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ABSTRACT Chronic wasting disease (CWD) is a naturally occurring, fatal neurode-
generative disease of cervids. The potential for swine to serve as hosts for the agent
of CWD is unknown. The purpose of this study was to investigate the susceptibility
of swine to the CWD agent following experimental oral or intracranial inoculation.
Crossbred piglets were assigned to three groups, intracranially inoculated (n = 20),
orally inoculated (n = 19), and noninoculated (n = 9). At approximately the age at
which commercial pigs reach market weight, half of the pigs in each group were
culled (“market weight” groups). The remaining pigs (“aged” groups) were allowed
to incubate for up to 73 months postinoculation (mpi). Tissues collected at necropsy
were examined for disease-associated prion protein (PrP5) by Western blotting (WB),
antigen capture enzyme immunoassay (EIA), immunohistochemistry (IHC), and in
vitro real-time quaking-induced conversion (RT-QuIC). Brain samples from selected
pigs were also bioassayed in mice expressing porcine prion protein. Four intracrani-
ally inoculated aged pigs and one orally inoculated aged pig were positive by EIA,
IHC, and/or WB. By RT-QuIC, PrP>c was detected in lymphoid and/or brain tissue
from one or more pigs in each inoculated group. The bioassay was positive in four
out of five pigs assayed. This study demonstrates that pigs can support low-level
amplification of CWD prions, although the species barrier to CWD infection is rela-
tively high. However, detection of infectivity in orally inoculated pigs with a mouse
bioassay raises the possibility that naturally exposed pigs could act as a reservoir of
CWD infectivity.

IMPORTANCE We challenged domestic swine with the chronic wasting disease
agent by inoculation directly into the brain (intracranially) or by oral gavage (orally).
Disease-associated prion protein (PrP>c) was detected in brain and lymphoid tissues
from intracranially and orally inoculated pigs as early as 8 months of age (6 months
postinoculation). Only one pig developed clinical neurologic signs suggestive of
prion disease. The amount of PrP3c in the brains and lymphoid tissues of positive
pigs was small, especially in orally inoculated pigs. Regardless, positive results ob-
tained with orally inoculated pigs suggest that it may be possible for swine to serve
as a reservoir for prion disease under natural conditions.

KEYWORDS chronic wasting disease, prions, swine, transmissible spongiform
encephalopathy

ransmissible spongiform encephalopathies (TSEs) or prion diseases are fatal neu-

rodegenerative diseases. Naturally occurring TSEs include chronic wasting disease
(CWD) in cervids, scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle,
and sporadic and familial prion diseases in humans.
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The potential for swine to serve as hosts for the agent of CWD is unknown. A
naturally occurring TSE has not been reported in swine (1, 2). Intracranial challenge of
swine with brain tissue from patients with kuru, a human prion disease, was not
successful (3), although at the time of those studies, molecular tests for disease-
associated prion protein (PrP><) were not available. Pigs have been shown to be
susceptible to BSE following parenteral inoculation (simultaneously by the intraperito-
neal, intravenous, and intracranial routes), to ovine BSE following intracranial inocula-
tion (4), and to ovine scrapie following intracranial inoculation (5) but not to BSE after
an oral challenge with a large amount of infected brain material (6-8).

The CWD agent has a wide host range among cervids and can be experimentally
transmitted to several other species. Naturally occurring CWD has been reported in
cervids, including mule deer (Odocoileus hemionus) (9-11), Rocky Mountain elk (Cervus
elaphus nelson) (11, 12), white-tailed deer (Odocoileus virginianus) (10, 11), moose (Alces
alces shirasi) (13, 14), and reindeer (Rangifer tarandus tarandus) (15). In addition,
Eurasian red deer (Cervus elaphus) (16), Eurasian fallow deer (Dama dama) (17), Asian
muntjac deer (Muntiacus reevesi) (18), and reindeer (19, 20) have been shown to be
susceptible to CWD following experimental inoculation. CWD has been experimentally
transmitted to noncervid species, including sheep (21), cattle (22-25), domestic cats
(26, 27), ferrets (28, 29), nonhuman primates (30-32), and laboratory rodents (reviewed
in reference 33).

Pigs could be exposed to CWD infectivity via two main routes, (i) exposure of farmed
or pet swine (Sus scrofa domesticus) to contaminated feed and (ii) exposure of feral
swine (S. scrofa) to CWD-infected carcasses or contaminated environments. In the
United States, feeding of ruminant by-products to ruminants is prohibited but feeding
of ruminant materials to swine, mink, and poultry still occurs. Therefore, it is possible
that, if a CWD-affected cervid carcass entered the food chain through a commercial
slaughterhouse, domesticated farmed and pet swine could be exposed to CWD infec-
tivity in commercially prepared rations. As of 2015, feral pigs have been reported in 39
U.S. states (34), and in 12 of these states, CWD has been detected in free-ranging cervid
populations (35). Environmental contamination with CWD infectivity in excreta or
decomposing carcasses contributes to horizontal transmission of CWD in mule deer
(10). Prion infectivity has been shown to persist on the surface of contaminated plant
leaves and roots (36) and in soil (37-39). Therefore, feral pigs could be exposed to
infectivity through scavenging of CWD-affected carcasses, by consumption of contam-
inated vegetation, and while rooting around in the soil during foraging. In this study,
we demonstrate that swine are susceptible to the CWD agent following oral or
intracranial experimental inoculation and accumulate PrP5¢ in both brain and lymphoid
tissues. Detection of PrP5¢ in brain and lymphoid tissues from orally inoculated pigs at
6 months after inoculation raises the possibility that naturally exposed pigs could
potentially be a reservoir for CWD prions.

