
Lessons from the CAGI-4 Hopkins clinical panel challenge

John-Marc Chandonia1, Aashish Adhikari2, Marco Carraro3, Aparna Chhibber4, Garry R. 
Cutting5, Yao Fu4, Alessandra Gasparini3,6, David T. Jones7, Andreas Kramer8, Kunal 
Kundu9,10, Hugo Y. K. Lam4, Emanuela Leonardi6, John Moult9,11, Lipika R. Pal9, David B. 
Searls12, Sohela Shah8, Shamil Sunyaev13,14, Silvio C. E. Tosatto3,15, Yizhou Yin9,10, and 
Bethany A. Buckley5

1Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 
Berkeley, California 2Department of Plant and Microbial Biology, University of California, Berkeley, 
California 3Department of Biomedical Sciences, University of Padova, Padova, Italy 4Roche 
Sequencing Solutions, Belmont, California 5McKusick-Nathans Institute of Genetic Medicine, 
Johns Hopkins University School of Medicine, Baltimore, Maryland 6Department of Women’s and 
Children’sHealth, University of Padova, Padova, Italy 7Department of Computer Science, 
University College London, London, United Kingdom 8Qiagen Bioinformatics, Redwood City, 
California 9Institute for Bioscience and Biotechnology Research, University of Maryland, 
Rockville, Maryland 10Computational Biology, Bioinformatics and Genomics, Biological Sciences 
Graduate Program, University of Maryland, College Park, Maryland 11Department of Cell Biology 
and Molecular Genetics, University of Maryland, College Park, Maryland 12Independent 
Consultant, Philadelphia, Pennsylvania 13Division of Genetics, Department of Medicine, Brigham 
& Women’s Hospital, Harvard Medical School, Boston, Massachusetts 14Department of 
Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 15CNR Institute of 
Neuroscience, Padova, Italy

Abstract

The CAGI-4 Hopkins clinical panel challenge was an attempt to assess state-of-the-art methods for 

clinical phenotype prediction from DNA sequence. Participants were provided with exonic 

sequences of 83 genes for 106 patients from the Johns Hopkins DNA Diagnostic Laboratory. Five 

groups participated in the challenge, predicting both the probability that each patient had each of 

the 14 possible classes of disease, as well as one or more causal variants. In cases where the 

Hopkins laboratory reported a variant, at least one predictor correctly identified the disease class in 

36 of the 43 patients (84%). Even in cases where the Hopkins laboratory did not find a variant, at 

least one predictor correctly identified the class in 39 of the 63 patients (62%). Each prediction 

group correctly diagnosed at least one patient that was not successfully diagnosed by any other 

group. We discuss the causal variant predictions by different groups and their implications for 

further development of methods to assess variants of unknown significance. Our results suggest 
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that clinically relevant variants may be missed when physicians order small panels targeted on a 

specific phenotype. We also quantify the false-positive rate of DNA-guided analysis in the absence 

of prior phenotypic indication.
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1 INTRODUCTION

DNA sequencing tests are increasingly being used in medical practice to confirm or assign 

clinical diagnoses (Katsanis & Katsanis, 2013). However, the interpretation and 

classification of novel sequence variants identified in a patient remains difficult, even for 

well-studied disorders like cystic fibrosis (Sosnay et al., 2017). Improved computational 

methods may aid in the interpretation of sequence variants and, when used in conjunction 

with clinical data, could increase the confidence of a diagnosis (Schulz, Tormey, & Torres, 

2015). Until recently, genetic testing was limited to genes associated with a specific clinical 

phenotype. However, recent technological advances have made it feasible to sequence large 

gene panels, exomes, and genomes (Lee et al., 2014, Posey et al., 2016, Vassy et al., 2014). 

As the number of genes sequenced per patient increases, the number of novel, rare, and 

unclassified variants also increases. Clinical molecular geneticists must determine which 

variants, if any, are likely to contribute to the patient’s clinical presentation. The current gold 

standards for assessing a variant’s pathogenicity are segregation of the variant with the 

clinical phenotype in multiple pedigrees, and functional assays demonstrating a detrimental 

effect of that specific nucleotide change. In most instances, when a novel genetic variant is 

identified, there is no rapid and reliable method to assess its pathogenicity. Predictive 

software tools are interrogated, but none are considered strong evidence to assert a novel 

variant’s pathogenicity (Richards et al., 2015). The shift toward analyzing large datasets has 

led to a need for high-throughput methods to aid in variant classification and also for 

computation tools to help better interrogate the increasing number of variants of uncertain 

clinical significance.

Crowdsourced data analysis challenges such as the 4th Critical Assessment of Genome 

Interpretation (CAGI-4) have emerged as a framework to compare predictive methods and 

assess the overall state of particular analysis areas (Saez-Rodriguez et al., 2016). In the 

CAGI-4 Hopkins Clinical Panel challenge, participants were asked to develop or use existing 

computational methods to analyze data from a next-generation sequencing (NGS) panel in 

order to match a patient’s genotype to their clinical phenotype in the absence of additional 

clinical information. The Johns Hopkins DNA Diagnostic Laboratory (henceforth, Hopkins), 

a CLIA- and CAP-certified lab that specializes in clinical molecular testing for rare, 

inherited disorders, provided data for this challenge. The Hopkins lab offers testing for 

approximately 50 phenotypes and disorders, totaling 3,500 tests annually. They offer NGS-

based tests targeted for ~20 specific phenotypes. The same NGS capture probe set is used 

for all panels and only the requested genes are analyzed in each patient. Hopkins provided 

CAGI-4 organizers with the VCF files for the entire NGS panel for 106 patients with a range 
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of clinical presentations. The genetic disorders associated with variants in the 83 genes on 

the panel were grouped into 14 “disease classes,” which include lung disorders, peroxisomal 

disorders, aneurysm disorders, and craniofacial disorders (Table 1; Supp. Table S4). The 

goal of the challenge was for the participants to match each patient to a disease class based 

on informatics analysis of the sequence data. A further part of the challenge was to predict 

the specific gene and variant(s) that is/are the underlying cause of disease.

