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|dentifying topologically associating domains and
subdomains by Gaussian Mixture model And
Proportion test
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The spatial organization of the genome plays a critical role in regulating gene expression.
Recent chromatin interaction mapping studies have revealed that topologically associating
domains and subdomains are fundamental building blocks of the three-dimensional
genome. ldentifying such hierarchical structures is a critical step toward understanding the
three-dimensional structure-function relationship of the genome. Existing computational
algorithms lack statistical assessment of domain predictions and are computationally
inefficient for high-resolution Hi-C data. We introduce the Gaussian Mixture model And
Proportion test (GMAP) algorithm to address the above-mentioned challenges. Using
simulated and experimental Hi-C data, we show that domains identified by GMAP are more
consistent with multiple lines of supporting evidence than three state-of-the-art methods.
Application of GMAP to normal and cancer cells reveals several unique features of sub-
domain boundary as compared to domain boundary, including its higher dynamics across cell
types and enrichment for somatic mutations in cancer.
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ecent chromatin interaction mapping studies have revealed

that mammalian genomes are organized hierarchically into

domains of various sizes!™. In particular, megabase-sized
topologically ~associating domain (TAD) appears to a
fundamental building block of the three-dimensional genome.
Within each TAD, there exist subdomains. For instance,
promoters and enhancers tend to form ~100kb co-regulated
clusters®. Identifying chromatin domains such as TADs and
subTADs in different cell types is a critical step toward
understanding  the  three-dimensional  structure—function
relationship of the genome. Several computational methods for
identifying TADs" =8 have been reported. Dixon et al.! proposed
a Hidden Markov Model for identifying TADs based on the
directionality index, which quantifies the degree of upstream or
downstream chromatin interaction bias at the periphery of the
topological domains. Like the Dixon et al.! method, Fraser et al.”
also used the directionality index but a different procedure to
identify TADs. Flippova et al.> proposed the Armatus algorithm,
which is able to predict domains across various resolutions.
Levy-Leduc et al.'% developed a two-dimensional-segmentation-
based algorithm, HiCseg. The Arrowhead algorithm proposed
by Rao et al* is computationally efficient with dynamic
programming. Although these pioneering methods provide
effective tools for TAD calling, several significant issues remain to
be addressed. First, there is a lack of statistical significance
assessment of predicted TADs. Second, previous methods also
lack a principled strategy of choosing algorithmic parameters. For
example, Dixon’s algorithm uses a prefixed window size of 2 Mb
during TAD search. The arrowhead algorithm uses a heuristic
strategy of tuning parameters. Finally, most existing methods
cannot predict hierarchical domain structures. Weinreb and

Raphael” introduced the first algorithm for identifying
hierarchical domains, TADtree, which can detect TADs and
subTADs simultaneously by optimizing an objective function that
scores a hierarchy of nested TADs. However, TADtree is rather
slow with a running time of O(S>) where § is the maximum TAD
size.

In this paper, we describe the Gaussian Mixture model And
Proportion test (GMAP) algorithm for identifying TADs and
subTADs. GMAP specifically addresses the following issues,
including treatment of noise in the chromatin interaction
data, choice of optimal parameters of the method, and statistical
significance of domain boundaries. Using both simulated and
multiple types of experimental data, we demonstrate that GMAP
achieved significantly improved accuracy and running speed. We
applied GMAP to Hi-C data for multiple normal and tumour cell
types to gain insights into the dynamics of subTADs and the
relationship between domain boundary, somatic mutations, and
enhancer-promoter communication in cancer.

Results

GMAP algorithm. The algorithm consists of three major steps
(Fig. 1). The input to the algorithm is a normalized Hi-C contact
matrix, H. In the first step, by fitting a two-component Gaussian
mixture model to the normalized Hi-C count matrix, we
distinguish contacts that are within a chromatin domain
(intra-domain contacts) from contacts that are outside of a
chromatin domain (h;) (inter-domain contacts). This procedure
also serves to further reduce the noise in the normalized Hi-C
data. In step two, the algorithm uses a moving bin to scan along a
chromosome. At each bin, the algorithm performs a proportion
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Fig. 1 Overview of the GMAP method. The method consists of three major steps. In step one, we fit a Gaussian mixture model with two components
representing chromatin interactions within and outside of a domain. In step two, for each genomic bin, we determine if it is located at the boundary of
blocks of dense chromatin interactions by performing a proportion test of observed contact counts within and between windows flanking the bin. In step
three, we call chromatin domains based on the location and orientation of the candidate boundaries identified in step two

2

| 8:535

| DOI: 10.1038/541467-017-00478-8 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

a p =5.3e-90

' p=8.8e-122 !