RESULTS

Clinical presentation. All pigs culled at 6 mpi (8 months of age; eight intracranially
[i.c.] inoculated, nine orally inoculated) were clinically normal, with the exception of one
pig (no. 35) that was noted to be limping on its left front and rear legs. Four i.c.
inoculated pigs and one orally inoculated pig developed intercurrent lameness from
approximately 30 mpi, usually beginning with the feet and legs and progressing to
difficulty rising. At approximately 41 mpi, four clinically normal pigs (one noninocu-
lated, three orally inoculated) were culled to reduce animal density in the containment
space. Neurological signs were observed in one pig (no. 27; incubation period, 64 mpi)
that included difficulty rising, and muscle fasciculations and tremors after rising. Pig 27
also had skin abrasions and/or ulceration over pressure points and polyarthritis. All
other pigs were found dead or culled because of intercurrent disease, most commonly
lameness that was not responsive to treatment.

Detection of PrPs<. To determine if pigs inoculated with the agent of CWD accumulate
misfolded prion protein in the central nervous system, we assayed the brain stem by
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Western blotting (WB), enzyme immunoassay (EIA), immunohistochemistry (IHC), and in
vitro real-time quaking-induced conversion (RT-QuIC). Results of screening of brain
stem material from all pigs by WB and EIA and results of additional testing of animals
that were PrPs< positive by either screening test are shown in Table 1.

WB. By WB, PrP>< was detected in brain tissue from two i.c. inoculated pigs (no. 27
and 28) necropsied at 64 and 73 mpi, respectively (Table 1).

The migration pattern of samples from pigs inoculated i.c. with the CWD agent was
different from that of either the sample from a pig inoculated with classical BSE or the
original CWD inoculum (Fig. 1). While the monoglycosylated (middle) band was most
prominent in the sample from the pig inoculated with the BSE agent, the diglycosylated
(top) band was most prominent in the sample from the pig inoculated with the CWD
agent and the original CWD inoculum.

EIA. By EIA, misfolded protein was detected in brain tissue from 1/10 i.c. inoculated
market weight pigs, 5/10 i.c. inoculated aged pigs (42 to 73 mpi), 0/9 orally inoculated
market weight pigs, and 1/10 orally inoculated aged pigs (Table 1).

RT-QuIC. By RT-QuIC, PrP5c was detected in brain stem material from 3/6 i.c.
inoculated market weight pigs, 7/7 i.c. inoculated aged pigs, 2/6 orally inoculated
market weight pigs, and 5/6 orally inoculated aged pigs (Table 1; Fig. 2). For each
positive sample, we quantified the seeding activity based on the amyloid formation rate
(AFR), which is the reciprocal of the time (in hours) that it takes for a reaction to reach
the threshold, defined as the mean baseline fluorescence plus 5 standard deviations.
For i.c. inoculated pigs (n = 10), the mean AFR of each animal ranged from 0.025 to
0.210. For orally inoculated pigs (n = 7), the range of mean AFRs was 0.010 to 0.029
(Table 1; Fig. 2). Average RT-QuIC data, generated by calculating the mean of all
replicates from all of the animals in each challenge group, are shown in Fig. 3.

Differential PK sensitivity of brain stem samples. To investigate possible bio-
chemical properties of PrP>< that may have contributed to the variation in aggregation
kinetics observed in the RT-QuIC assay, the EIA optical density of matched samples was
measured with and without treatment with proteinase K (PK). The difference in optical
density between non-PK-treated and PK-treated samples allows us to estimate the
relative PK resistance of the PrPS< present in the brains of infected pigs (40).

PrPs< in EIA-positive brain tissue from one i.c. inoculated market weight pig (no. 15),
one orally inoculated aged pig (no. 45), and one i.c. inoculated aged pig (no. 24) was
PK sensitive. PrP5< from the remaining four pigs with samples positive by EIA, all from
the i.c. inoculated aged pig group, was PK resistant (Table 1). PK titration of all
EIA-positive samples was performed, and the results were consistent across PK con-
centrations of 0.4 to 50 ug/ml.

Six brain samples were EIA and RT-QuIC positive. Of these, the four samples that
were PK resistant had higher AFRs (range, 0.17 to 0.21), while the two samples that were
PK sensitive had lower AFRs (0.01 and 0.03) (Fig. 2).