2 MATERIALS AND METHODS

2.1 Sequencing, variant calling, and analysis by the Hopkins lab

Gene sequences were captured using one of the two custom probe sets (Agilent 

SureSelectXT Target Enrichment Kit, Agilent Technologies, Santa Clara, CA) and 

sequenced by a NGS platform (Illumina MiSeq, 2 × 100 nt reads, Illumina, San Diego, CA). 

The NGS panels were used to test assessed exons and exon-adjacent sequences for 64 or 83 

loci (Supp. Tables S4 and S5). Sequences were aligned to the human reference genome 

(GRCh37/hg19) using the Burrows-Wheeler Aligner. Sequence variants were called 

individually for each patient to produce two Variant Call Format (VCF) files, one for single-

nucleotide variants (SNVs; GATK UnifiedGenotyper, v2.7-4, Broad Institute, Cambridge, 

MA) and one for insertion–deletion variants (InDels; GATK HaplotypeCaller, v2.7-4, Broad 

Institute, Cambridge, MA). Deidentified VCF files were provided to the CAGI-4 organizers. 

Note that the CAGI-4 organizers combined individual VCF files for each patient into a 

single VCF, resulting in potentially misleading data in the INFO and FILTER fields of the 

file. The panel of 83 genes was sequenced in 96 of the 106 patients; for the other 10 patients, 

a partially overlapping list of 64 genes was sequenced (Supp. Table S5). Although the whole 

NGS panel was sequenced in all patients, only the genes selected on the patient’s test 

requisition form were analyzed by the lab (n = 1–24 genes/patient). For more information on 

the specific NGS tests offered by the lab, refer to the Hopkins lab Website (http://

www.hopkinsmedicine.org/dnadiagnostic/tests/). The Hopkins lab included variants in the 

genes they analyzed, which were classified as variants of uncertain significance (VUS), 

likely pathogenic, and pathogenic as an answer key. The disease class of each patient was 

also provided in the answer key and reflects the test selected by the patient’s physician on 

the test requisition form. Approximately 20 phenotypes that Hopkins tested were narrowed 

down to 14 disease classes in order to simplify the challenge (Supp. Table S1). Some disease 

classes were not represented by any patients and were included as red herrings (Supp. Fig. 

S9).

2.2 Challenge format

Participants in the Hopkins clinical panel challenge were provided with the two VCF files 

above, a detailed description of the 14 disease classes given in Table 1, a submission 

template, a submission validation script, and the gene capture regions used in sequencing the 

patients (in Browser Extensible Data, or BED format). Participants were also instructed that 

every patient matched exactly one disease class.

Participants were asked to submit predictions of each patient’s disease class based on their 

gene panel sequences, along with predicted causal variant(s). Each participant was allowed 
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to submit up to six distinct submissions, in which each submission contained predictions for 

each patient. For each submission, participants were required to predict the probability that 

the patient has a referring disease in each of the 14 disease classes in the provided list, as 

well as the predicted causal variant(s) from the gene panel sequence dataset for every 

disease class with a nonzero probability. Each predicted probability of disease class also 

included a mandatory standard deviation (SD) field indicating confidence in the prediction, 

with low SD indicating high confidence, and high SD indicating low confidence.

2.3 Assessment

Formatting errors in all submissions were corrected to the best of the assessor’s ability, and 

redundant submissions were removed. Predicted disease classes made in each submission for 

each patient were assessed against the correct disease class given in the Hopkins answer key, 

using the metrics described below. The predicted causal variant(s) were also compared with 

interpretations from the clinical laboratory, but in cases where predictions deviated from the 

answer key only limited assessment of the predictions could be performed. In their answer 

key, Hopkins noted which variants they regarded as VUS, likely pathogenic, and pathogenic; 

however, for purposes of matching participants’ predictions to the answer key, all variants 

noted by Hopkins for each patient were treated equivalently.

Assessors first calculated the number of correct predictions of disease class made in each 

submission. For each patient, the predicted disease class was the one assigned the highest 

probability among all 14 disease classes. Ties (i.e., cases where multiple disease classes 

were all assigned the highest probability) were handled as described below.

1. If all 14 probabilities for a patient were equal (e.g., all zeroes), those predictions 

were not counted in the following three metrics.

2. In other cases, assessors calculated one metric (nCorrect) in which the number of 

correct predictions was counted, giving ties full credit; another metric 

(nCorrecttie) was calculated in which N-way ties were given 1/N credit.

3. Finally, assessors calculated a third metric (nCorrectvar) in which they counted 

the number of predictions for which the disease class was correct (giving ties full 

credit), and for which at least one of the variants submitted in the corresponding 

column for that disease class matched one of the variants noted by Hopkins.

Assessors also calculated the following metrics for each submission:

1. avgPCorrect: The average probability assigned by the predictor to the correct 

disease class. This statistic provides an assessment of predictions that is not 

dependent on whether the submitter’s highest probability prediction was correct.

2. avgPCorrectnorm: The average probability assigned by the predictor to the correct 

disease class, after normalizing all probabilities predicted in each submission for 

each patient to sum to 1.0 (exception: if all probabilities for a patient were 0, 

they were not normalized).

