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Abstract

The role of the phase response curve (PRC) shape on the synchrony of synaptically coupled 

oscillating neurons is examined. If the PRC is independent of the phase, because of the synaptic 

form of the coupling, synchrony is found to be stable for both excitatory and inhibitory coupling at 

all rates whereas the antisynchrony becomes stable at low rates. A faster synaptic rise helps extend 

the stability of antisynchrony to higher rates. If the PRC is not constant, but has a profile like that 

of a leaky integrates-and-fire model, then, in contrast to the earlier reports that did not include the 

voltage effects, mutual excitation could lead to stable synchrony provided the synaptic reversal 

potential is below the voltage level the neuron would have reached in the absence of the interaction 

and threshold reset. This level is controlled by the applied current and the leakage parameters. 

Such synchrony is contingent on significant phase response (that would result, for example, by a 

sharp PRC jump) occurring during the synaptic rising phase. The rising phase however does not 

contribute significantly if it occurs before the voltage spike reaches its peak. Then a stable near-

synchronous state can still exist between type-1 PRC neurons if the PRC shows a left-skewness in 

its shape. These results are examined comprehensively using perfect integrate-and-fire, leaky 

integrate-and-fire and skewed PRC shapes under the assumption of the weakly coupled oscillator 

theory applied to synaptically coupled neuron models.

1 Introduction

Oscillating neurons interacting with synaptic connections abound in a number of brain 

nuclei (Jahnsen & Llinás, 1984; Bevan & Wilson, 1999; Bolam, Hanley, Booth, & Bevan, 

2000; Hutcheon & Yarom, 2000). Many of these connections are excitatory (Bevan, Magill, 

Terman, Bolam, & Wilson, 2002) and some are inhibitory (Filion & Tremblay, 1991). Some 

amount of coherent spiking (which can be termed synchrony or transient synchrony) (Wang 

& Rinzel, 1992; Bergman et al., 1998) (Salinas & Sejnowski, 2000; Engel, Fries, & Singer, 

2001; Buzsáki, 2006) is a common phenomenon among such oscillating neurons. Tracing 

such coherent behavior to the mechanism of connectivity between the neurons and to the 

external synaptic driving influenced by the network (Stroeve & Gielen, 2001; Terman, Rubin 

J, Yew A, & Wilson C, 2002; Lewis & Rinzel, 2003; Galán, Fourcaud-Trocmé, Ermentrout, 

& Urban, 2006; Tsodyks, Mitkov, & Sompolinsky, 1993) is crucial in order to systematically 

understand such behavior and control it for the purpose of therapeutic intervention. For 

example, networks in the basal ganglia in animal models of Parkinson’s disease were 
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observed to display spike time coherence (Raz, Vaadia, & Bergman, 2000; Wichmann, 

Bergman, & DeLong, 1994). Desynchronzing neuronal activity by deep brain stimulation 

(Wichmann & Delong, 2006; Wilson, 2013) is an effective therapeutic mechanism. These 

networks are complex and often emulation of the behavior by equally complex network 

simulations (Guo, Rubin, McIntyre, Vitek, & Terman, 2008), while being helpful in 

engineering the required responses, still leave unanswered several basic questions such as, 

the relation between the intrinsic response properties of the neurons and the network 

behavior. For this, one must develop sufficient understanding of such relationship in pairs of 

coupled neurons, and then extend it to include the network structure.

The intrinsic response behavior of an oscillating neuron is best captured by its phase 

response curve (PRC) which is easily measured experimentally (Winfree, 2001; Tateno & 

Robinson, 2007; Gouwens et al., 2010; Netoff, Schwemmer, & Lewis, 2012). (However, 

briefer and weaker stimuli will have be to employed in measuring such responses, or iPRCs, 

for the reults of weakly coupled theory that are presented here to be applicable.) Thus 

relating the PRC to the network behavior is insightful and rewarding in understanding 

neuronal synchrony particularly when the neurons are self-oscillatory (G. B. Ermentrout, 

Galán, & Urban, 2007; Achuthan & Canavier, 2009; Smeal, Er-mentrout, & White, 2010; 

