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Objectives
The contribution of specific antiretroviral drugs to cognitive function in HIV-infected people
remains poorly understood. Efavirenz (EFV) may plausibly cause cognitive impairment. The
objective of this study was therefore to determine whether chronic EFV therapy is a modifier of
neurocognitive and neurometabolic function in the setting of suppressive highly active
antiretroviral therapy.

Methods
We performed an open-label phase IV controlled trial. Adult subjects who were stable on
suppressive EFV therapy for at least 6 months were switched to ritonavir-boosted lopinavir (LPV/r)
with no change in the nucleoside reverse transcriptase inhibitor (NRTI) backbone. The following
parameters were assessed before and 10 weeks after therapy switch: cognitive function (by
CogState� computerized battery); brain metabolites (by proton magnetic resonance spectroscopy);
brain activity [by attentional processing task-based functional magnetic resonance imaging]; and
sleep quantity and quality [by sleep diary, Pittsburgh Sleep Quality Index (PSQI) and Epworth
Sleepiness Scale].

Results
Sixteen subjects completed the study. Despite most subjects (81%) self-reporting memory problems
at baseline, cognitive function, brain metabolites, and brain activity showed no change at
10 weeks after switch. Sleep quality improved on switch off EFV [mean PSQI (standard deviation):
EFV, 8.5 (6.5); LPV/r, 5.8 (5.5); mean difference �0.4; 95% confidence interval �6.0 to �0.7].

Conclusions
This is the first study to assess the effects of chronic EFV therapy on neurological function in a
controlled setting. We conclude that EFV withdrawal is unlikely to result in significant
modification of neurocognitive function in otherwise stable HIV-infected people.
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Introduction

Mild cognitive impairment remains common in the highly

active antiretroviral therapy (HAART) era, but the reasons

for this remain incompletely understood [1]. In particular,

the role of specific antiretroviral drugs in mediating cogni-

tive function has received relatively little attention [2].

While it is essential to treat viral replication in the central
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nervous system (CNS), it is plausible that some antiretrovi-

ral drugs also have adverse effects on neuronal function.

Efavirenz (EFV) remains one of the most commonly used

antiretroviral drugs. It is well recognized that CNS side

effects (especially sleep disturbance) are common in the

first 6 weeks of EFV therapy and sometimes lead to dis-

continuation, but generally subside with continued therapy

[3,4]. Some recent observational studies have suggested

that EFV may additionally be associated with increased

rates of cognitive impairment, a notion that is supported

by some neurotoxicity data from animal and in vitro stud-

ies [5–10]. This hypothesis, however, remains controversial

and has not been confirmed in a controlled trial.

The aim of this study was therefore to determine

whether chronic EFV therapy is a modifier of neurocog-

nitive function in the setting of suppressive HAART.

Methods

Participants

We performed a self-controlled, open-label phase IV pilot

study. Participants were adult patients (aged 18–65 years)

with HIV-1 infection receiving suppressive HAART with

an EFV-containing regimen. All observations were per-

formed at a single study site. Subjects were required to

have a documented HIV-1 RNA viral load (VL) measure-

ment of < 50 HIV-1 RNA copies/ml within the 4 months

preceding study entry and no VL exceeding 200 copies/

ml within 12 months. Subjects were on HAART for at

least 12 months and on EFV for at least 6 months. This

constraint was to ensure that only chronic effects of EFV

were captured. Subjects were ineligible if they had cur-

rent self-reported recreational drug use or weekly alcohol

consumption exceeding 35 units.

All subjects gave written informed consent for participa-

tion in the study. The study was approved by the local

research ethics committee (12/NE/0071), Newcastle-upon-

Tyne Hospitals NHS Foundation Trust R&D approvals com-

mittee (5946), and the UK regulatory authority Medicines &

Healthcare products Regulatory Agency (MHRA) and regis-

tered with the EudraCT trials database (2011-005581-37).