3. avgRank: The average rank assigned by the predictor to the correct disease class. 

Ties were assigned the average rank of each set of tied predictions; for example, 
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if the two highest probability disease classes had equal rank, both were assigned 

a rank of 1.5; a three-way tie for second highest probability would be assigned a 

rank of 3. Note that because there were 14 disease classes, an all-zero prediction 

would have an avgRank score of 7.5 (i.e., was scored as a 14-way tie).

4. avgError: The average error in predictions, where the error was measured as the 

absolute difference between the probability assigned each disease class and zero 

(if not the correct disease class) or one (if the correct disease class). Like 

avgPcorrect, avgError assesses predictions independent of their rank, but also 

includes correct negative predictions.

2.4 Prediction methodology

A summary of each group’s prediction methods is given below.

Group 57 (Jones): The Jones-UCL group made use of one-class support vector machine 

(SVM) classifiers to automatically assign disease classes according to the supplied exome 

data. In a normal machine learning experiment, sufficient positive and negative cases are 

needed to define a hypersurface that separates the two classes. Standard SVMs attempt to 

define this hypersurface such that the chance of misclassifying new cases is minimized. In 

some applications, however, only positive or negative cases are readily available, but not 

both. One-class SVMs (Schölkopf, Platt, Shawe-Taylor, Smola,&Williamson, 2001) have 

been proposed for problems where either negative or positive case data are unavailable. In 

this situation, the SVM attempts to identify outliers from a distribution modeled on the 

available single class of data, and it is assumed that the outliers belong to the alternative 

class.

In this CAGI challenge, of course, neither negative nor positive training data were readily 

available. However, the assumption was made that the 1000 Genomes data set (1000 

Genomes Project Consortium et al., 2010) could be used as a proxy for negative case data. 

This is a reasonable assumption if we assume that the diseases in question are relatively rare. 

To start with, gene variants relating to each disease class were collated using ClinVar 

(Landrum et al., 2016). Feature sets were generated for each disease class by encoding 

variant 0/0, 0/1, and 1/1 calls as 0, 1, and 2, respectively, and for each disease-specific 

feature set, a one-class ν-SVM (using a RBF kernel) was trained. The single parameter ν, 

which controls both the number of support vectors and the misclassification cost, was 

optimized for each disease class so as to minimize the number of outliers detected in the 

1000 Genome training data. Once trained, the SVM was then applied to the test sample data, 

and the distance to decision boundary was used as a proxy for classification confidence. The 

most important variant was identified in each case by systematically removing each variant 

from the feature set and recalculating the confidence scores.

Group 58 (Tosatto): The analysis started with a manually curated association between the 

genes of the panel and the 14 clinical phenotypes of interest based on literature review. 

Sequencing data were annotated with ANNOVAR (Wang, Li, & Hakonarson, 2010), 

considering for each variant the corresponding affected gene, frequency estimated from the 

1000 Genomes Project (1000 Genomes Project Consortium et al., 2013) and predicted 
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pathogenicity score from SIFT (Ng & Henikoff, 2003) and PolyPhen-2 (Adzhubei, Jordan, 

& Sunyaev, 2013). The method to define association between genetic data and phenotypes 

was based mainly on two phases. For each individual, variations that are less probable to be 

disease causing were filtered out, and a probability to be affected based on the analysis of 

variants was defined. Only coding and splice-site variants that can affect protein function 

were considered according to the Common Disease-Rare Variant Hypothesis (CDRVH) (El-

Fishawy, 2013). Common (MAF > 5%) and/or synonymous SNVs were filtered out. 

Insertion and deletions were excluded as their impact on protein function is difficult to 

predict compared to SNVs. Only insertions and deletions (indels) affecting the coding part 

of a gene and predicted to be “damaging” or known to be pathogenic were considered. 

Heterozygous indels in genes with autosomal-recessive inheritance, occurring in GC-rich or 

repeated regions, were filtered out from the disease candidate mutation pool. An empirically 

derived scoring scheme was implemented to define association between patients and 

phenotypes, considering both disease inheritance and predicted SNV pathogenicity (Supp. 

Table S2). Different weights were assigned to different mutation types, that is, a high score 

for known variants associated with a specific disease (mainly by literature review) and a 

lower score for mutations not affecting protein function according to predictor output (i.e., 

tolerated, benign, and unknown). For autosomal-dominant pathologies, only heterozygous 

variants plus few manually curated homozygous mutations were considered (i.e., the one 

with the highest probability score). The disease cutoffs were set at different values between 

submissions, allowing the stringency of the analysis to vary. Both homozygous and 

compound heterozygous variants were considered for autosomal-recessive conditions. When 

more than one match per patient occurred, only the most likely was considered (i.e., the one 

with higher probability score). Different submissions correspond to different sets of weights.

In particular, in the first submission, a slightly lower weight was assigned to variants whose 

effect is more difficult to assess (i.e., compound heterozygous, homozygous VUS, variants 

affecting different genes coding for subunits of the same complex) with respect to 

submission 4.