Smeal et al., 2010; Krogh-Madsen, Butera, Ermentrout, & Glass, 2012; Miranda-Domínguez 

& Netoff, 2013). However, real PRCs occur in a variety of shapes (Tateno & Robinson, 

2007; Schultheiss, Edgerton, & Jaeger, 2010), although for ease of analytical studies they 

may be broadly categorized into just two kinds, type-1 and type-2 (Hansel, Mato, & 

Meunier, 1995; B. Ermentrout, 1996), depending on whether the phase response involves for 

most of the neuron oscillation an advancement of the phase or not. However some type-1 

PRC neuronal models do show a negative, albeit small in amplitude, phase response 

immediately following the spike peak. In this work we selected for analysis models that 

show purely positive PRC response, and a conductance based neuronal model that has a 

type-1 PRC but with a brief negative phase response for simulating large coupled neurons. 

Considerable progress was made in relating the type-1 and type-2 PRCs to the network 

behavior (Van Vreeswijk, Abbott, & Ermentrout, 1994; Hansel et al., 1995; B. Ermentrout, 

1996). The leaky integrate-and-fire (LIF) model (Gerstner & Kistler, 2002) and the perfect 

integrate-and-fire (PIF) are the simplest examples of type-1 PRC neuron model, and 

Hodgkin-Huxley model (Hodgkin & Huxley, 1952; Hansel, Mato, & Meunier, 1993) is an 

example of the type-2 PRC neuron model. These models have been widely used as 

representative examples of these two classes of PRCs. However, The LIF and PIF models 

have sudden rises in the PRC level near zero phase, the LIF model also has an exponential 

PRC profile, the PIF model results in a constant response throughout the oscillation. The HH 

model shows extremely little response near zero phase - a behavior quite common in a 

number of other models where certain current can make the phase response shallow for 

considerable portion of the oscillation following a spike. These features warrant a careful 

examination of the role of the PRC shape on the network behavior with a goal of discovering 

the effect of such features on the network synchrony.

Relating the PRC types (type-1 and type-2) to their network responses (whether synchrony 

ensues or fails) is not a simple task due to the recognition that the shape of each of these 

types can not only be modulated easily by the presence of certain currents, but can result in 
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markedly different dynamical properties than their type would suggest when allowed to 

interact with other neurons in a network. It was shown earlier (Arthur, Burton, & 

Ermentrout, 2013) that a theta model with a symmetric type-1 PRC, while retaining its 

oscillation period can modulate its PRC shape when a small adaptation current is added to it. 

In particular a skewness is effected in its shape. Such shape changes can significantly affect 

the neuron’s interaction with other networked neurons; Delayed rectifier and the fast sodium 

currents can sensitively modulate the PRC shape and can cause the PRC shape skewness (G. 

B. Ermentrout, Beverlin II, & Netoff, 2012). In model computations, it was also shown that 

the position of the PRC peak can be sensitively affected by the presence of a persistent 

sodium current (Pfeuty, Mato, Golomb, & Hansel, 2005).

Here we selected three models, viz., leaky integrate-and-fire (LIF), perfect integrate-and-fire 

(PIF), and a PRC model whose shape is altered using a parameter, to systematically study 

the relation between the PRC shape and the ensuing synchrony between a pair of coupled 

oscillating neurons using the approach of weakly coupled oscillator theory. The goal of the 

present work is to not only exhaustively study these models such that prior results could be 

understood in the larger context of parameter spaces, but also to address how PRC shape 

skewness can alter the coherent behavior of coupled model neurons. Thus our results 

complement those reported earlier on LIF and related models, in particular those in (Van 

Vreeswijk et al., 1994; Hansel et al., 1995; B. Ermentrout, 1996), and advance the role of 

PRC skewness on the synchrony mechanism in a variety of networks such as those reported 

in (Pfeuty et al., 2005; G. B. Ermentrout et al., 2012).