Detection of PrP5< in lymphoid tissues. To determine if pigs inoculated with the
CWD agent accumulate misfolded prion protein in lymphoid tissues, EIA and RT-QuIC
were applied to samples of the retropharyngeal lymph node (RPLN), palatine tonsil, and
mesenteric lymph node (MLN). Full results for individual pigs are shown in Table 2.

All of the lymphoid tissues tested were PrP5c negative by EIA, with the exception of
those of pig 37 (orally inoculated market weight pig), which had a positive MLN. By the
RT-QuIC assay, PrPsc was detected in lymphoid tissues of the head (RPLN, palatine
tonsil) in 3/6 i.c. inoculated market weight pigs, 5/7 i.c. inoculated aged pigs, 4/6 orally
inoculated market weight pigs, and 2/6 orally inoculated aged pigs. The MLN was
positive in 5/6 orally inoculated market weight pigs, 3/4 orally inoculated aged pigs
(samples were not available from 2 pigs), 4/6 i.c. inoculated market weight pigs, and 2/4
i.c. inoculated aged pigs. Overall, the MLN was positive in 14/19 (74%) samples
examined, the RPLN was positive in 8/18 (44%), and the tonsil was positive in 10/25
(40%).
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TABLE 1 Detection and characterization of PrP>¢ from selected pigs

Antigen
Treatment group and Incubation M capture RT-QuiC  RT-QuIC
animal no. period (mpi) CNSe LRS® EIA result WB result IHC result PK sensitivity result AFR
Control market wt
1 0 - NT< NA4 NA NT NT NT NT
2 0 - NT - - NT NT NT NT
3 0 - NT - - NT NT NT NT
4 6 - NT - - NT NT NT NT
5 6 - - - - - NA - 0
Control aged
6 25 - NT - — NT NT NT NT
7 41 - NT - - NT NT NT NT
8 46 - NT - - NT NT NT NT
9 73 - - - - - NA - 0
i.c. inoculated market wt
10 0 - NT - - NT NT NT NT
11 0 - NT - - NT NT NT NT
12 6 + + - — — NA + 0.031
13 6 - NT - - NT NT NT NT
14 6 + + - — — NA + 0.025
15 6 + + + - - sensitive - 0
16 6 - + - - - NA - 0
17 6 - NT — - NT NT NT NT
18 6 + + - — — NA + 0.120
19 6 - - - - - NA - 0
i.c. inoculated aged
20 30 - NT - - NT NT NT NT
21 30 - NT - - NT NT NT NT
22 30 + + - — - NA + 0.080
23 30 - NT - - NT NT NT NT
24 42 + + + - - sensitive + 0.030
25 45 + + + - + resistant + 0.180
26 56 + + + - + resistant + 0.190
27 64 + - + + - resistant + 0.170
28 73 + + + + + resistant + 0.210
29 73 + + - — — NA + 0.050
Orally inoculated market wt
32 6 + + — — — NA + 0.070
38 6 + + - - - NA + 0.010
30 6 — + — - - NA - 0
36 6 - + - - - NA - 0
37 6 - + - - - NA - 0
34 6 - - - - - NA - 0
31 6 - NT - - NT NT NT NT
33 6 - NT - - NT NT NT NT
35 6 - NT - - NT NT NT NT
Orally inoculated aged
39 19 - + — - - NA - 0
40 41 - NT - - NT NT NT NT
41 41 + + - — — NA + 0.029
42 41 - NT - - NT NT NT NT
43 45 + + - - - NA + 0.020
44 55 + + - — - NA + 0.030
45 64 + - + - + sensitive + 0.010
46 65 - NT - - NT NT NT NT
47 65 - NT - - NT NT NT NT
48 72 + — — — — NA + 0.010

aCNS, central nervous system.
bLRS, lymphoreticular system.
°NT, sample not tested.

dNA, result not applicable.
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FIG 1 WB analysis demonstrating a unique PrPs< profile in brain samples from pigs with CWD. The
positive brain sample from a pig inoculated with the CWD agent (pig CWD) has a slightly higher
migration than the brain sample from a pig inoculated with the agent of classical BSE (pig BSE) and a
much lower migration than the CWD inoculum (CWD Inoc). The diglycosylated band (topmost band in
each lane) is more prominent in the pig CWD and CWD Inoc samples, while the monoglycosylated
(middle) band is most prominent in the pig BSE sample. The blot was developed with monoclonal
antibody L42. Note that because of the sparse PrP5c accumulation in the brains of inoculated pigs, the
blot shown is a composite; see Materials and methods for details.

Histopathology and IHC. To determine if pigs inoculated with the CWD agent
develop spongiform lesions or accumulate misfolded prion protein in the brain, coronal
brain sections were examined by light microscopy after hematoxylin and eosin staining
and by IHC.