" p=15e-128 '

1
c 15-
o
T
13
L2
s 10-
o
8
a
> 05- —_—

o
GMAP TADtree HiCseg metaTAD
Cc
GMAP
0 250 500 750 1000
TADtree

e N S I S N Y

0 250 500 750 1000

HiCseg
0 250 500 750 1000
metaTAD
e P g
0 250 500 750 1000
Bin

p=24e-76
' p=13e-13 '

p=5e-117
1

0.8 -

0.6 -

Jaccard index

0.4- .
—%;

GMAP TADtree HiCseg metaTAD

GMAP

PP AM

0 250 500 750 1000

TADtree

PO SN W p——"
1000

0 250 500 750
HiCseg
0 250 500 750 1000
metaTAD :
0 250 500 750 1000
Bin

Fig. 2 Performance comparison using simulated data. Hi-C contact count matrices were simulated using Poisson distribution. a Overall similarity
between predicted and true domains measured using the Variation of Information (VI) index. b Overall similarity between predicted and true domains
measured using the Jaccard Index. Shown are boxplots of VI and Jaccard indices over 100 simulations. The whiskers represent the most extreme data point
which is no more than 1.5 times the interquartile range. Paired t-test was used to compare the performance metrics (VI or Jaccard index) for different
methods. P-values are based on paired t-test. ¢ An example of called TADs by different methods using simulated Hi-C data without embedded sub-TADs.
Called domains are outlined by solid black lines. d An example of called TADs by different methods using simulated Hi-C data with embedded TADs and

sub-TADS

test (test statistic Z;), comparing intra-domain contact count of
windows up- and down-stream of the bin to that of between
up- and down-stream windows. The set of bins associating with
the local peaks of test statistics (filtered by significant P-value) are
called block boundaries and serves to partition a chromosome
into blocks of dense chromatin interactions and gaps. In the third
step, we define another test statistic, D;, to indicate whether a
block boundary is upstream-biased, downstream-biased, or
unbiased. Based on the relative orientation of its boundary, a
block from step 2 can be called as a TAD, or merged into a larger
TAD, or called as a gap between TADs. Once a TAD is called, we
apply the same three steps to the normalized Hi-C data to call
its subTADs until no element of the test statistic {Z;}{;<;<n is
significant and/or the domain size is smaller than a pre-specified
value.

To identify optimal parameter values of the algorithm, we
introduce an objective function that maximizes the difference in
the proportion of intra-domain contacts in putative domains
and outside of putative domains (see Methods for details,
Supplementary Table 3).

Performance comparison using simulated Hi-C data. We first
used simulated Hi-C data to compare the performance of GMAP
to three recently published methods, TADtree, HiCseg'’,
and metaTAD’. TADtree uses dynamic programming to detect
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a hierarchy of nested TADs and subTADs. HiCseg uses a
maximum likelihood approach to partition Hi-C data into TADs.
metaTAD first identifies TADs based on directionality index.
It then combines TADs into larger domains called metaTADs.
In this study, we only compared metaTAD with GMAP at the
TAD level. Using Poisson distribution, we simulated two types of
Hi-C contact matrices with a size of 1000 x 1000 bins. The first
type only contains non-overlapping TADs, whereas the second
type contains both TADs and subTADs. For both types of
simulations, we took into account the effect of genomic distance
on contact frequency and size distribution of TADs and subTADs
in published literature (see Methods for details). We used two
similarity measures to quantify the agreement between predicted
and true domains, Variation of Information (VI) and Jaccard
Index. A small value of VI and large value of Jaccard Index
suggest better agreement between two partitions of a set. To
evaluate performance variation due to statistical variation in
simulated data, we generated 100 sets of simulated matrices and
computed the similarity measures over the 100 sets of matrices.
As shown in Fig. 2a, TADs called by GMAP have significantly
higher agreement with the true TADs compared to TADs called
by the other three methods. Figure 2c shows an example of
predicted TADs by the four methods.