The LIF and the PIF neuron networks are some of the most popular networks being studied 

in neuroscience owing to their simplicity in formulation, and their predictive capacity to 

other networks comprising of more complex neuronal models (Lapicque, 1907; Van 

Vreeswijk et al., 1994; Hansel et al., 1995; Lewis & Rinzel, 2003; Jolivet, Lewis, & 

Gerstner, 2004; Burkitt, 2006; Ladenbauer, Augustin, Shiau, & Obermayer, 2012). Although 

they were not viewed from the point of view of the PRCs at the time of their original 

introduction, they now serve as the simplest models that show drastic differences in their 

PRC shapes. The LIF model is more than a century old (Lapicque, 1907), and was first 

proposed by an experimenter to formulate accumulation of charge on the cell membrane in 

response to an applied current. Despite the dynamics of only the leakage current in the 

model, it nevertheless became a test bed for studies on synchrony and activity of neurons 

(Brunel & Sergi, 1998; Kuhlmann, Burkitt, Paolini, & Clark, 2002; Feng, 2003; Brette & 

Gerstner, 2005). With the realization of the importance of the PRC or phase response 

function in determining the synchrony of a network of oscillating neurons (Winfree, 1977; 

Tsubo, Teramae, & Fukai, 2007; Perez Velazquez et al., 2007; Tateno & Robinson, 2007; 

Achuthan & Canavier, 2009; Cui, Canavier Carmen, & Butera Robert, 2009; Smeal et al., 

2010) the LIF model became more useful in constructing theories that may be extended or 

generalized to other more complex models (Chow & Kopell, 2000; Pfeuty, Mato, Golomb, 

& Hansel, 2003).

The present work attempts a systematic study of the role of the PRC shape in ensuing stable 

synchrony or antisynchrony of mutually coupled neuron models. The present work is mainly 

analytical with numerical results augmenting the analytical results. We presented the results 
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for simple systems first illustrating them with numerical simulations, and then introduced 

more complex phase response curves along with simulation of large number of coupled 

neuron models. In Section 2 the general phase reduction method of weakly coupled 

oscillator theory is briefly reviewed along with the method of finding stability of synchrony 

and antisynchrony. As a first simple example, the phase independent PRC shape is studied in 

detail in Section 3 by invoking the PRC of the PIF model. The jump near zero together with 

a rising PRC profile is studied in Section 4 by examining the LIF model network of a pair of 

coupled neurons. This is again illustrated extensively with numerical simulations, and the 

analytical results delineating the synchrony and antisynchrony regimes are illustrated in 

several parameter spaces. In both these models, the voltage time course is included in the 

analysis and it plays a major role in the stability of synchrony, particularly when the 

coupling is excitatory. Also, the synaptic conductance used is always initiated at zero phase, 

thus having their rising phases when the PRC is significantly non-zero. Then in Section 5 we 

introduced more complex PRC shapes by first simulating a set of 100 mutually excitatory 

Wang-Buzsáki model neurons, and then using PRC shapes constructed to deviate from the 

canonical PRC.

2 Ermentrout’s phase reduction method

Our goal is determining the steady states of the coupled neurons, and their linear stability. In 

addition to numerical simulations, we employ the weakly coupled oscillator theory that 

involves phase reduction to study the stability of synchrony and antisynchrony. The phase 

reduction method has been extensively used in neuroscience and applied mathematical 

studies where in oscillators attracted to their limit cycles receiving perturbation either by 

external stimulus or coupling can be reduced to a set of phase coupled oscillators (Winfree, 

1967; Kuramoto, 1984; G. B. Ermentrout & Kopell, 1986; Brown, Moehlis, & Holmes, 

2004). However this is not the phase computed in Cartesian coordinates, but a nonlinear 

function representing the time shift the original oscillator would have to undergo to 

accommodate the perturbation. If the oscillator’s variable is V (t), then, the perturbed 

variable is written as V (t+θ(τ)), where τ = εt is the slow time scale, ε is the strength of 

perturbation and θ is the phase of our interest. This was originally introduced by Neu (Neu, 

1979b, 1979a) and then generalized and formalized by Ermentrout (G. B. Ermentrout, 1981; 

G. B. Ermentrout & Kopell, 1991) using Fredholm’s alternative, and then later restated as 

Malkin’s theorem by Hoppensteadt and Izhikevich (Hoppensteadt & Izhikevich, 1997). An 

excellent review of this method is found in (Lewis & Skinner, 2012).