Group 59 (Qiagen Bioinformatics): All 106 samples were uploaded to Ingenuity Variant 

Analysis (QIAGEN- Hereditary Disease Solution) and set up an analysis with all samples to 

filter low-quality (call quality < 20) and common variants (>0.5% MAF in 1000 Genomes) 

(1000 Genomes Project Consortium et al., 2010), NHLBI-EVS (NHLBI GO Exome 

Sequencing Project (ESP), 2015), ExAC (Lek et al., 2016), and Allele Frequency 

Community (www.allelefrequencycommunity.org), using the confidence and common 

variant filters, respectively. The Allele Frequency Community is a QIAGEN-hosted allele 

frequency database, founded by QIAGEN and participating members in 2014. It is a freely 

accessible “opt-in” community resource designed to facilitate sharing of anonymized, 

pooled allele frequency statistics among community members. The predicted deleterious 

filter was used to keep only those variants that are previously published and classified 

pathogenic or likely pathogenic, using ACMG guidelines, DM variants (pathological 

mutations reported to be disease causing in the original literature report) present in HGMD, 

along with other loss of function (frameshift, start/stop loss or gain, splice site) and missense 

variants. Finally, the biological context filter was applied to find variants linked to each one 
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of the 14 categories, and patient disease category was predicted based on variant–disease 

connection, using path-to-phenotype evidence.

Group 60 (RSS): Gene phenotype associations were mined from the Hopkins diagnostic 

panels, OMIM (Hamosh, Scott, Amberger, Bocchini, & McKusick, 2005), and GeneReviews 

(Pagon et al., 1993). Inheritance mode and penetrance information were extracted from 

online resources for each gene–phenotype pair.

Variants with low-quality or high-population allele frequencies were filtered out, and the 

functional impact was annotated with Variant Effect Predictor (McLaren et al., 2010). To 

estimate the probability that a variant is damaging to protein function, we integrated multiple 

prediction methods to score all types of variants, for example, missense, nonsense, indels, 

and intronic variants. The damaging scores were scaled and normalized to reflect the relative 

deleteriousness, for example, frameshift/nonsense variants would have higher scores than 

missense variants. We then used the damaging scores to estimate the probability that each 

individual has a particular phenotype with a probabilistic model, that is, calculated as the 

probability that at least one associated gene in the individual causes the phenotype. For a 

particular gene, the probability the gene causes the phenotype was calculated as the 

probability that the gene is disrupted (taking into account inheritance mode), multiplied by 

its penetrance score.

The confidence level of the prediction was calculated from the distribution of the estimated 

probabilities across phenotypes and across individuals. Considering that 14 phenotypes are 

Mendelian-like diseases, if one individual has high prediction scores across phenotypes, it is 

more likely to be false positive. Thus, high confidence was assigned to individuals with high 

variability across phenotypes.

A more detailed description of this group’s prediction methods is included in the Supp. 

Information.

Group 61 (Moult): The method (implemented in Python) has four modules: variant 

annotation, QC (quality check), variant prioritization, and probability scoring for the disease. 

The modules were executed sequentially. Inputs were the two gVCF files and a gene 

configuration file containing the genes associated with each disease class and their 

inheritance pattern. The Varant tool (https://doi.org/10.5060/D2F47M2C, http://

compbio.berkeley.edu/proj/varant) was used to annotate variants with: region of occurrence 

in the genome, allele frequency from ExAC (Lek et al., 2016), predicted pathogenicity based 

on four methods (Adzhubei et al., 2013; Kircher et al., 2014; Kumar, Henikoff, & Ng, 2009; 

Yue, Melamud, & Moult, 2006) (for missense), and previously reported disease associations 

in databases (Landrum et al., 2016; Stenson et al., 2003). Three QC analyses were run: (1) 

variant counts (common vs. rare vs. novel & homozygous vs. heterozygous) per sample, (2) 

read depth for each gene in each sample was obtained by averaging DP values over all bases 

in a gene recorded in the gVCF file, and (3) exons with relatively low or no coverage 

compared with other exons in a gene. The QC-qualified variants per sample were prioritized 

by first assigning them to one of the three classes, ranked by the likelihood that the variant is 

causative and further grouping the variants in each class by frequency based on its ExAC 
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MAF (group 1, novel; 2, very rare (MAF < = 0.005); or 3, rare (MAF ≤ 0.01). Class-1 

identified variants previously reported in disease databases as pathogenic, Class-2 identified 

loss of function, splice, and missense variants predicted damaging by in silico prediction 

tools, and Class-3 identified missense variants (not predicted damaging), UTR, and intronic 

variants. Variants were further filtered for inheritance model. For each sample, once putative 

causative variants were found, the process was terminated (e.g., if a suitable variant or 

variants were found using Class-1, Class-2, and Class-3 were not executed). Finally, a 

probability score for a sample to have a particular disease was computed based on the type 

of prioritized variant(s) and inheritance pattern. For the missense variants, the probability 

model was based on the extent of consensus among the four prediction methods, using a 

previous HGMD-derived calibration. For other variant types, subjective probability rules 

were used.

3 RESULTS

3.1 Summary of submissions

Five groups submitted predictions (with 4, 2, 2, 2, and 1 distinct predictions per group). An 

overview of the challenge and results is shown in Figure 1. One-hundred six patients in the 

challenge can be roughly grouped into two difficulty classes: (1) patients for whom Hopkins 

noted a potentially causal variant in the answer key (43 patients) and (2) patients for whom 

Hopkins did not note any variants (63 patients) (Fig. 1A). At least one CAGI-4 predicting 

group correctly predicted the disease class for 36 of the 43 patients who had a reported 

variant (Fig. 1B). Fewer groups correctly predicted both the disease class and at least one of 

the variant(s) that Hopkins reported (Fig. 1C). CAGI-4 predictors were not as accurate at 

predicting disease classes for the remaining 63 patients for whom Hopkins did not note a 

variant, although at least one group correctly predicted the disease class for the majority of 

these patients (Fig. 1D). The lower prediction accuracy is perhaps unsurprising given the 

negative test results for these 63 patients.