In terms of subTAD identification, GMAP correctly identified
all subTADs (Fig. 2b, d). The other three methods correctly

| DOI: 10.1038/541467-017-00478-8 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00478-8

a p=8.4e-5 b c
p=5e-10
p=1.6e-5 p=4.1e-5
— 104 =
3.5 : [ TADtree
c ¥ :
2 ! [ HiCseg
© - '
£ 3.0 ; | % % [ metaTAD
£ : 2 3
£ 254 ' o °
kS H 5] 5]
5 T 3 3
2201, Do 3 8
8 2 == 0.2 0.2 =
S 15| 1 <
o
10+ 0.1+ 0
d g p=4e-25
p=1.1e-4
p=6.4e-4
3.0 H3K4me3
254 T
204 T -

Ave. num. peaks per domain
boundary

S = = M DN 0

f e

O_
h 12+ 12 4
10 10 4
= —
E 8- < 8+
o g
£ =
= 6 o 6
o c
£ £
é 44 2 47
2 2
fo i | S| s | 0d—e=
chr22 chr22

(40 kb resolution) (10 kb resolution)

0.5

0

12 4 50

10 1 40
<€ g =
(0] [0] 4
E g%
(o)) 6- (o))
£ £ 20
c c i

5. 10

s [ —

chr1
(40 kb resolution)

chri
(10 kb resolution)

Fig. 3 Performance comparison using experimental Hi-C data. a, b Similarity between TADs called using low-resolution (10 kb) and high-resolution (10 kb)
Hi-C data. Hi-C data for the human lung fibroblast cell line, IMR90, was obtained from refs 4. Similarity was measured using Variation of Information (left)
and Jaccard Index (right). ¢ Similarity between subTADs called using Hi-C and 5 C data. No data is shown for HiCseg and metaTAD since they do not call
subTADs. Average number of CTCF peaks d, Rad21 peaks e, Pol2 peaks f, and H3K4me3 peaks g per TAD boundary. Values represent the average number
of peaks within a TAD boundary plus 25 kb flanking regions on either side of the boundary across all chromosomes and six cell types (IMR90, GM12878,
NHEK, HMEC, HUVEC, and K562). P-values are based on paired t-test. The whiskers represent the most extreme data point which is no more than 1.5

times the interquartile range. h Running speed of different methods

identified several subTADs but also produced several false
positive subTADs and missed several TADs. Considering both
TADs and subTADs, GMAP has the best overall accuracy
(Fig. 2a, b). We also simulated Hi-C matrices using negative
binomial distribution and found that GMAP outperformed the
other three methods (Supplementary Fig. 1).

Performance comparison using experimental Hi-C data. Due to
the scarcity of experimentally validated chromatin domains, we
resorted to the following three strategies to further evaluate the
quality of predicted TADs and subTADs: (1) agreement of
domains predicted for the same cell type using Hi-C data with
different resolutions; (2) agreement of domains predicted
for the same cell type but using data generated with different
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technologies (i.e., Hi-C vs. 5C); (3) enrichment of known domain
boundary factors at predicted domain boundaries. A good
method should produce similar results when using Hi-C data
generated at different resolutions. We applied the four methods to
the normalized Hi-C data for the human lung fibroblast cell line,
IMR90, at both low-resolution (40kb) and high-resolution
(10 kb), downloaded from ref. ! and ref. %, respectively (Supple-
mentary Table 1). Two examples of TADs and subT ADs called by
GMAP are shown in Supplementary Fig. 2. We then examined
the similarity between the two sets of TADs called by the
same method. We found that TADs called by GMAP at
both resolutions have significantly higher similarity than TADs
called by the other three methods, indicating that GMAP
generates more consistent results across different resolutions
(Figs. 3a, b).
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significantly different than the distribution for TADs based on KS test (P < 0.05)

