or osmolarity (Oldfield et al. 1991; Larsen &
Mikkelsen, 1995; Shi et al. 2008; Kinsman et al. 2014,
2017b). In vitro electrophysiological studies report OVLT
neurons display increased AP firing rate or inward
current responses to physiological increases in hyper-
tonic mannitol (+10 mosmol l−1) (Ciura & Bourque
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2006) or NaCl (+2.5 mM or +5 mosmol l−1) (Kinsman
et al. 2017b). Since OVLT neurons largely mediate the
sympathoexcitatory response to ICV hypertonic NaCl in
rats, we initially examined whether local application of
hypertonic NaCl versus sorbitol produced a differential
response on SNA and ABP. Indeed, OVLT injection of
1 M NaCl produced a greater increase in SNA and ABP
than injection of equi-osmotic sorbitol. This observation
suggests that the cellular response of OVLT neurons may
differ between hypertonic NaCl versus osmolarity.

To test this hypothesis, we performed a series of in
vivo single-unit and in vitro whole-cell patch clamp
recordings of OVLT neurons during acute increases in
NaCl concentrations versus osmolarity. Our investigations
indicate that the majority of OVLT neurons are
responsive to both hypertonic NaCl and hypertonic
sorbitol/mannitol. Interestingly, hypertonic NaCl evoked
a greater discharge response in a subset of OVLT neurons
in vitro versus equi-osmotic mannitol. This finding was
confirmed in vivo during intracarotid or ICV infusion of
hypertonic NaCl and sorbitol. Although it is difficult to
measure osmolality in the OVLT during intracarotid or
ICV infusions, these manipulations alter extracellular CSF
or carotid sodium concentration or osmolality �0–7%

as described in the Methods and published previously
(Stocker et al. 2015). A previous study reported a similar
observation on osmosensitive neurons of the supraoptic
nucleus (Voisin et al. 1999). In addition, a small proportion
of OVLT neurons in vitro displayed an increase in AP
firing rate to either hypertonic NaCl or mannitol alone.
Since such neurons were infrequently encountered, it
is uncertain whether such responses reflect a distinct
population of OVLT neurons. Collectively, these in vivo
single-unit and in vitro whole-cell recordings provide the
first evidence that hypertonic NaCl and osmolarity may
produce different cellular responses in OVLT neurons
and raise the possibility that NaCl- and osmo-sensing are
mediated by distinct cellular processes.

One explanation is that divergent OVLT neuron
responses to hypertonic NaCl versus sorbitol/mannitol
could reflect distinct neural circuits that differentially
regulate thirst and VP secretion versus SNA. Retrograde
tracing studies indicate that OVLT neurons innervate
several thalamic nuclei and other hypothalamic structures
including the median preoptic nucleus, SFO, SON and
PVN (Oldfield et al. 1994; Larsen & Mikkelsen, 1995; Hollis
et al. 2008). However, a paucity of OVLT neurons project to
multiple efferent targets (Weiss & Hatton, 1990). Whether
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separate NaCl- and osmo-sensitive OVLT populations
contribute to the coordinated regulation of thirst and
VP versus autonomic activity remains unknown. Such a
parsimonious explanation of these experimental results
warrants future investigations to delineate the properties
and sensitivity (NaCl vs osmolarity) of OVLT neurons
projecting to these different efferent targets and the neuro-
chemical phenotype of these OVLT neurons.

While our data indicate that the OVLT is a critical
regulator of NaCl- and osmo-receptor-related functions,
the SFO plays a complementary role in these responses.
SFO neurons are also excited by either hypertonic NaCl
or hypertonic mannitol (Sibbald et al. 1988; Anderson
et al. 2000). Compared to OVLT lesions, SFO lesions
have a lower impact on osmotically stimulated thirst but
attenuate osmotically stimulated VP secretion (Simpson
et al. 1978; Hosutt et al. 1981; Thrasher et al. 1982; Lind
et al. 1984; Mangiapane et al. 1984). Moreover, pressor
responses to hypertonic NaCl, but not mannitol, can be
evoked by the SFO (Tiruneh et al. 2013).

Whether changes in Na+ versus NaCl concentrations
underlie salt-sensitive neural regulation of BP remains
uncertain. Dietary NaCl loading in both salt-sensitive
humans and rodent models increases plasma or CSF
NaCl concentrations by 3–5 mM to elevate SNA and ABP