The phase evolution can be expressed in the slow time scale after averaging over the fast 

time scale of the oscillator. When applied to neural oscillators, a neuron regularly spiking 

with a period T and whose voltage variable is V1(t) interacting with a second neuron via 

synaptic coupling receives a coupling perturbation proportional to 

where Esyn is the synaptic reversal potential, s2(t) is the synaptic conductance delivered by 

the coupled neuron, and  is the coupling strength. Similarly the second neuron with a 

voltage variable V2(t) receiving an identical coupling receives a current proportional to 

 where s1(t) is the synaptic conductance received from the first neuron. 

In the reduced phase coupled equations the phase derivatives are proportional to the 
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convolutions of these currents with the phase response curve - termed the interaction 

function. Thus the reduced phase evolution equations for two identical and mutually coupled 

neurons are written in terms of their phases θ1 and θ2 as

(1)

(2)

The time t in the above equations is the slow time scale that we alluded to, but the symbol t 
in the definition of the interaction function H(ϕ) defined below is the oscillator’s time used 

here as an integration variable:

(3)

Note that the changes in frequency must be small for the theory to be valid, and in the 

normalized units, small changes in frequency are equivalent to small changes in the period. 

The “periodized” conductance sp(t) is defined below. Z(t) is the phase response curve (PRC). 

The phase is zero when the voltage time course reaches the peak of the action potential. It 

reaches the peak again at the end of the oscillation period, t = T. The PRC obtained in this 

method that uses weakly coupled oscillator theory is some times termed infinitesimal PRC 

or ‘iPRC’ to indicate the fact that it is obtained by using infinitesimally small stimulus 

strength such that the oscillation period is not significantly altered, and the integration limits 

in the above integral are still meaningful in the coupled state of the neurons. The term

(4)

which we call the ‘shunted PRC’ assumes importance in the study of the stability of 

synchrony (Hansel et al., 1995). This represents the modifications to the phase response 

introduced by the effect of the voltage and the synaptic reversal potential. The shunted PRC 

can become monotonically increasing or decreasing in some simple cases leading to its 

direct relationship with stability.

If the synaptic conductance s1,2(t) does not completely decay to zero before the start of 

another spike event, then the remnant conductance is added to the newly triggered 

conductance level. Thus in the steady state a profile of the synaptic conductance is obtained 

that is termed “periodized” synaptic conductance, and is computed as in (Van Vreeswijk et 

al., 1994; G. B. Ermentrout & Terman, 2010), and for an alpha function synaptic 

conductance s1,2(t) = α2te−αt where α is the inverse of the synaptic time constant, it is given 

by
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(5)

sp(t) has units of frequency. It represents the contribution of all the previous synaptic events 

to the interaction occurring at time t, and is used in the analysis in place of s1,2(t). The 

conductance due to the contribution of the previous spikes causes sp(t) have its peak (tp) 

earlier than the peak time of the pure alpha function particularly at high frequencies. For 

example, for a cell firing below 50 Hz with α = 1/3 ms−1, the peak continues to be very 

close to 3 ms, but for 100 Hz, it occurs at 2.63 ms, and for 500 Hz it occurs at 0.89 ms. 

Taking the difference of the two Eqs. 1, 2, the evolution equation for the phase difference ϕ 
= θ2 − θ1 can be written as

(6)

where G(ϕ) is the growth function. Since H(ϕ) can be expressed as a sum of its odd part 

Hodd(ϕ) and its even part Heven(ϕ), the right hand side of the above equation can also be 

written as −2Hodd(ϕ). This notation is used by some authors to study the stability (Van 

Vreeswijk et al., 1994; B. Ermentrout, 1996).

Synchrony (ϕ = 0) and antisynchrony (ϕ = T/2) are both the steady states of this equation as 

it can be easily verified from Eq. 6 that  becomes zero at these two steady states. Other 

phase-locked states could also exist but they must be computed numerically. For becoming 

useful, the steady states must be stable. To test the stability of the synchrony, we must 

examine the eigenvalue λ = G′(ϕ)|ϕ=0. This is the slope of the growth function G(ϕ) at ϕ = 0. 