3.2 Numeric assessment summary

Table 2 summarizes our numeric assessment metrics for each nonredundant, submitted 

prediction, for all patients. Table 3 shows the same statistics for only 43 patients for which 

Hopkins noted at least one potentially causal variant. The best values for each metric in each 

table are indicated in bold. Each group’s overall performance is briefly discussed below.

Table 4 shows a summary of the performance of all predicting groups on each patient. An 

expanded version of Table 4 with additional columns is provided in Supp.. Information 

(Supp. Table S6). Tables 5 and 6 summarize the most frequent combinations of groups that 

predicted the correct disease class for patients (Table 5 ignores causal variant predictions, 

whereas Table 6 requires each group to predict at least one of the variants noted by 

Hopkins).

Group 57 (Jones): Group 57’s primary submission (57.1) scored much higher than their 

other submissions by our metrics. Their method was less accurate than other groups in cases 

where Hopkins reported a potential causal variant, but it was more accurate at predicting the 
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correct disease class in cases where Hopkins didn’t report a variant. Group 57’s primary 

submission was also the most accurate among all submissions at rank ordering the disease 

classes. As seen in Table 5, Group 57 predicted disease classes correctly for 18 patients that 

no other group predicted correctly, with seven of these cases in their primary submission.

This method was unique in that it did not attempt to mimic a traditional clinical genetics 

approach. No attempt was made to independently predict the pathogenicity of the ClinVar 

variants used as features or to correct for linkage disequilibrium, which may explain why the 

method was able to make correct inferences where no causal variants were reported and why 

correct inference can arise without reporting the correct variants. A possibility is that some 

or even a majority of the variants relied on by the classifiers were noncausal variants that 

simply happen to be in linkage disequilibrium with one or more true causal variants. Thus, 

the occurrence of these variants were sufficient to identify the sample as a genetic outlier, 

though not indicating true causation. It is possible that by addressing these issues, the 

method might be further enhanced to make more accurate predictions relating to true causal 

variants. It would also be prudent to test this method on a different dataset to rule out the 

possibility that there is some underlying structure in this dataset that the algorithm is 

detecting.

Group 58 (Tosatto): As seen in Table 5, most cases that Group 58 predicted correctly were 

also predicted by at least one other group. However, Group 58 predicted the disease class for 

one patient (P81) that no other groups predicted; they also assigned 100% probability of the 

correct disease to that patient, and predicted exactly the same causal variants as noted by 

Hopkins. Many of the diseases in this challenge result from loss-of-function variants in a 

given gene, therefore selective filtering of indel variants by Group 58 was questionable. The 

genes and molecular mechanisms associated with each of the 14 disease classes were not 

provided as part of the dataset, which increased the difficulty of the matching exercise 

(Supp. Table S2).

Group 59 (Qiagen): Group 59 had the highest average P values for the correct disease 

classes, after normalization; they also had some of the best scores in the avgError metric. 

Group 59 correctly predicted the disease class for five patients that no other groups 

predicted. Among all the groups, they were the only group for which both P values and SD 

values were independent and positively correlated with the values they were expected to 

correlate with (see Accuracy of P and SD Values section below). This challenge was well 

suited for the Qiagen group, as they specialize in large-scale variant interpretation (Tricarico 

et al., 2017).

Group 60 (RSS): Due to the misleading fields in the combined VCF files (see the Materials 
and Methods section on sequencing and variant calling), Group 60 made only 11 high-

confidence (P > 0.6) predictions, of which nine were correct. Interestingly, four of these nine 

cases were not predicted correctly by any other group. Because of the small number of high-

confidence predictions, Group 60 had the lowest avgError score among all groups, and the 

best correlation between assigned P values and correct answers (see Accuracy of P and SD 
Values section below). After the challenge closed, Group 60 provided the CAGI organizers 

with a corrected submission, in which the misleading VCF fields were ignored. In this 
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corrected submission (which arrived late and therefore was not formally assessed), Group 60 

correctly predicted 38 disease classes. Additional analysis of Group 60’s corrected 

submission is provided in the Supp. Information. Group 60 adeptly used a series of online 

clinical genetics resources in their analysis pipeline.

Group 61 (Moult): Group 61 made more correct predictions of both disease class and 

Hopkins-annotated variants than any other group. For the 43 cases where Hopkins noted 

variants, Group 61 did especially well, getting 26 disease classes correct, and predicting the 

best average rank for the correct disease. In 25 of these cases, Group 61 also predicted at 

least one causal variant that was noted by Hopkins. Group 61 correctly predicted the disease 

class for six patients that no other groups predicted correctly, and also predicted at least one 

of the potentially causal variants noted by Hopkins in four of these six cases.

3.3 Accuracy of P and SD values

We expected that predictors’ submitted probabilities for each patient and disease should 

correlate with the correct disease class for each patient, and we also expected that their 

submitted SDs on each prediction should correlate with the error in each prediction (i.e., the 

absolute difference between the P value and either 1 or 0, for cases where the patient does or 

does not have the disease, respectively). Overall, predictors did better in the first case, and 

not so well in the second. Only one group (59; Qiagen) had an independent SD model that 

correlated positively with error. A detailed discussion of the accuracy of P and SD 

predictions is provided in the Supp. Information.

3.4 Commentary on novel variant predictions

One large limitation in the design of this challenge is that only a subset of the sequence data 

was clinically analyzed in each patient. This allowed for the possibility of false negatives, 

where true pathogenic variants may have been present in genes that were not analyzed by the 

lab. Further, Internal Review Board (IRB) restrictions prevented the data provider from 

acting as an assessor for the challenge or providing detailed feedback on variant predictions 

in genes that were not clinically analyzed. In addition, specific variants cannot be listed in 

the following discussion. In the future, advanced planning is needed to ensure that the 

appropriate consents and approvals are in place to maximize the use of clinical data. Ideally, 

a dataset should be fully analyzed by a clinical lab and patients should be specifically asked 

for consent that their data could be used for research purposes such as the CAGI challenge. 