Interventions and measurements

Ritonavir-boosted lopinavir (LPV/r; Kaletra�, AbbVie Inc.,

North Chicago, IL, USA; twice daily dosing) was used as a

comparator drug to assess the effects of EFV removal. All

subjects switched from EFV to LPV/r. Participants had

study observations performed at baseline and 10 weeks

after switch. An additional safety monitoring visit was

performed 4 weeks after therapy switch.

A computerized cognitive testing battery (CogState�,

CogState Ltd., Melbourne, Australia) was performed com-

prising six tests [listed with abbreviated test name; cogni-

tive domain(s) measured]: Detection (DET; psychomotor

function/speed of processing), Identification (IDN; visual

attention/vigilance), One card learning (OCL; visual learn-

ing and memory), One back (ONB; attention/working

memory), Continuous paired associate learning (CPAL;

visual learning and memory), and Groton maze learning

(GML; executive function/spatial problem solving). Sub-

jects performed a practice run of each test to minimize

training effects. Baseline cognitive impairment was

defined with respect to CogState� normative data (ex-

cluding CPAL as sufficient quality data are not currently

available for this test) [11].

Proton magnetic resonance spectroscopy (1H-MRS) was

performed using PRESS (point resolved spectroscopy) vol-

ume selection (TR/TE (repetition time / echo time) = 3 s/

37 ms) on a 3T magnet (Achieva; Philips Medical Sys-

tems, Amsterdam, Netherlands) with ~8 cm3 sampled

voxels in frontal white matter (FWM), frontal grey matter

(FC) and basal ganglia (BG). Metabolite levels of N-acety-

laspartate (NAA), choline (Cho) and creatine (Cre) were

quantified using the QUEST method in JMRUI software

[12]. Concentrations were expressed relative to Cre. NAA

is a widely studied measure of neuronal integrity and is

frequently abnormal in HIV infection. Cho is frequently

altered in inflammation.

Task-based (attentional processing) functional magnetic

resonance imaging (fMRI) assessed response to the Stroop

paradigm using incongruent visual stimuli [13]. The

Stroop test has been shown to be sensitive to psy-

chotropic drug effects including stimulants and sedatives

[14–16], as well as to EFV use in one previous study [5].

fMRI was performed using a gradient-echo EPI (echo pla-

nar imaging) sequence (TR/TE = 1.7 s/30 ms; 27 9

4.0 mm thick slices; 0.5 mm inter-slice gap; 3 mm in-

plane resolution) with a block design Stroop paradigm.

Data were collected in a single fMRI acquisition during

which 360 image volumes were acquired. The stimulus

consisted of a rest period, 18 interleaved blocks of incon-

gruent and neutral stimuli and a final rest period. Subject

responses were monitored using a response box. Analysis

of the fMRI scans was performed using standard process-

ing in SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/

spm8/). Analysis was performed for each subject contrast-

ing the incongruent response against the neutral

response. A group analysis was then conducted using

within-subject paired comparison of responses at each

time-point.

Sleep was assessed by means of a 2-week sleep diary,

completion of the Epworth Sleepiness Scale (ESS) (where
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ESS > 10 indicates excessive daytime sleepiness) and

completion of the Pittsburgh Sleep Quality Index (PSQI)

(where PSQI > 5 indicates some level of sleep disturbance

and > 10 indicates significant sleep disturbance) [17,18].

Statistics

As this was a pilot study, a pragmatic sample size was

used [19]. Descriptive statistics and confidence intervals

(CIs) are reported. No data replacement or imputation of

missing data took place.