The parameter region with the property λ < 0 is the region of stable synchrony, and that with 

λ > 0 is the region of unstable synchrony. The curve in the parameter spaces obtained by 

setting λ = 0 is the critical curve across which stability changes occur. From the relation 

between G and H in Eq. 6 and the expression in Eq. 3, we can directly write λ as

(7)

The antisynchrony is represented by the solution , and its stability is given the slope of 

the growth function at ϕ = T/2, i.e. the eigenvalue is given by

(8)

In the steady state, both neurons maintain a constant phase difference, ϕ*, and spike with an 

identical rate, i.e. . This common rate might be slightly different from 
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their intrinsic oscillation frequency (1/T). By adding the Eqs. 1, 2 in the steady state (i.e. at ϕ 
= ϕ*), we obtain the frequency in the steady state (Hansel et al., 1993) as

(9)

The weakly coupled oscillator theory is strictly valid in the limit of the frequency being 

close to the uncoupled frequency. Having a non-zero Heven(ϕ*) is not a violation of the 

weakly coupled theory. The magnitude of Heven(ϕ*) which, in our definition, can be 

controlled by  must be much smaller than 1/T.

3 Effect of phase independence of the PRC on synchrony

The perfect integrate-and-fire (PIF) neuron model displays a phase independent PRC. It has 

a voltage variable [V (t)] that linearly grows from a reset value (Vr) to a threshold level 

(Vth). If the voltage in its ongoing evolution crosses the threshold level, it is assumed to have 

emitted a spike, and thus is assigned the reset level. The spike itself is not represented in the 

model. The model is defined by a single equation for the voltage whose time derivative is a 

constant:  such that V (t) is reset to Vr when V crosses Vth. I0 is the external 

constant applied current that is used to trigger oscillations in the model. The dynamics of 

two such coupled identical neurons are shown in Figure 1 by solving the equations for the 

two coupled neurons whose voltage are represented by V1(t) and V2(t):

(10)

(11)

where the synaptic conductances triggered by the spike events in the first and the second 

neuron are, respectively, s1(t) and s2(t), Esyn is the synaptic reversal potential, and  is the 

constant maximum synaptic coupling strength. We let the synaptic conductances assume 

normalized alpha-function profile such that the synaptic conductance followed by a spike 

event at ts is given by , where α is the synaptic rate constant. Since the 

applied current is identical to both the oscillators, the neurons are identical oscillators 

differing only by their initial states. The simulations are shown for mutual excitation. The 

two neurons started with a voltage difference of 0.3 evolved into a synchronous state at I0 = 

0.1 [Fig. 1(a)]. But when the current is reduced by half, the same initial conditions led to an 

antisynchronous state [Fig. 1(b, top)] that coexists with the synchronous state [Fig. 1(b, 

bottom)] which is obtained by choosing a different set of initial states.

These results may appear to be counterintuitive at first because it is generally assumed that 

neurons of this kind (that show type-1 PRCs (Hansel et al., 1995)) should fail to synchronize 

for mutual excitation. The PIF model does display a type-1 phase response curve. Indeed, 
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the voltage evolution of the uncoupled PIF model is simply a linearly growing function of 

time,

(12)

and the phase response curve is simply the inverse of the time derivative of the voltage 

which becomes

(13)

Thus the PRC is not only positive throughout, but is a constant and independent of the 

phase. Consequently, the shunted PRC (Eq. 4) is a linear function of time. For Esyn > Vth, 

the shunted PRC is a linearly decreasing function of time, but is still positive throughout. 

Hence we expect that the interaction function itself (Eq. 3) to be positive. This indeed is the 

case, and can be seen more precisely by computing H(ϕ). For the alpha-function synaptic 

conductance, we obtain the interaction function as

(14)

where , A = [1 + T(B − α)] B/α, . The time period 

itself is the time elapsed between spike reset and spike threshold, and is obtained from Eq. 