We further compared subTADs called using 5C data and Hi-C
data for the same cell type. In general, 5C data has higher
resolution than Hi-C data and thus better suited for identifying
subTADs. Based on this observation, we reasoned that similarity
among subTADs called by the same method using different data
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types (Hi-C vs. 5C data) can serve as a performance measure. To
this end, we used a high-resolution 5C data set and a Hi-C
data set for mouse embryonic stem cells!!. The 5C data
was preprocessed and normalized using the HiFive'? tool.
As shown in Fig. 3¢, the two sets of subTADs called by GMAP
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Fig. 5 Relationship between hierarchical domain boundary, somatic mutation, and enhancer-promoter communication. a, b SubTAD but not TAD
boundaries are enriched for somatic mutations in cancer. Percentage of TAD and subTAD boundaries overlapping with at least one recurrent mutations
for MCF10A cells a and PrEC cells b. TAD and subTADs were identified using Hi-C data for non-tumorigenic mammary gland epithelial cell line (MCF10A)
and prostate epithelial cell line (PrEC). Solid line, TADs; Dashed line: subTADs. Observed percentages are indicated by vertical lines with an arrow.
Distributions of expected percentages are generated using 10,000 sets of randomly selected genomic regions with the same number and size as the called
TADs/subTADs for each cancer cell type. € SubTAD boundaries are more dynamics than TAD boundaries between cancer and normal cells. MCF7, breast
adenocarcinoma cell line; LNCaP, prostate carcinoma cell line; PC3, prostate adenocarcinoma cell line. d Schematic demonstrating that cell-type-specific
enhancer-promoter (EP) interactions are blocked by newly formed domain boundary in the other cell type. e Proportion of cell-type-specific domain
boundaries that overlap with cell-type-specific EP interactions in the other cell type. P-value is based on t-test. f Expression levels of promoters involved in
cell-specific EP interactions that are blocked by TAD boundary in the other cell type. g Expression levels of promoters involved in cell-specific EP
interactions that are blocked by subTAD boundary in the other cell type. P-values are based on t-test. The whiskers represent the most extreme data point
which is no more than 1.5 times the interquartile range

are significantly more similar than those called by TADtree Domain identification is computationally intensive given the
(P=4.1E-5, t-test). HiCSeg and metaTAD were not compared size of a typical Hi-C contact matrix (~25 million cells at 40 kb
since they cannot predict subTADs. resolution). Such matrices will become much larger with the

It has been reported that chromatin domain boundaries are increasing resolution of Hi-C data. We thus evaluated the
frequently occupied by several protein and epigenetic factors, running speed of the three methods. As shown in Fig. 3h, GMAP
including the genome architectural protein CTCF, cohesion has comparable speed as HiCseg and metaTAD using data from a
complex, promoters of highly transcribed genes, and the histone small chromosome (Chr 22, 51 Mb) at both low and high
mark H3K4me3. We examined the enrichment of these known resolutions (left two panels). As the data size becomes much
factors at predicted domain boundaries. Specifically, for all four bigger (Chrl, 249 Mb, comparing left two panels to right two
methods, a domain boundary is represented by a bin and thus has  panels), the speed advantage of GMAP over TADtree and HiCseg
the same size. We examined the presence of factor peaks in the becomes more dramatic.
region that span the domain boundary and the 25kb region In summary, using multiple data types, we demonstrated that
flanking the boundary. In all six human cell types examined GMAP achieved significant improved accuracy and running
(IMR90, NHEK, GM12878, HMEC, HUVEC, and K562, speed.

Supplementary Tables 1 and 2), we found that TADs boundaries
reported by GMAP are significantly more enriched for the known
factors than boundaries reported by TADtree, HiCseg, and SubTADs are more dynamic than TADs across cell types. An
metaTAD (Fig. 3d-g). important observation from all Hi-C studies so far is that TAD
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boundaries do not vary significantly across different cell types'>.
To further evaluate the performance of GMAP, we performed a
systematic analysis of TADs using high-resolution Hi-C
data from six human cell lines and three TAD callers. In all
pairwise comparisons, we found that TADs between two cell
types identified by GMAP are more similar than TADs identified
by the other two methods (Fig. 4a). Thus, prediction by GMAP is
more consistent with previous conclusion that TAD boundary
is fairly static. Beyond TADs, given the hierarchical nature of
genome organization, it is important to understand the
dynamics of chromatin domains at lower hierarchy. For instance,
within TADs, promoters and enhancers have been found to form
~100 kb co-regulated clusters®. It was also reported that HoxA
genes and their regulatory elements physically interact with each
other through contacts between subTADs!%. Taken together,
these earlier studies suggest that subdomains play an important
role in gene regulation. So far, no systemic comparison has been
done regarding subTAD boundaries. By comparing subTADs
predicted by GMAP across the six cell types, we found that
subTAD boundaries are consistently more dynamic than TAD
boundaries (Fig. 4b), suggesting different molecular mechanisms
may be responsible for the formation of TADs and subTADs.
To further examine domain dynamics during development,
we analyzed Hi-C data during mouse embryonic stem cell
differentiation to neuron via neural progenitor cells’. We again
found that subTAD boundaries are consistently more dynamic than
TAD boundaries during the differentiation process (Supplementary
Fig. 3). Taken together, our analysis suggests that subTADs are
more dynamic during development and across different cell types.