Results

Seventeen participants were recruited, of whom 16 (three

female and 13 male) completed the study (one subject was

withdrawn at the screening visit). The median age was

50.4 years [interquartile range (IQR) 43.2�55.7 years]. The

median duration of diagnosed HIV infection was 6.7 years

(IQR: 4.2�10.0 years). Subjects had been receiving EFV

for a median of 4.5 years (IQR: 4.0�5.8 years). At baseline,

14 subjects were receiving a backbone of tenofovir/

emtricitabine, and the remaining two subjects were receiv-

ing tenofovir/raltegravir and abacavir/lamivudine, respec-

tively. The median CD4 lymphocyte count at entry was

660 cells/lL (IQR: 536�737 cells/lL), and the median

nadir CD4 count was 237 cells/lL (IQR: 37�299 cells/lL;
n = 12 subjects with available data for nadir). The median

baseline EFV plasma concentration was 2455 ng/mL (range

818–7197 ng/mL; n = 15 subjects with analysable EFV

levels).

Subjects frequently reported CNS symptoms at both

baseline and follow-up, although the pattern of symp-

toms varied between visits (n = 16): memory problems

(81% of subjects at baseline and 31% at follow-up),

vivid/intrusive dreams (75% and 44%, respectively), fati-

gue (69% and 25%, respectively), concentration difficul-

ties (63% and 75%, respectively), and sleep problems

(56% and 81%, respectively).

Nine subjects (56%) showed evidence of mild cognitive

impairment at baseline [defined as performance > 1 stan-

dard deviation (SD) below age-specific norm (i.e. z-

score < �1) on at least two domains]. Two subjects (13%)

showed severe impairment (z-score < �2 on at least two

domains). No change in cognitive performance was

observed between baseline and follow-up visits. Mean

change score (reported such that a positive change indi-

cates an improvement) for each task was as follows

(n = 16): DET, �0.03 (95% CI: �0.09 to 0.04); IDN, 0.03

(95% CI: �0.02 to 0.07); OCL, 0.03 (95% CI: �0.004 to

0.07); ONB, �0.001 (95% CI: �0.07 to 0.07); CPAL, 13.6

(95% CI: �9.8 to 37.0); GML, 2.9 (95% CI: �3.5 to 9.4).

Summary statistics for cognitive testing are presented in

Table 1.

Subjects were included in paired 1H-MRS analysis

where spectral quality for a given voxel was acceptable

at both study time-points, as follows: FWM, n = 11; FC,

n = 14; BG, n = 8. No changes were observed for any

metabolite in any voxel between baseline and follow-up

visits, with mean change as follows: FC: Cho/Cre, 0.01

(95% CI: �0.01 to 0.02) and NAA/Cre, 0.16 (95% CI:

�0.13 to 0.44); FWM: Cho/Cre, 0.03 (95% CI: �0.02 to

0.08) and NAA/Cre, 0.11 (95% CI: �0.12 to 0.33); BG:

Cho/Cre, 0.04 (95% CI: �0.02 to 0.10) and NAA/Cre, 0.03

(95% CI: �0.32 to 0.38). Summary statistics for 1H-MRS

are presented in Table 2.

fMRI data for 14 subjects were analysable. First, the

effects of the ‘Stroop’ task on brain activity were assessed

at the baseline visit to ensure that the fMRI protocol

employed elicited a measureable and expected effect in

our subject group. The analysis assessed activity during

the incongruent stimulus, contrasted against that during

the neutral stimulus. Three clusters of activation during

the task were identified, in an anatomical distribution

corresponding to that expected for this test paradigm:

BA45/BA8/BA46, BA20/BA7/BA40 and BA7 (BA, Brod-

mann’s area; Table S1). Secondly, a comparison was

made of brain activation in response to the incongruent

stimulus between the two study time-points. No change

in brain activation was observed following switch.