This would allow a more critical analysis of the challenge data, would eliminate the 

possibility of unwanted incidental findings, and would allow more in-depth discussion of 

challenge results. Clinical data from human patients makes an interesting challenge set, but 

data from human subjects involve privacy concerns vastly different from that of laboratory 

model organisms.

The CAGI-4 Hopkins clinical panel challenge gives us an opportunity to test state-of-the-art 

genetic analysis pipelines on a subset of the data that would be obtained from complete 

exome sequencing of patients, and to explore potential advantages and disadvantages of 

genomics-driven approaches to clinical testing versus the phenotype-driven approach 

currently employed by Hopkins. In some cases, multiple groups reported the same causal 
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variant for a case where Hopkins did not identify a variant. Since Hopkins only analyzed the 

genes ordered by the physician, it is possible that there were true pathogenic variants 

identified in the challenge that were not included on the answer key, such cases are 

elaborated on below. In order to explore the potential complication of false positives in the 

genomics-driven approach, we also examined cases in which CAGI-4 predictors consistently 

predicted the wrong disease class along with the same causal variants. Several of these cases 

are described below:

Patient P7: Groups 57 (submission 4), 58, 59, and 61 all predicted Telomere Shortening 

Disorders, and the latter three groups consistently noted a missense variant in TERT. The 

patient’s diagnosis was cystic fibrosis and CF-related disorders, and Hopkins did not note 

any reportable variants and did not analyze the TERT gene. The TERT variant is described 

in the literature; it leads to telomere shortening and is involved in bone marrow failure. 

Telomere shortening due to mutations in TERT is known to be involved in pulmonary 

fibrosis. Clinical presentation of pulmonary fibrosis is very different from cystic fibrosis. 

This TERT variant is annotated in ClinVar as involved in pulmonary fibrosis, but literature 

support for this phenotype is unclear. The variant is found in 120 ExAC participants 

including two homozygotes.

Patient P36: Groups 57 (submission 2), 58, 59, and 61 all predicted Liddle syndrome, with 

the same missense variant in SCNN1G. The patient’s diagnosis was diffuse lung disease. 

The SCNN1G variant is a known pathogenic variant observed in two independent patients 

with bronchiectasis. The predictors presumably predicted Liddle syndrome because the same 

gene is involved in that disorder. Hopkins did not note a reportable variant for this patient 

and the SCNN1G gene was not analyzed.

Patient P37: Groups 57 (submission 2), 58, 59, and 61 all predicted Marfan syndrome with 

the same variant, a missense variant in FBN1. The patient’s diagnosis was diffuse lung 

disease. FBN1 is involved in Marfan syndrome and in other cardiac phenotypes. A subgroup 

of Marfan patients develop lung emphysema, which is possibly a reason for the predictions. 

The missense variant is a known low-frequency polymorphism annotated as “benign” in 

ClinVar, so this is likely a false-positive prediction. Hopkins did not note any variants for 

this patient and did not analyze the FBN1 gene.

Patient P14: Groups 57 (submissions 3 and 4), 58, 59, and 61 all predicted cystic fibrosis and 

CF-related disorders, along with one to two out of four variants in CFTR. The patient’s 

diagnosis was diffuse lung disease, and Hopkins did not analyze the CFTR gene. All the 

predicted CFTR variants have previously been reported. One is a common polymorphism, 

and seems unlikely to contribute to disease. Another is intronic, and it is not clear whether it 

may be involved in splicing. The remaining two CFTR variants were rare missense variants. 

One missense variant is seen in ExAC 739 times including once in the homozygous state, 

and there is no information on its pathogenicity reported in the literature or public databases. 

The second missense variant is seen in ExAC 623 times including once in the homozygous 

state, and there is conflicting evidence reported in the literature regarding its pathogenicity. 

The latter two variants appear to be too common to be causal in this case, but as mentioned 

above, CF studies may be included in ExAC.
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4 DISCUSSION

Overall, we found that current state-of-the-art computational prediction methods do a 

reasonable job of predicting clinical phenotype from genotype, even when blinded to clinical 

diagnoses. At the same time, current genotype-driven prediction methodologies generate 

false positives and false negatives at a rate unacceptable for clinical use. In cases where the 

Hopkins lab reported a variant, predictors did relatively well, with at least one group 

correctly identifying the disease class in 36 of 43 patients (84%), and at least one group 

identifying the correct disease class and variant in 33 of 43 cases (77%). In cases where the 

Hopkins lab did not find a reportable variant in the genes they analyzed, at least one group 

correctly matching the disease class in 39 of 63 patients (62%). In the latter cases, methods 

based on machine learning (SVM) technology appeared to be most effective at correctly 

identifying the disease. Interestingly, despite the ability to correctly match genotype to 

phenotype, the SVM-based method could not correctly identify the pathogenic variant. It is 

unclear what is happening in cases where groups correctly identify the disease class, but not 

the causal variant. In retrospect, it would have been helpful to include a list of gene–disease 

associations as well as modes of inheritance to the predictors to aid in the matching process. 

Different groups performed better depending on which metric was used; there was no clear 

“winner” that dominated performance across all metrics. Indeed, every group predicted at 

least one patient’s disease class correctly that no other group predicted correctly. This result 

suggests that a “meta-predictor” or a human clinical expert with access to all groups’ results 

might improve on the performance of each individual group.