Occasional neuropil vacuolation and white matter vacuolation were present in
different brain sections of control and inoculated pigs. Small to medium-sized gray
matter vacuoles were seen in the colliculus of at least one pig from each treatment
group, including control pigs (Fig. 4A, pig 7, and B, pig 25). Vacuolation and PrP>c
deposition in the colliculus were present in two pigs (no. 25 and 26) from the i.c.
inoculated aged pig group (Fig. 4C, pig 25). Intraneuronal vacuolation was observed in
large neurons of the dorsal motor nucleus of the vagus nerve (DMNV) in the medulla
at the level of the obex (Fig. 4E, pig 38). This type of vacuolation was present in pigs
from all of the market weight treatment groups, including noninoculated control pigs,
and in aged control pigs. PrP>c deposition in association with DMNV vacuolation was
not observed in any pigs.

Positive PrPc immunoreactivity was observed in samples from four pigs. In the
brain, PrP3c immunoreactivity appeared as the intraneuronal type (coarse granular
deposits of PrP>< in the neuronal perikarya surrounding the nucleus) in large neurons
of the rostral medulla reticular formation (pig 26), midbrain colliculus (pigs 25 and 26),
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FIG 2 AFRs (RT-QuIC) and PK sensitivity (EIA) of PrPsc from pig brain samples. Treatment groups: animals
5and 9, noninoculated controls; 12 to 19, i.c. inoculated market weight pigs; 22 to 29, i.c. inoculated aged
pigs; 30 to 38, orally inoculated market weight pigs; 39 to 48, orally inoculated aged pigs. PK sensitivity:
solid fill, PK sensitivity not determined (EIA negative); horizontal stripe fill, PK resistant; checked fill, PK
sensitive.
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FIG 3 Results of RT-QuIC assays of brain homogenate from inoculated and negative-control pigs. Shown
are the average percent thioflavin T (ThT) fluorescence readings (thick lines) with standard deviations
(thin lines) determined from all replicates (four replicate reactions per animal) from all of the pigs in each
challenge group. Red, i.c. inoculated aged pigs (n = 7); blue, i.c. inoculated market weight pigs (n = 6);
purple, orally inoculated market weight pigs (n = 6); orange, orally inoculated aged pigs (n = 6); green,
noninoculated control pigs (n = 2).

midline thalamic nuclei and hypothalamus (pigs 45 and 28), or septal nuclei (pig 28)
(Fig. 4Q).

PrPSc immunoreactivity was also seen in the retina of one pig, i.e., granular to
punctate immunoreactivity in the inner and outer plexiform layers with occasional
intraglial deposits (Fig. 4F, pig 26). Disease-specific PrPSc immunoreactivity was not
seen in any other tissues, although nonspecific immunolabeling was common (Fig. 4D,
brain stem, and G, retina).

Mouse bioassay. To determine if pigs inoculated with the CWD agent accumulate
infectious material, brain stem material from selected pigs was bioassayed in Tg002
mice that express porcine prion protein at normal levels (5).

Pigs from the i.c. inoculated market weight (pig 18) and i.c. inoculated aged (pigs 27
and 28) groups and the orally inoculated aged group (pig 48) produced positive
bioassay results (Table 3). In mice inoculated with brain material from pig 18 (an i.c.
inoculated market weight pig), the average incubation period was 244 days postinoc-
ulation (dpi) (2/28 mice). In mice inoculated with brain material from pig 27 (i.c.
inoculated market aged pig group), the average incubation period was 167 (range, 140
to 220) dpi (3/29 mice). Two out of 27 mice were positive in the group inoculated with
brain material from pig 28; 1 mouse was found dead at 314 dpi, and the other was
euthanized at the end of the study at 701 dpi. The highest attack rate resulted from the
orally inoculated aged pig (no. 48), with 14/28 mice positive and an average incubation
period of 263 (range, 111 to 621) dpi.

All of the pigs that produced a positive bioassay result also had a positive RT-QuIC
result. In addition, pigs 27 and 28 were positive by WB (both pigs), EIA (both pigs), and
IHC (pig 28 only). Bioassay of brain tissue from pig 32 in the orally inoculated market
weight group was unsuccessful (0/28 mice; the study ended at 702 dpi) (Table 3),
although PrP>< was detected in the brain of this pig by RT-QuIC (Table 1).

DISCUSSION

We demonstrated that PrP>c can be detected as early as 6 months postinoculation
(mpi) in brain and lymphoid tissues of pigs inoculated orally or i.c. with the CWD agent.
We show that pigs inoculated with CWD rarely develop neurologic signs suggestive of
prion disease, although PrP>c can be detected in brain samples. Furthermore, neuro-
pathological changes are often equivocal and the amount of PrP>< present is generally
low, so sensitive methods such as RT-QuIC and bioassay were used for PrP>c detection.
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TABLE 2 Detection of PrP>¢ in lymphoid tissues by antigen capture EIA and RT-QuIC assay