There was no overall change in the ESS for patients on

a switch from EFV to LPV/r [mean ESS (SD): EFV, 9.8

Table 1 Neurocognitive testing by the CogState� battery

Task n
Baseline (EFV) Follow-up (LPV/r) Change
Mean (SD) Mean (SD) Mean (95% CI)

DET* 16 2.56 (0.08) 2.59 (0.10) �0.03 (�0.09, 0.04)
IDN* 16 2.78 (0.07) 2.75 (0.07) 0.03 (�0.02, 0.07)
OCL† 16 0.92 (0.11) 0.96 (0.11) 0.03 (�0.004, 0.07)
ONB† 16 1.3 (0.13) 1.3 (0.14) �0.001 (�0.07, 0.07)
CPAL* 16 121 (46.6) 107.4 (60.1) 13.6 (�9.8, 37.0)
GML* 16 62.8 (22.4) 59.8 (24.7) 2.9 (�3.5, 9.4)

CI, confidence interval; EFV, efavirenz; LPV/r, ritonavir-boosted lopinavir;
SD, standard deviation.
Detection (DET) and Identification (IDN): speed of performance (mean of
the log10-transformed reaction times for correct responses). One card
learning (OCL) and One back (ONB): accuracy of performance (arcsine
transformation of the proportion of correct responses). Continuous
paired associate learning (CPAL): accuracy of performance (total number
of errors across five rounds). Groton maze learning (GML): total number
of errors made on five consecutive trials at a single session. (Data for
one patient for one task at one visit failed the integrity check. The anal-
ysis was performed with and without inclusion of this data point and
the results were not affected.)
*A lower score indicates a better performance, and change is defined as
baseline score minus follow-up score.
†A higher score indicates a better performance, and change is defined
as follow-up score minus baseline score, so that in all cases a positive
change indicates improvement.
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(5.9); LPV/r, 8.9 (5.1); mean difference �0.9; 95% CI: �2.7

to 0.9]. Sleep diary responses were used to calculate mean

hours of sleep per subject per 24-h period. Fifteen subjects

were included in this analysis. Mean change in mean hours

of sleep between baseline and follow-up visits was 0.1 h

(95% C: �0.7 to 1.0 h). Change in sleep quality (PSQI) was

analysable for 14 subjects. The mean score decreased, indi-

cating an improvement in sleep quality [mean (SD): EFV,

8.5 (6.5); LPV/r, 5.8 (5.5); mean difference �3.4; 95% CI:

�6.0 to �0.7]. Of seven patients with a PSQI > 10 (indicat-

ing poor sleep quality) at baseline, four patients had a PSQI

of < 10 at follow-up. No subjects had an insomnia pheno-

type (low ESS < 2 with high PSQI > 10) at either time-

point. As executive function is most typically affected by

sleep disturbance, we assessed the data for any relationship

between baseline sleep quality and GML score. Mean GML

score did not differ in subjects with an abnormal PSQI

score (> 10). Furthermore, there was no association

between baseline EFV plasma concentration and baseline

GML, ESS or PSQI scores or change in these scores after

cessation of EFV.

HIV-1 RNA VL was checked at the safety monitoring visit

4 weeks after treatment switch. At this point, three subjects

(19%) had VL > 50 copies/mL, with values of 69, 107 and

115 copies/mL, respectively. By the follow-up visit, the first

two subjects had re-suppressed to < 50 copies/mL, whereas

the third subject had a VL of 337 copies/mL. Self-reported

adherence was assessed at each of three follow-up visits,

and at each visit four subjects reported at least one missed

dose per week. At baseline, three subjects (19%) reported

diarrhoea (of any severity). Fourteen subjects reported diar-

rhoea at any time following the switch from EFV to LPV/r

(88%) (11 of the 13 not affected at baseline; 85%). There

were no serious adverse events (SAEs) recorded.

Discussion

We have explored the hypothesis that chronic EFV ther-

apy is associated with adverse effects on CNS function.

To our knowledge, this is the first study to assess this

question in a controlled manner by investigating the

effects of a switch away from EFV on neurocognitive

performance, cerebral metabolites, brain activity, and

sleep. Despite the fact that a very high proportion of sub-

jects self-reported CNS symptoms at baseline (including

81% reporting memory problems), we observed no objec-

tive changes in neurocognitive performance across multi-

ple domains, in cerebral metabolites, or in brain activity.