Relationship between domain organization and cancer muta-
tion. Previous studies have demonstrated that disruption of TAD
boundaries can result in deregulated gene expression and
disease!”. Furthermore, boundaries of insulated chromatin
neighborhoods (defined as regions enclosed by a pair of genomic
sites co-occupied by CTCF and cohesin) are enriched for somatic
mutations in cancer'®. The fact that TAD and insulated
chromatin neighborhood have very different sizes suggests that
mutations can affect domain boundaries at different hierarchies.
To better understand the relationship between hierarchical
domain boundaries and genetic mutation, we examined the
frequency of somatic mutations at both TAD and subTAD
boundaries. We downloaded recurrent somatic mutations
identified using whole-genome sequencing by the International
Cancer Genome Consortium (ICGC) (Supplementary Table 4).
We then applied GMAP to Hi-C data for both benign (MCF10A
and PrEC) and malignant (MCF7, LNCaP, PC3) breast cancer!’
and prostate cancer cell lines'®. Interestingly, for both cancer
types, we found that subTAD boundaries in both normal and
tumor cells are significantly enriched for somatic mutations while
TAD boundaries are not enriched (Fig. 5a, b and Supplementary
Fig. 4). This result suggests that subTAD boundaries are more
susceptible to genetic mutations in cancer. Consistent with our
analysis with six cell lines in previous section, we also observed
that subTADs are more dynamic between benign and tumor cells
than TADs (P <0.05, KS test, Fig. 5c). This higher level of
dynamics of subTADs may be linked to the higher frequency of
somatic mutations at their boundaries.

Cancer-specific domain boundary blocks enhancer-promoter
(EP) interactions. To further understand the impact of domain
boundary re-organization on EP interaction and gene expression
in cancer, we intersected domain boundary calls with EP
interactions predicted using the IM-PET algorithm!®. We
considered the situation where a cell-type-specific EP interaction
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(e.g., normal cell) spans a boundary region that is only observed
in the other cell type (e.g., cancer cell) and vice versa (Fig. 5d),
which suggests that the formation of cell-type-specific boundary
disrupts the EP interaction in the former cell type. Compared to
subTAD boundaries, we found a significantly higher proportion
of TAD boundaries whose formation block EP interactions in the
other cell type (Fig. 5e). This is consistent with the finding that
TAD are more stable than subTAD!3, which in turn suggests that
ectopically formed TAD boundary are more likely to disrupt EP
interactions. To further examine the impact of the disrupted EP
interactions, we compared the expression levels of involved
promoters in normal and cancer cells or vice versa. We found
that promoters of disrupted EP interactions have significantly
lower expression in the cell type in which the EPs are disrupted
due to boundary formation. This is true for both TAD and
subTAD boundaries (Fig. 5f, g). Interestingly, the significance of
expression decrease due to TAD boundary formation is nine
orders of magnitude higher than the significance of expression
decrease due to subTAD boundary formation (3.9E-11 vs. 1.6E-2,
t-test), further supporting the notion that TAD boundary is
more rigid and once formed is more effective in blocking EP
interactions and disrupting gene expression.

Discussion

There is a critical need for algorithms to analyze Hi-C data given
the latest explosion of such data type. Of particular interest are
algorithms for simultaneous identification of chromatin domains
at multiple organizational hierarchies. Several algorithms have
been reported for detecting TADsb> * > 10 "but few for
detecting hierarchical chromatin domains. We introduce the
GMAP algorithm, for detecting hierarchical chromatin domains
from Hi-C data. GMAP addresses several deficiencies of existing
algorithms. First, most domain callers donot explicitly consider
noise in the contact count matrix caused by random chromatin
looping. By wusing Gaussian mixture modeling, GMAP
distinguishes intra-domain contacts from inter-domain contacts.
An additional advantage of Gaussian mixture models is their
flexibility of modeling a wide range of probability distributions. In
contrast, previous methods, such as HiCseg has a strong
assumption on the form of distribution for Hi-C count data.
Second, GMAP includes a statistical test to assess the significance
of putative domain boundaries. Finally, GMAP substantially
improves upon the running speed of TADtree, the only published
algorithm for detecting subTADs.