Treatment group and Incubation Overall AL el s
animal no. period (mpi) result EIA result RT-QulC result EIA result RT-QuiC result EIA result RT-QuIC result
Noninoculated controls
5 6 - — — — — — —
9 73 — NA< NA — — — —
i.c. inoculated market wt
12 6 + - — - - — +
14 6 + - + — + — —
15 6 + — + — + — +
16 6 + — + — + — +
18 6 + — — — — — +
19 6 - - - - - - -
i.c. inoculated aged
22 30 + - - - - - +
24 42 + NA NA — + NA NA
25 45 + - + — — — —
26 56 + — + — + NA NA
27 64 - NA NA — — NA NA
28 73 + NA NA — + — +
29 73 + — + — - - -
Orally inoculated market wt
30 6 + — — — - - +
32 6 + — — — + — +
34 6 - - - - - - -
36 6 + - - - + — +
37 6 + — + — - + +
38 6 + - - - + — +
Orally inoculated aged
39 19 + — — — — — +
41 41 + - + - — - +
43 45 + — NA — + NA NA
44 55 + NA NA — — — +
45 64 - - NA - - NA NA
48 72 - NA NA — — — —

aNA, sample not available.
bRPLN, retropharyngeal lymph node.
°MLN, mesenteric lymph node.

Prion infection was subclinical in most of the pigs in this study; PrP>c was detected
in brain tissue from 18 pigs, but neurologic signs suggestive of prion disease were
observed in only 1 pig. This pig developed clinical signs of difficulty in rising and signs
of tremor. Both of these clinical signs have been reported previously in pigs challenged
with the BSE agent (6) or the sheep-passaged BSE agent (4). A number of pigs
developed persistent recumbency with difficulty in rising, but these clinical signs were
attributed to musculoskeletal lameness rather than neurological disease.

Similar to pigs with BSE (8), PrPSc accumulation was sparse and did not necessarily
correlate with the degree of spongiform change. In addition to having a restricted
distribution, the range of morphological types of PrP5c was limited to just the intra-
neuronal type. Prominent intraneuronal immunolabeling is also a feature of scrapie in
pigs (5). In contrast, a wider variety of PrP5c deposit types has been described in pigs
challenged with the cow-passaged (6, 8) or sheep-passaged (4) BSE agent.

A mild spongiform change was observed in the brains of both inoculated and
noninoculated pigs, suggesting that the presence of a spongiform change in the brain
should not be used as the sole diagnostic test for CWD in pigs. Similar to results
reported by others, microscopic changes in negative-control and inoculated pigs were
limited to occasional scattered vacuoles in the neuropil or white matter throughout the
brain (1), neuropil vacuolation of the superficial layers of the rostral colliculus (1, 8), and
occasional neuronal vacuolation in the dorsal motor nucleus of the vagus nerve (1, 2,
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FIG 4 Vacuolar change and PrPs< in the brain and eye. (A) Brain stem of pig 7 showing incidental, i.e., unrelated to prion
disease, neuropil vacuolation in the colliculus. *, midline (hematoxylin and eosin staining; original magnification, X4). (B)
Higher-magnification view of panel A (original magnification, X10). (C) Brain stem of pig 25 showing intraneuronal PrPs<
immunoreactivity (arrows) in neurons in the colliculus (anti-PrP monoclonal antibody L42; original magnification, X20). (D)
Brain stem of noninoculated control pig 8 showing non-disease-specific intraneuronal immunolabeling (arrows) in neurons
in the colliculus (anti-PrP monoclonal antibody L42; original magnification, X40). (E) Brain stem of pig 38 showing
incidental intraneuronal vacuolation (*) in the dorsal motor nucleus of the vagus nerve (hematoxylin and eosin staining;
original magnification, X40). (F) Retina of pig 26 showing granular to punctate PrP5¢ immunoreactivity in the inner and
outer plexiform layers with occasional intraglial deposits (arrow) (anti-PrP monoclonal antibody L42; original magnification,
X40). (G) Retina of noninoculated control pig 4 showing non-disease-specific immunolabeling (anti-PrP monoclonal
antibody L42; original magnification, X40).

8). Since the above microscopic changes can be observed in both noninoculated
control and inoculated pigs, when present in inoculated pigs, they are considered
equivocal, i.e., not related to prion disease. Colocalization of neuropil vacuolation and
intraneuronal PrP>c deposits was present in the rostral colliculus of two pigs in our
study, but vacuolation did not extend to deeper layers of the rostral colliculi or to other
areas of the brain (8), so it was considered equivocal.

Limited microscopic and immunohistopathologic changes observed in the brains of
pigs with CWD compared to pigs inoculated with cow- or sheep-adapted BSE suggests
that the species barrier to CWD transmission to pigs is higher than that to BSE
transmission to pigs. Despite this, pigs are able to accumulate misfolded prion protein
and CWD infectivity.