Currently, clinical genetic testing is almost entirely phenotype-driven: given a clinical 

diagnosis, laboratories analyze variants in genes known to be relevant to the diagnosed 

disease. This is partially due to the historic technical limitations on genetic testing, for 

example, sequencing costs limited the number of genes for which data could be obtained. 

The standards for reporting variants to the patient are also currently conservative, in part 

because common, benign polymorphic variants have caused many false positives in past 

genetic analyses (Manrai et al., 2016, Walsh et al., 2017). However, as whole-exome and 

whole-genome sequencing become more economical, the phenotype-driven paradigm may 

be replaced by a genomics-driven approach, in which all rare, putatively functional variants 

in a patient’s genome are first identified, then evaluated based on the plausibility that they 

may be pathogenic. The genomics-driven approach has the potential for higher sensitivity, 

due to more genes being analyzed, and also has the potential to diagnose diseases not 

identified by the referring physician. However, the main tradeoff compared with phenotype-

driven approaches is a potentially higher false-positive rate.

MultipleCAGI-4 groups in the Hopkins challenge were in consensus in identifying several 

possible causative variants that were not identified by the current panel testing paradigm. 

They also identified several other variants that were likely to be false positives. 

Distinguishing these two possibilities and identifying which variants to report to the patient 

is a topic that requires further research. The American College of Medical Genetics and 

Genomics has published guidelines for the interpretation of sequence variants in order to 

help codify variant assessment (Richards et al., 2015). However, even when adhering to 

these guidelines, there are still elements of variant interpretation that are subjective and vary 
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between labs (Amendola et al., 2016, Garber et al., 2016). Given large databases of 

“control” exomes (i.e., without a known phenotype), researchers could develop statistical 

models to predict whether particular variants are in fact causative (Lek et al., 2016). Such 

models could inform the development of new statistically justified reporting standards based 

on, e.g., particular thresholds on the probability that the prediction of a causal variant is a 

false positive.

This challenge was designed to reflect the range of cases seen in the Hopkins diagnostic lab 

(Fig. 1A). This includes a high percentage of cases for which no likely pathogenic variant 

was identified, despite the patient presenting with a clinical phenotype. Even for clinical 

exome sequencing, roughly 70% of cases are negative (Lee et al., 2014, Posey et al., 2016). 

Negative cases proved especially challenging to participants, as “phenotype not discernable” 

was not listed as a matching option. Despite the fact that no pathogenic variants were 

identified by the Hopkins lab, most groups were able to make a disease prediction and to 

identify putative pathogenic alleles in these negative cases. Indeed, the reason data from all 

83 genes was included in the challenge was to highlight the difficulty in interpreting a large 

data set of rare variants that are unrelated to the patient’s phenotype. The presence of 

negative cases in the data set reflects clinical practice and cautions on the overinterpretation 

of rare variants.

Unlike prior prediction challenges, where the activity of an enzyme had been quantitatively 

measured in the laboratory, there was no definitive answer key for this challenge. The 

predictors were asked to match sequencing data to a phenotype, and many groups did so by 

first identifying a causative variant. Only in a minority of cases (~23%in this dataset) could 

it be said with high confidence that a variant was likely contributing to disease in a patient. 

When a clinical laboratory reports a variant as pathogenic, this is often because the variant 

has previously been reported in patients with the same phenotype or the nucleotide change 

introduces a premature termination codon in a gene where loss-of-function variants cause 

disease (Richards et al., 2015). Thus, with a foundation in clinical genetics and access to 

online resources, one could identify a large proportion of the “pathogenic” variants in this 

dataset. However, many of the variants detected in the clinical laboratory are rare missense 

or synonymous variants that have not previously been reported in the literature; these are 

almost always classified as variants of uncertain clinical significance. It is for these VUS, 

which are difficult to interpret and for which there is no answer key, that better assessment 

tools are needed.

A CAGI challenge focused on the interpretation of variants of uncertain clinical significance 

would be more relevant to current clinical genetics practice. A clinical lab may upgrade a 

variant’s classification from “uncertain” to “pathogenic” based on new clinical information, 

segregation of a variant within a family, or identification of the variant in multiple unrelated 

individuals. Many molecular diagnostic labs maintain internal variant databases; such 

databases could be mined to curate a challenge set of “uncertain” variants for which there is 

unpublished data to support pathogenicity. In this proposed challenge, participants would 

have to correctly identify these “pathogenic” variants from a set of “uncertain” variants (for 

which there was unpublished data that they were not likely to contribute to disease). This 

would more directly test the challengers’ ability to predict pathogenicity without relying on 
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allele frequency or online databases and without requiring knowledge of gene–disease 

associations. Assessment of the challenge would benefit from having fully vetted data and a 

clear answer key. This type of challenge, while still lacking a phenotype component, would 

more accurately mirror the clinical challenge of interpreting rare variants. Obtaining this 

data set would also invite communication between clinical testing labs (both academic and 

commercial) and the research community.