There are a number of ways GMAP can be improved. First,
we use an iterative procedure to identify subTADs. Thus, the
accuracy of subTADs depend on the accuracy of the enclosing
TADs. Novel strategy is needed for reducing such dependency in
order to increase the accuracy of subTADs. Second, although
GMAP is faster than existing algorithms, it may not be enough
for the fast increasing amount of Hi-C data. The speed of GMAP
can be further improved by using parallel computing framework
and graphics processing unit. Third, other types of omics
data, such as epigenomic data and transcriptomic data should
be combined with Hi-C to further improve the accuracy of
hierarchical domain calling.

Previous studies mostly focus on TADs. Here, application of
GMAP to Hi-C data from multiple cell types has revealed some
unique features about subTADs, including higher dynamics
(among different cell types as well as between benign and tumour
cells) and higher proportion of somatic mutations at subTAD
boundary. Such features warranty future experimental studies
to better understand the impact of hierarchical chromatin
organization on a number of genome transactions, such as
replication, transcription, and mutation.
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Methods

Major steps of the GMAP algorithm. In step one of the algorithm, we model the
normalized Hi-C data matrix by a two-component Gaussian mixture model

(Fig. 1a). Our rationale is that observed chromatin contacts can be categorized into
two types: “intra-domain contact” and “inter-domain contact”. We denote the
normalized Hi-C data matrix as H, with component Hj; representing the contact
frequency between bins i and j. We focus on the upper triangle of H because it
is symmetric. Let Y; and Y, denote the random variables for the observed
“intra-domain contact” frequency and “inter-domain contact” frequency, respec-
tively. The two-component Gaussian mixture model can be specified as:

Yy~ N ?),

Y, ~ N(ﬂza”§)7
Hij=aY +(1-a)Y,

where N(u, 6%) represents a Gaussian distribution with mean y and variance ,?
respectively and «a is the mixing coefficient. The model parameters y,, pi5, 02,03
can be estimated using the Expectation-Maximization algorithm. To distinguish
intra-domain from inter-domain contacts, we use the posterior probability,

fij = Pr(a = 1|H;;). The Hi-C count matrix is transformed into a state matrix

using the following criterion on 7;;:

Lif7;>0.5
Y 0 otherwise

In the second step of the algorithm, we perform a proportion test to identify
blocks of dense chromatin interactions (Fig. 1b). We use a moving bin to segment a
chromosome into blocks of dense chromatin interactions and gaps (unstructured
regions between domains). For each genomic bin, we first define its upstream
window and downstream window, and compare the proportion of intra-domain
contacts within both windows to the proportion of intra-domain contacts between
the windows. Specifically, for bin i we define its upstream window as the union of
bins between bin i—d+1 and bin 7 and its downstream window as the union of bins
between bin i and bin i+d-1, where d is a parameter of the method. Let p}’and p’be
the above-mentioned proportions within and between windows, and

Yidrjksi hjk + Xicjkcird hjk
24?

=

b Zi—d+1§jgi,i§k§i+d—1hjk
b=z

We then construct a test statistic Z; = (p;” —pf’)/ Poi(1 — poi)/d* with
poi = (p + p?) /2. Denote the sequence of local test statistics peaks as {Z;} 1<i<n}
(or equivalently the corresponding P-value) that are located at positions llj o
They are used to segment the chromosome into blocks of dense interactions and
gaps. We use a threshold ¢ to call local peaks; if Z;, < f;, it is not recognized as a
local peak, thus t; can be used to control the size of the block. We also combine
local peaks that are very close; given parameter d,, for peak positions satisfying
[li = liz1| < dp, remove [; from the sequence of peaks if Z; < Z;, and remove [,
otherwise. d,, controls the minimal size of a chromatin domain.

In the third step of the algorithm, we perform domain calling by combining
block boundaries (Fig. 1c). A block from step 2 can be called as a TAD, or merged
into a larger TAD, or called as a gap between TADs. To do this, we define another
test statistic to indicate whether a bin is upstream-biased, downstream-biased or
unbiased. Let p and p¢ denote the proportion of real contacts in upstream and
downstream windows, respectively, and

2,...,lk.

u Zi—dJrlgj,kSi hie 4 Zigj,k§i+d—l hi
pi = pp Pi = .