There was, however, an increase in self-reported sleep

quality (PSQI).

This was a pilot study, and so our ability to detect

small effect sizes will have been limited by the sample

size. Notwithstanding this, for almost all parameters stud-

ied, the effect sizes observed were very close to zero, and

there were no consistent trends in directions of change

across related domains (for example in cerebral metabo-

lites or cognitive performance). We therefore conclude

that we are unlikely to have missed any clinically impor-

tant effects.

Given that previous studies have suggested adverse

effects of EFV on neurocognitive function, what are the

possible explanations for our findings? As previous

studies associating cognitive impairment and EFV were

observational and cross-sectional in nature, they were

liable to being confounded by differences between

groups exposed and unexposed to EFV [5]. In the one

randomized controlled trial (RCT) that has compared

EFV and a protease inhibitor, the study was performed

in the setting of treatment-na€ıve subjects starting

HAART [20]. Thus, the predominant effect was changes

in cerebral metabolites associated with suppression of

viral replication and immune reconstitution, and differ-

ences observed between drugs may not have been

wholly independent of their effects on those parameters.

Although most of our subjects did report at least some

CNS symptoms at baseline, those patients who experi-

ence severe early neuropsychiatric side effects of EFV

are likely to switch away from the drug within the first

Table 2 Brain metabolites measured by proton magnetic resonance spectroscopy (1H-MRS)

Baseline (EFV) Follow-up (LPV/r) Change

n Mean SD n Mean SD n Mean 95% CI

FC Cho/Cre 14 0.26 0.03 14 0.27 0.03 14 0.01 �0.01, 0.02
NAA/Cre 14 1.8 0.27 14 1.96 0.35 14 0.16 �0.13, 0.44

FWM Cho/Cre 13 0.25 0.05 11 0.3 0.07 11 0.03 �0.02, 0.08
NAA/Cre 13 1.38 0.33 11 1.51 0.22 11 0.11 �0.12, 0.33

BG Cho/Cre 9 0.22 0.09 9 0.23 0.04 8 0.04 �0.02, 0.10
NAA/Cre 9 2.34 0.78 9 2.13 0.31 8 0.03 �0.32, 0.38

FC, frontal cortex (frontal grey matter); FWM, frontal white matter; BG, basal ganglia; Cho, choline; Cre, creatine; NAA, N-acetylaspartate; CI, confi-
dence interval; EFV, efavirenz; LPV/r, ritonavir-boosted lopinavir; SD, standard deviation.
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few months and therefore would not be represented in

our study. Furthermore, previous EFV switch studies

have documented improvement in CNS symptomatology,

but have not included objective measures of CNS perfor-

mance [21,22]. In theory, a switch off EFV might have

prevented a decline in cognitive function that would

otherwise have occurred, but this seems very unlikely

given the short study period. Alternatively, if LPV/r

were slightly less effective at suppressing viral replica-

tion in the CNS, this could potentially offset any benefits

from EFV withdrawal. We did note some VL blips and

reported missed doses after treatment switch. Again, it

seems unlikely that this would affect CNS function within

the timeframe studied, but this should be explored in future

studies by correlation with cerebrospinal fluid (CSF) HIV

VL. A final possibility is that long-term EFV therapy could

cause a mild but permanent deficit in CNS function (e.g. as

a result of neuronal loss) which would not be reversible

following therapy switch. We did observe around half of

subjects with mild cognitive impairment at baseline, but

this study cannot determine whether this was attributable

to EFV or other factors. This question could only be

explored by a very long follow-up RCT.

In summary, our study did not find support for an

acutely reversible effect of EFV on either CNS metabolites

or cognitive function in otherwise stable patients. These

findings should be confirmed by further randomized

studies.
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