In this vein, the development of a clinically useful variant assessment tool will require 

collaboration between clinical geneticists and data scientists. Discussions resulting from the 

Hopkins clinical challenge demonstrated that although most participants incorporated 

genetic principles into their pipelines, they approached variant interpretation in a very 

different manner than a clinical laboratory. In future challenges, it would be interesting to 

pair an informatics group with a clinical group as a challenge team, particularly for whole-

exome sequencing challenges. Ideally, the back-and-forth between clinical and informatics 

groups would produce a method that could outperform that of either group alone. Diverse 

collaborations at CAGI could help bridge the communication gap between fields and pave 

the way for the development of better tools.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Summary of CAGI-4 Hopkins clinical panel challenge and results. A: One-hundred six 

patients were included in the study. Hopkins noted at least one variant relevant to the disease 

class for which the patient was referred in 43 cases, and did not note a variant for the 

remaining 63 cases. Hopkins noted variants of the following classes: variant of uncertain 

significance, likely pathogenic, or pathogenic. Clinically, Hopkins would have reported 

25/43 as positive and 18/43 as uncertain. B: Among the 43 patients for whom Hopkins had 

noted a variant, at least one CAGI-4 prediction group predicted the correct disease class in 

36 cases, and one patient’s disease class was predicted correctly by all five groups. C: 

Among the 43 patients for whom Hopkins had noted a variant, at least one CAGI-4 

prediction group predicted both the correct disease class and a causal variant noted by 

Hopkins in 32 cases. D: Sixty-three patients for whom Hopkins did not note a variant were 

more difficult for CAGI-4 groups to predict: 24were not predicted correctly by any group, 

and only five patients’ disease class was predicted correctly by three groups (none were 

predicted correctly by four or more groups)
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TABLE 1

A summary of the 14 disease classes in the CAGI-4 Hopkins clinical panel challenge

Disease class Description

Cystic fibrosis and CF-related disorders Classic cystic fibrosis consists of progressive lung disease, exocrine pancreatic insufficiency, and 
male infertility.

Diffuse lung disease Diffuse lung disease is an umbrella term encompassing multiple lung disease phenotypes.

Primary ciliary dyskinesia Primary ciliary dyskinesia is a genetically heterogeneous group of disorders resulting from 
dysfunction in different parts of the cilia.

Peroxisomal beta-oxidation defects The majority of patients with peroxisomal beta-oxidation defects have liver disease, brain 
malformations, developmental retardation, sensory deficits, and dysmorphic craniofacial features.

Rhizomelic chondrodysplasia punctata Symptoms of rhizomelic chondroplasia punctata include proximal shortening of the limbs, cataracts, 
severe intellectual disability, seizures, and calcific stippling of cartilage.

Zellweger spectrum disorders Zellweger spectrum disorders consist of Zellweger syndrome (cerebro-hepato-renal syndrome; most 
severe phenotype), neonatal adrenoleukodystrophy (intermediate phenotype), and infantile Refsum 
disease (mildest phenotype).

Loeys-Dietz syndrome Loeys-Dietz syndrome is a connective tissue disorder that predisposes individuals to aortic 
aneurysms.

Marfan syndrome Marfan syndrome is an inherited connective tissue disorder that affects the skeletal, ocular, and 
cardiovascular systems.

Thoracic aortic aneurysm and dissection Thoracic aortic aneurysm and dissection is a cardiovascular disease characterized by dilation of the 
aorta, which leads to aortic aneurysms (most commonly in the ascending aorta) and aortic 
dissection.

Ataxia telangiectasia Ataxia-telangiectasia is a disorder of childhood onset progressive cerebellar ataxia and 
occulocutaneous telangiectasias.

Liddle syndrome Liddle syndrome is a rare genetic disorder characterized by early onset high blood pressure 
(hypertension) and low blood potassium (hypokalemia).

Pseudohypoaldosteronism type 1 Pseudohypoaldosteronism type 1 is a salt-wasting disease with onset during infancy.

Telomere shortening disorders Telomere shortening disorders represent a spectrum of phenotypes that result from mutations in 
genes involved in telomere maintenance protein complexes.

Treacher Collins and related syndromes Treacher Collins syndrome is a rare disorder affecting craniofacial development.
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TABLE 5

Frequency with which each combination of groups correctlydiagnosed patients

Number of patients Groups predicting correct disease class

31 No group predicted correct disease

18 57 (note: 7 from 57.1)

10 58, 59, 61

6 61

5 59

4 60

4 57, 61

4 57, 59, 61

3 59, 61

3 58, 59

3 57, 58, 59, 61

3 57, 58

2 58, 60, 61

1 60, 61

1 58, 61

1 58, 59, 60, 61

1 58

1 57, 60

1 57, 59, 60, 61

1 57, 59

1 57, 58, 61

1 57, 58, 60

1 57, 58, 59, 60, 61

Note This table summarizes the number of times each combination of groups correctly diagnosed patients, as shown in the “correct groups” column 
of Table 4.
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TABLE 6

Frequency with which each combination of groups correctly diagnosed patients, and also noted a Hopkins 

variant

Number of
patients Groups predicting correct disease and variant

63 (Hopkins did not note any variants)

11 58, 59, 61

11 (No group predicted disease and variant correctly)

4 61

4 60

3 59, 61

2 59

2 58, 60, 61

1 60, 61

1 58, 61

1 58

1 57, 59, 61

1 57, 59, 60, 61

1 57, 58, 59, 61

Note: This table summarizes the number of times each combination of groups correctly diagnosed patients and predicted at least one variant noted 
by Hopkins, as shown in the “correct groups with variant” column of Table 4.

Hum Mutat. Author manuscript; available in PMC 2017 September 15.


	Abstract
	1 INTRODUCTION
	2 MATERIALS AND METHODS
	2.1 Sequencing, variant calling, and analysis by the Hopkins lab
	2.2 Challenge format
	2.3 Assessment
	2.4 Prediction methodology

	3 RESULTS
	3.1 Summary of submissions
	3.2 Numeric assessment summary
	3.3 Accuracy of P and SD values
	3.4 Commentary on novel variant predictions

	4 DISCUSSION
	References
	FIGURE 1
	TABLE 1
	TABLE 2
	TABLE 3
	TABLE 4
	TABLE 5
	TABLE 6