By standard diagnostic tests (WB, EIA, and IHC), PrP>c was detected in brain or
lymphoid tissues from eight pigs in this study. The number of positive animals and
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TABLE 3 Results of bioassays of brain material from selected pigs in Tg002 mice that
express porcine prion protein

Tg002 mouse

Donor Donor treatment group Attack Mean incubation
animal no. (donor incubation period [mpi]) rate? period (dpi)

18 i.c. inoculated market wt (6) 2/29 244

27 i.c. inoculated aged (64) 3/29 167

28 i.c. inoculated aged (73) 2/27 314, 7010

32 Orally inoculated market wt (6) 0/28 >700

48 Orally inoculated aged (72) 14/28 263

aPrPs< in the brains of mice was detected by an antigen capture EIA.
bThe survival times of these two mice are so disparate that calculation of a mean incubation period would
not be meaningful.

tissues, in particular lymphoid tissues, was much higher when the RT-QuIC assay was
used. By RT-QuIC, PrP>c was detected in brain and lymphoid tissues that were PrpPsc
negative by all other tests. This is not surprising, considering that RT-QuIC is reported
to be at least as sensitive as a bioassay (41) and 10,000 times as sensitive as EIA and WB
for the detection of scrapie seeding activity in goat brain samples (42). With the
exception of IHC, diagnostic tests were performed with brain stem samples since this
brain region is the preferred site for statutory diagnostic testing. Testing of additional
brain regions might have revealed PrP>c accumulation elsewhere in the brain, as was
observed by IHC.

The RT-QuIC assay allows quantification of the seeding activity of prions in the
samples on the basis of AFRs. The AFR is calculated as the reciprocal of the time it takes
for a reaction to reach the threshold (i.e., 1/time to threshold in hours). A higher AFR
reflects a shorter time taken to reach the threshold, which can also be termed a shorter
“lag phase.” Lag phases have previously been shown to be inversely correlated with
seed concentration in RT-QuIC reactions (41, 43, 44). Since the AFRs of samples from i.c.
inoculated aged pigs tended to be higher than those of samples from orally inoculated
aged pigs, it follows that the relative amount of PrP>c in the brain is larger in i.c.
inoculated pigs. This seems logical, considering that PrPsc in the inoculum was deliv-
ered directly into the brain in i.c. inoculated pigs but delivered to peripheral tissues
(oral cavity and gastrointestinal tract) in orally inoculated pigs.

We observed that the AFR of samples from positive animals that were determined
to be PK sensitive was approximately 1 order of magnitude lower than the AFR of
samples from positive animals that were PK resistant. Although the interpretation of
these observations is limited by the small sample size and the fact that samples were
not normalized for total protein content, it appears that there may be a relationship
between AFR and PK sensitivity.

One hypothesis is that larger seed particles present more seeding surfaces than
smaller particles and thus support faster RT-QulC kinetics (45). In scrapie-infected
hamsters, PK-sensitive PrP5c molecules from low-molecular-weight aggregates are
made up of fewer PrP units (i.e., are smaller) than PK-resistant PrP>c aggregates (46, 47).
Combining these observations with our own results, we hypothesize that the smaller
average seed particle size of PK-sensitive PrPSc may result in slower RT-QuIC kinetics
and lead to lower AFRs and longer lag times. However, as stated above, this hypothesis
is based on a small number of samples.

The detection of PrP><in lymphoid tissues from the heads and guts of CWD-infected
pigs raises the possibility that pigs are able to shed prions in excreta, as has been shown
for saliva (48-51) and feces (52-54) from CWD-affected cervids. Unfortunately, saliva
and feces samples were not collected in the present study.

PrPSc was detected in brain and lymphoid tissues from orally inoculated pigs killed
at approximately market weight. These results suggest that, if they were to be exposed
to sufficient amounts of CWD infectivity, pigs in commercial swine production systems
would have the potential to accumulate CWD prions by the time they reach market
weight.
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In the case of feral pigs, exposure to the agent of CWD through scavenging of
CWD-affected cervid carcasses or through consumption of prion-contaminated plants
or soil could allow feral pigs to serve as a reservoir of CWD infectivity. The range and
numbers of feral pigs are predicted to continue to increase because of the ability of
pigs to adapt to many climates, reproduce year-round, and survive on a varied diet (55).
The range of CWD-affected cervids also continues to spread, increasing the likelihood
of overlap of ranges of feral pigs and CWD-affected environments.

We demonstrate here that PrPSc accumulates in lymphoid tissues from pigs inocu-
lated i.c. or orally with the CWD agent and can be detected as early as 6 months after
inoculation. Clinical disease suggestive of prion disease developed only in a single pig
after a long (64-month) incubation period. This raises the possibility that CWD-infected
pigs can shed prions into their environment long before they develop clinical disease.
However, the small amounts of PrP>c detected in our study pigs combined with the low
attack rates in Tg002 mice suggest that there is a relatively strong species barrier to
CWD prion transmission to pigs.

MATERIALS AND METHODS

Ethics statement. All of our animal experiments were reviewed and approved by the National
Animal Disease Center (NADC) Institutional Animal Care and Use Committee (IACUC; protocols 3510
[swine] and 2422 [mice]) and were carried out in strict accordance with the Guide for the Care and Use
of Laboratory Animals (Institute of Laboratory Animal Resources, National Academy of Sciences, Wash-
ington, DC) and the Guide for the Care and Use of Agricultural Animals in Research and Teaching
(Federation of Animal Science Societies, Champaign, IL). Pigs were observed daily for clinical signs of
disease and euthanized and necropsied at approximately 6 mpi or when unequivocal signs of prion
disease such as behavior changes, decreased feed intake, loss of body condition, ataxia, prolonged
recumbency, or inability to rise were confirmed by a veterinarian or when euthanasia was necessary
because of intercurrent illness or injury that could not be remediated by veterinary care. Euthanasia was
performed by intravenous injection of sodium pentobarbital in accordance with the manufacturer’s
instructions.