(Nakamura & Cowley, 1989; Kawano et al. 1992; Schmidlin
et al. 2007). Broad lesions of the anteroventral region of
the third ventricle, which includes the OVLT, attenuate or
prevent the development of hypertension in these same
salt-sensitive models including the Dahl salt-sensitive
(Dahl-S), DOCA-salt and AngII-salt (Berecek et al. 1982;
Goto et al. 1982; Marson et al. 1983). Limited data are
available regarding the specific contribution of OVLT
neurons (Collister et al. 2013). In regard to an Na+
versus NaCl-specific mechanism, Na+ supplementation
with non-Cl− anions does not raise BP in these
models (Kotchen et al. 1983; Whitescarver et al. 1984;
Passmore et al. 1985; Sato et al. 1991). Moreover, Cl−
supplementation with glycine, instead of Na+, also fails
to raise BP in the Dahl-S strain (Whitescarver et al.
1986). Similarly, among humans with essential hyper-
tension, NaCl loading raises BP, but Na+ supplementation
with an alternative anion (e.g. citrate or phosphate)
does not (Kurtz et al. 1987; Shore et al. 1988). In
contrast, a cohort of salt-sensitive normotensive black men
showed changes in BP specific to Na+ intake (Schmidlin
et al. 2007). Clearly, pathophysiologies in renal electro-
lyte handling contribute to salt-sensitive hypertension;
however, the specific neural mechanisms are not well
described.
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Classically, hyperosmotic stimuli (NaCl or saccharides)
are considered to stimulate thirst as a consequence of
cellular dehydration due to osmotic pressure (Fitzsimons,
1972). Admittedly, we assume that osmotically equivalent
solutions of NaCl and sorbitol/mannitol exert osmotic
pressures that generate equivalent tonicity. Sorbitol
and mannitol are inert saccharide isomers to which
mammalian cells are largely impermeable. Consequently,
these solutes are hypertonic and cause cellular dehydration
and volume contraction, which is known to excite OVLT
neurons (Ciura et al. 2011). Neurotransmission does cause
persistent flux of Na+ and Cl− between intracellular and
extracellular compartments; however, the intracellular
concentrations of Na+ and Cl− are generally preserved
by the Na+/K+ ATPase and the K+–Cl− cotransporter 2,
respectively. As a consequence, the elevated extracellular
concentrations of these ions are anticipated to remain
hypertonic, evoking a similar cellular dehydration to
sorbitol/mannitol. However, methods do not exist to
measure absolute intracellular concentrations of these
ions in these experimental preparations. If the NaCl and
sorbitol or mannitol solutions are of equivalent tonicity,
what accounts for the different responses of OVLT neurons
to NaCl versus sorbitol/mannitol?

To date, the identity of the vertebrate NaCl- or
osmo-receptor mechanism remains unclear (Kinsman
et al. 2017a). In vitro electrophysiology evidence indicates
the osmosensitivity of OVLT neurons is mediated by
an N-terminal variant of the TRPV1 channel (Ciura &
Bourque, 2006). This channel conducts a non-selective
cation current in response to osmotic shrinkage of OVLT
neurons caused by mannitol (Ciura et al. 2011). However,
experiments using TRPV1−/− mice or rats suggest slightly
attenuated or normal osmotically stimulated thirst and
VP secretion (Ciura & Bourque, 2006; Taylor et al.
2008; Kinsman et al. 2014; Tucker & Stocker, 2016).
Second, electroneutral transporters may also contribute
to brain Na+ and/or Cl− sensing. Selective knockdown
of Na–K–Cl co-transporter in PVN and SON impairs
osmoregulatory responses to dehydration by depolarizing
ECl– (Konopacka et al. 2015). A third possibility is the
NaX channel. Within the rat median preoptic nucleus,
hypertonic NaCl activates a leak sodium current through
the NaX channel, which is functionally coupled to activity
of membrane-proximate α1 isoforms of the Na+/K+
ATPase (Berret et al. 2013). Within the mouse SFO, hyper-
tonic sodium stimulates NaX-expressing ependycytes
to release lactate and metabolically activate GABAergic
SFO interneurons (Shimizu et al. 2007). These neurons
modulate activity of glutamatergic efferent projections
from SFO to the ventral bed nucleus of the stria terminalis
to regulate salt appetite (Matsuda et al. 2017). In OVLT,
NaX channel expression is confined to neurons and
ependycytes in rats, and ependycytes in mice (Nehme
et al. 2012). However, NaX knockout mice vs wild-type

littermates show normal osmoregulatory thirst or VP
secretion (Hiyama et al. 2004; Nagakura et al. 2010). A
final candidate is the epithelial sodium channel (ENaC).
Previous studies suggest that central infusion of benzamil,
a non-voltage-gated sodium channel blocker, attenuates
VP secretion and sympathoexcitatory responses to central
hypernatraemia as well as several models of salt-sensitive
hypertension (Gomez-Sanchez & Gomez-Sanchez, 1995;
Nishimura et al. 1998; Huang & Leenen, 2002). Benzamil
blocks a number of non-voltage-dependent Na+ channels
including the ENaC. ENaC α, β, and γ subunits are
expressed throughout the lamina terminalis on both
neurons and glia (Amin et al. 2005; Miller et al. 2013).
Moreover, the αENaC subunit colocalizes with c-Fos
immunoreactive neurons throughout the SFO and OVLT
in response to systemic hypernatraemia (Miller et al.
2013). Although evidence supports a potential role for
each of these candidates, future experiments are needed
to identify NaCl versus osmosensitive mechanisms within
OVLT neurons.

In summary, we have provided the first evidence that
the hypertonic NaCl versus osmolarity produce different
cellular responses across OVLT neurons. The divergent
responses or distinct populations of OVLT neurons may
permit a differential regulation of body fluid homeo-
static responses (thirst and VP versus SNA). However,
the identity and cellular mechanisms that underlie NaCl-
versus osmo-sensing in OVLT neurons has not been
identified and could represent a novel therapeutic target
to selectively treat salt-sensitive hypertension but preserve
osmoregulatory responses.
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