The test statistic is defined as D; = (p¥ — pf) /\/pi(1 — pi)/d? with
pi = (p¥ +p?) /2. We determine the ith bin’s directionality as upstream-biased if
D; > t,, downstream-biased if D; < —t, and unbiased otherwise. A TAD starts from
a downstream-biased peak and can continue to include several consecutive
downstream-biased peaks. A TAD ends when an upstream-biased peak or unbiased
peak is reached. An unbiased peak is shared by two consecutive TADs.
Chromosomal regions start from an up-biased peak, extend to a downstream-
biased peak is called as gaps between two TADs.

In the above TAD calling procedure, parameter t, is essential for deciding
whether a block is a gap, or whether some consecutive blocks should be merged
into a larger TAD.

Tuning the parameters of the algorithm. There are four parameters d, d,, t;, and
t, in our method. We optimize them by maximizing the difference in the pro-
portion of intra-domain contacts in TADs and non-TADs (background), which is
defined as

PTAD — Pbg

\/P(l —p)(1/n1ap — 1/ny,)

where prap = > crap Mi/ 1D Pog = Dji—ji<p Mij/ Mg P=(PraDNTAD=Peghng)/

8
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(nraptneg) and nyap and g are the total number of bin pairs within TADs and
the background, respectively. Note that we define background as those bin pairs
whose distance is less than or equal to a predefined number D and are not in the
predicted TADs, which we set to 2 Mb based on the size of the largest TAD in
published studies!. The ranges of parameter values searched in this study are
provided in Supplementary Table 3.

Iterative procedure for identifying sub-domains. Given a called TAD, we apply
the GMAP algorithm again on the normalized Hi-C data to call its subTADs until
no element of the test statistic {Z;}{;<;<ny is significant and/or the domain size is
smaller than a pre-specified value. In this report, we used 200 kb as the minimal
domain size based on published studies'. We use the TAD itself as background
when calling its subTADs.

Simulation of Hi-C data. We generate contact count matrices with a size of 1000 x
1000 bins. Values in the contact matrix follow either a Poisson distribution or a
negative binomial distribution. To account for the effect of distance on contact
count due to random polymer interaction, we make the mean of the distribution
proportional to the inverse of the distance between two bins, i and j, as defined in
the following equation:

u
H;; = Poisson <| ), 1 <14,j <1000
i—

Based on this equation, the average contact count in a smaller TAD is larger
than that in a bigger TAD. TADs of varying sizes are inserted along the diagonal
of the contact matrices. Specifically, for a TAD with size of [ - k+1, we replace the
sub-matrix of H corresponding to TAD by a matrix T as

t*
T = Poisson( - u
li —ji

where f represents the signal ratio of TAD over the background. We set it to 2 in
the simulation study and y is set to 200 to generate H with a mean value about 6,
which is close to the mean contact count of real Hi-C matrix from Rao et al.
(2014) at 40 kb resolution. We randomly select ten bins among the 1000 bins.
We then embed ten TADs with sizes ranging from 40 to 175 bins. These simulated
TAD sizes follow the size distribution of TADs reported in the literature. We also
randomly embed two regions as gaps between TADs.

For sub-TADs, we use the same simulation strategy as for TADs. To insert
subTADs, we replace the sub-matrix of H corresponding to the subTAD from bin
m to bin n as

)JSLjSk

. sxt*xu L.
Sjj = Poisson = ym<ij<n
=]

where s represents the signal ratio of subTAD over TAD and we set it to 2 as well.

Using the same strategy, we simulated Hi-C count matrix using negative
binomial distribution. The mean parameters are set to the same values as in the
Poisson distribution simulation, and then we choose the dispersion parameter such
that the variance equals to 1.25 times the mean parameter for H, T, and S,
respectively.