Inoculum preparation. The pooled CWD inoculum was prepared from three brains from white-tailed
deer that were inoculated i.c. with brain material from CWD-affected elk, white-tailed deer, or mule deer
(NADC IACUC protocol 3347) (56). All donor deer were homozygous for glycine (G/G) at PRNP codon 96
and serine (S/S) at codon 138. The brain tissue was ground in a mechanical grinder and mixed with
phosphate-buffered saline (PBS) to produce a 10% (wt/vol) homogenate.

Animal procedures. Crossbred piglets were inoculated at 8 weeks of age. Pigs inoculated i.c. (n =
20) received a single dose of 0.75 ml of 10% (wt/vol) CWD brain homogenate as described previously
(57). Orally inoculated pigs (n = 19) received 15 ml of 10% (wt/vol) CWD brain homogenate by syringe
with a soft feeding tube on 4 consecutive days (total dose, 45 ml). Pigs inoculated i.c. and orally were
housed in separate pens. At 2 weeks postinoculation, noninoculated control pigs were introduced into
the pens with the inoculated pigs.

At 6 to 7 months of age, approximately the time at which commercial pigs reach market weight, half
of the pigs in each group were culled (“market weight” groups) as follows: eight i.c. inoculated pigs, nine
orally inoculated pigs, and two control pigs. The remaining pigs (“aged” groups) were allowed to
incubate for up to 73 mpi when the study ended. Swine were observed daily for the development of
clinical signs.

Mouse bioassay. Infectivity in brain tissue from selected pigs was assayed via intracranial inoculation
of Tg002 mice that express porcine prion protein (GenBank porcine sequence accession no. GU595061)
at approximately 1X the expression level of prion protein in FVB mice (5). Samples of brain stem at the
level of the obex were prepared as 10% (wt/vol) homogenates in PBS. Mice were inoculated i.c. with 20
wul of 10% (wt/vol) brain homogenate as described previously (58). Mice were monitored daily and
euthanized when they displayed unequivocal neurological signs (difficulty moving, poor coordination,
inability to move, anorexia) or at the time of study termination (approximately 700 dpi). Brain samples
from mice were prepared as 10% (wt/vol) brain homogenates in PBS as described previously (59). PrPs¢
was detected by EIA as described below.

Sample collection. A full necropsy was performed on all pigs, including collection of two sets of
tissue samples. To minimize potential cross-contamination, one pathologist collected tissues from the
head and a second pathologist collected tissues from the rest of the body. Single-use instruments were
not used. One set of tissues included representative sections of liver, kidney, spleen, skin, striated muscles
(heart, tongue, diaphragm, masseter, triceps, biceps femoris, psoas major), lymphoid tissues of the head
(pharyngeal tonsil, palatine tonsil, medial RPLN), other lymph nodes (mesenteric, hepatic, renal, popliteal,
prescapular), nasal turbinates, lung, esophagus, small intestine, cecum, colon, rectal mucosa, stomach,
adrenal gland, pituitary gland, reproductive tissues, peripheral nervous system (trigeminal ganglion,
optic nerve, sciatic nerve, vagus nerve), brain (hemisections of cerebral cortex, hippocampus, cerebellum,
superior colliculus, and brain stem, including obex), and eye (retina). Formalin-fixed tissues were fixed in
10% neutral buffered formalin, moved to 70% ethyl alcohol after 48 h, embedded in paraffin wax,
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sectioned, and stained with hematoxylin and eosin for light microscopy. The second set of tissues was
frozen.

Selection of animals and tissues for PrPSc detection. Frozen brain stem tissue from all pigs was
screened for the presence of PrPs< by antigen capture EIA and WB. Fixed tissues from pigs that were
positive by WB and/or EIA were examined by IHC. In addition, representative pigs from across the range
of survival times in each group were also examined by IHC. Brain stem material from the pig with the
longest incubation period in each treatment group was bioassayed in Tg002 mice. PrPsc detection by
QuIC assay was applied to frozen brain stem and lymphoid tissues from all pigs that were positive by any
other test (EIA, WB, IHC, bioassay), as well as additional animals, so that six or seven animals per group
and across a range of survival times were tested.

IHC. All paraffin-embedded tissues were immunostained with anti-PrP monoclonal antibody L42 by
an automated immunohistochemical method for detection of PrPsc as described previously (60).