Assessing agreement between two sets of chromatin domains. To compare
two sets of domain calls, we used two metrics: VI and Jaccard Index. VI was
defined for evaluating similarity between two partitions of a given set?’. Given two
partitions A and B of a set S into disjoint subsets, A={A;,...,Ax}, B={By,....B}},
where k and [ are the total number of subsets in A and B, respectively Let

n= Ei |A,| = Zj |BJ| = ‘Sl,p, = ‘A,‘I/T’l, qi = ‘BJ|/7’1, rij = }A, ﬂBj'/i’l, where ‘A,‘
represents the size of subset A;. VI between the two partitions is:

VI(A;B) = — Z rij[log(rs/pi) + log(r;/q;)]-
i

We used VI to assess the agreement of TADs identified from two data sets by
the same method, or from the same data set but by different methods. Note that
since VI requires the subsets in a partition to be disjoint, it cannot be used to
evaluate hierarchical partitions involving subTADs. To address this issue, we used
Jaccard Index. Given the above-mentioned set notations, the Jaccard Index of any
pair of domains can be defined as
_lains|

Jaccard(A;, Bj) = |A-UB-}
iUB;

The Jaccard Index of A; to the partition set B, which quantifies the best match of
B to A;, can be defined as

Jaccard(A;, B) = max <j<Jaccard (A,'7 Bj)

The Jaccard Index of By to set A is defined similarly.

Domain coordinates are represented either as bin indices (simulated data) or
real chromosome coordinates. No threshold is used to measure overlap of two sets
of domains because both VI and Jaccard Index are threshold independent.
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Hi-C data processing and normalization. Hi-C data for cancer cell lines (K562,
MCF7, LNCaP, PC3) were normalized using the algorithm calCB, which is
designed for correcting biases due to copy number variation in cancer genomes>!,
Hi-C data for non-cancer cell lines (MCF10, PrEC) were processed and normalized
using HiC-Pro®2. The normalized Hi-C data from Dixon et al.! and Rao et al.* were
downloaded from GEO using accession numbers provided by the authors.

Parameter setting for compared methods. For simulation studies using
TADtree, we set the number of outputted TADs as the average of the number of
true TADs and the number of TADs outputted by HicSeg. The parameter M
(maximal number of subTADs within TADs) were set to 3. The other parameters
of TADtree were set as the default values. For HiCseg using simulated data,
although it has three modeling options using Gaussian, or Poisson or Negative
Binomial distribution, we used Poisson distribution for the simulated data set
because we found that negative binomial distribution did not always converge and
Gaussian distribution is not appropriate for modeling count data. The other
parameters of HiCseg were set as the default values except for parameter Kmax
which was set to 80. For metaTAD, L was set as 50 bins (the same as the default 2
Mb if the resolution is 40 kb) and a =0 as used in the original publication.

For analyzing experimental Hi-C data with TADtree, we set the number of
outputted TADs as the average of the number of true TADs and the number of
TADs outputted by HicSeg. The other parameters were set as default values

for low-resolution Hi-C data. Parameters S and N were set to 200 and 400 for
high-resolution Hi-C data. For HiCseg, we use Gaussian distribution because

we used normalized Hi-C data. The other parameters were set as the default
values except for Kmax, which was set to 500 for high-resolution Hi-C data.

For metaTAD, both L and a were set as default values as in the original publication.

Enrichment analysis of genomic factors at domain boundaries. ChIP-Seq data
was downloaded from Gene Expression Omnibus. Accession numbers are provided
in Supplementary Table 2. We calculated the average numbers of CTCF, RAD21,
H3K4me3, and Pol2 peaks within the 25 kb region flanking a TAD boundary on
both side (and including the boundary). Statistical significance in the mean peak
number within TAD boundaries was computed using paired t-test.

RNA-Seq analysis. RNA-Seq data for normal and breast cancer cell lines were
downloaded from ref. 7. Sequencing reads were mapped using TopHat?? (version
2.1.1). Cufflink tool** was used to calculate expression level as fragments per
kilobase of transcript per million reads (FPKM). The average FPKM across the
three replicates was used for downstream analysis.

Assumptions of statistical tests. All statistical tests were performed using large
sample sizes. Other assumptions of specific tests such as normal distribution and
equal variance for f-test were tested to be satisfied before conducting the real tests.
Therefore, the test results are robust with regard to underlying assumptions of the
statistical tests.

Code availability. An R package rGMAP implementing the GMAP algorithm is
available at the following website: http://tanlab4generegulation.org/rGMAP_1.1.tar.

gz.

Data availability. The data that support the findings of this study are available
from the Gene Expression Omnibus (GEO) database. Accession numbers are listed
in Supplementary Tables 1 and 2.
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