Antigen capture EIA. Brain homogenates were homogenized in 1X PBS at a concentration of 20%
(wt/vol) and assayed with a commercially available EIA kit (HerdChek BSE-Scrapie Ag Test; IDEXX
Laboratories, Westbrook, ME) as previously described (61). Assays were performed in accordance with the
manufacturer’s instructions. The EIA kit instructions indicated three protocols (standard, short, and
ultrashort). The short protocol was used to test tissue samples in the present study. Each tissue sample
homogenate was assayed in a single well along with negative and positive controls supplied with the kit.
Two conjugate concentrate products were included with the kit, a conjugate concentrate intended for
use with brain samples obtained from small ruminants (SRB-CC) and a conjugate concentrate intended
for use with brain samples obtained from cattle or lymph node or spleen samples obtained from small
ruminants (CC). In this study, SRB-CC conjugate was used to test samples obtained from mice expressing
pig prion protein. Absorbance at 450 nm was measured (SpectraMax 190; Molecular Devices, Sunnyvale,
CA) by using a reference wavelength of 620 nm. Cutoff values were established for each run in
accordance with the kit instructions, whereby 0.180 was added to the mean negative-control value.
Samples were interpreted as positive if the absorbance at 450 nm minus the reference value at 620 nm
was above the established cutoff value.

ElIA-based PK sensitivity testing. Sensitivity to PK was determined by the EIA protocol described
above but with the addition of a pretesting PK treatment step (40). Briefly, for each animal, two 100-ul
aliquots of 20% (wt/vol) brain homogenate were prepared; 5 ul of 1 mg/ml PK (USB Corporation,
Cleveland, OH, USA) was added to one aliquot, and 5 ul of PBS was added to the second aliquot. Both
aliquots were incubated for 1 h at 37°C with shaking at 1,000 rpm, followed by the addition of 1.0 ul of
100 mg/ml PK inhibitor (Pefabloc; Roche Diagnostics, Mannheim, Germany). The absorbance of each
sample was determined by EIA as described above. Samples for which the non-PK-treated aliquot was
EIA positive and the PK-treated aliquot was EIA negative were classified as PK sensitive. Samples for
which the non-PK-treated aliquot was EIA positive and the PK-treated aliquot was EIA positive were
classified as PK resistant.

WB. Samples for WB were collected from the brain stem at the level of the obex and the midbrain
between the optic and oculomotor nerves dorsal to the pituitary as previously reported (57). Tissues were
homogenized and enriched as described previously (22), with the following modifications. After the
pellets were resuspended in 100 wl of water, samples were digested with PK at a final enzyme
concentration of 0.4 U/ml (8 ug/ml) at 37°C for 1 h. Digestion was stopped by the addition of a serine
protease inhibitor (Pefabloc SC; Roche Diagnostics GmbH, Mannheim, Germany) to a final concentration
of 1 mg/ml. Western blots were developed with mouse anti-PrP monoclonal antibody L42, which targets
amino acids 145 to 163 of the ovine prion protein sequence (62), at a 1:500 dilution (0.1 pg/ml).

Because of the sparse PrP5¢ accumulation in the brains of inoculated pigs, the blot in Fig. 1 is a
composite. The pig CWD sample was enriched and loaded at 100 mg/eq. The pig BSE positive-control
tissue was provided by the APHA Biological Archive (Addlestone, United Kingdom).

Expression and purification of the recombinant PrP substrate. The recombinant prion protein
(rPrP) used in the RT-QuIC assay was expressed and purified by a previously reported standard protocol
(41, 63). Briefly, rPrP composed of Syrian hamster PrP residues 90 to 231 in the pET vector was
transformed into Escherichia coli Rosetta2(DE3) cells and purified from inclusion bodies by fast protein
liquid chromatography as described previously (44, 64).

RT-QuIC assay for brain and lymphoid tissue samples. We included brain and lymphoid tissue
homogenates from clinical CWD-affected white-tailed deer, age group-matched noninoculated pigs, and
a blank (buffer) as controls. Samples were collected by a strict aseptic technique to minimize the risk of
cross-contamination. All of the samples were run by using a blinded study design (N.K., S.M.).

Prior to testing, brain and lymphoid tissue samples were homogenized in 1X PBS at a concentration
of 20% (wt/vol) tissue and then further homogenized by repeated pipetting and sonication in a cup
sonicator with two pulses of 30 s. The samples were then further diluted to a concentration of 0.02% in
sample dilution buffer (0.025% SDS in 1X PBS).

The RT-QuIC assay was performed by previously published protocols (41, 65), with slight modifica-
tions as described previously (64). All samples were run in quadruplicate. The reaction mixtures consisted
of 5 ug of protein from the brain and lymphoid tissue homogenates that were used as seed in a 100-ul
total reaction volume. A sample was considered positive if the fluorescence intensity of at least half the
replicate wells crossed the threshold, which was calculated as the mean fluorescence of the negative-
control sample plus 10 standard deviations (66-68). For each positive sample, we quantified the seeding
activity on the basis of the AFR, which is the reciprocal of the time (in hours) that it takes for a reaction
to reach the threshold, defined as the mean baseline fluorescence plus 5 standard deviations (41, 65). The
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AFR was calculated by using all four replicates of each sample. Data analysis was performed with BioTek’
s Gen5 software version 2.07.17 and BMG’s MARS software version 5.2.R8.
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