12 as T = (Vth − Vr)/I0. The interaction function is plotted in Fig. 2(a) for which Ω = 0.4, A 
= 1.165, and , and the positive shift in the frequency at zero phase is 

. Thus in the steady state of zero phase 

difference (synchrony), the oscillators are uniformly sped up from 1/T (= 10) to 

. And at the synchronous state, the interaction function grows 

linearly as can also be seen by Taylor expanding H(ϕ) near ϕ = 0: 

 indicating that if the 

second oscillator leads the first by a small phase, then the first oscillator increases its 

frequency slightly proportional to the slope of the H(ϕ) at ϕ = 0. The second oscillator slows 

down because the slope of H(−ϕ) ≡ H(T − ϕ) is negative at ϕ = 0. This implies that the 

synchrony becomes stable as is also indicated by the negative slope of the growth function 

[Fig. 2(b), curve for I0 = 0.1] at ϕ = 0.

The expression for H(ϕ), Eq. 14, reveals that its dependence on ϕ is independent of Esyn 

which merely alters the frequency of neurons uniformly. So for excitatory coupling the 

frequency is elevated and for inhibitory coupling it is lowered, but the steady states and their 

stability are unaltered. This consequence is entirely due to the PRC being constant 

throughout the phase. The phase dependence of H(ϕ) is entirely due to the voltage and sp(t). 
At low rates such that sp(t) decays completely to zero before the onset of the next spike, then 

sp(t) becomes equivalent to the alpha-function itself, and H(ϕ) computed for slightly non-

Dodla and Wilson Page 8

Neural Comput. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



zero ϕ will have the contribution from the sp(t+ϕ) that is now mostly acting prior to the next 

spike time where Esyn−V (t) is lowest. This leads to a rapidly decaying H(ϕ) with ϕ, but as ϕ 
is advanced such that the influence of sp(t + ϕ) near the zero phase is minimized, the H(ϕ) 

begins to increase linearly with Esyn−V (t). This leads to skewed H(ϕ) that will result in a 

non-zero phase-locked state. But at very high frequencies such that sp(t) has no noticeable 

decaying tail, then H(ϕ) becomes more sinusoidal with dominating first Fourier mode and is 

similar to the well known Kuramoto phase model. At intermediate firing rates, a stability 

switch can occur for the antisynchronous state when the synaptic conductance at half period 

is equal inverse of the period. This can be easily seen when the stability of the antisynchrony 

is computed. The growth function G(ϕ) defined in Eq. 6 is identical to

(15)

and can be computed using Eq. 14 as

(16)

which is independent of the reversal potential. And thus, as is already noted from H(ϕ), the 

type of synaptic coupling (whether excitatory or inhibitory) does not dictate the stability of 

the steady states. The growth function is plotted in Fig. 2(b) as the rate is altered. At very 

low rates, the negative slope of G(ϕ) at zero-phase is not easily discernible, but its stability 

can be seen in the bifurcation diagram as a function of rate displayed in Fig. 2(c). In the next 

section we will show more systematically that synchrony is a stable solution at all rates by 

computing its eigenvalue, and also show that the antisynchrony becomes a stable solution 

when sp(T/2) < 1/T. These results are summarized in Fig. 2(d).

3.1 Stability of synchrony and antisynchrony

Synchrony—Using the expressions in Eq. 12, 13, and 5 in Eq. 7, we get the eigenvalue for 

synchrony as

(17)

This can be easily shown to be negative for αT ≠ 01. By noting that cosh(αT) is a hyperbolic 

function that is purely positive and its Taylor series can be re-expressed as 

 where λ0 > 0 for αT ≠ 0, we find that

1We thank the first reviewer for this insight.
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implying that the synchrony is stable. Using the method by Hansel et al. (Hansel et al., 

1995), we can see how this negative sign arises due to the dominant negative contribution of 

the conductance downstroke overpowering the positive contribution due to the rising phase. 

For this, we first note that λ can be computed directly from the integral expression for H(ϕ) 

in Eq. 3 via the relationship between the growth function and H(ϕ) given in Eq. 6. By 

substituting only the expressions for Z(t) and V (t) and not sp(t), we obtain

(18)

In obtaining this we utilized the fact that the integral of the derivative of the periodic 

function (i.e. dt) is zero as a consequence of the fundamental theorem of calculus - 

this is also used below in computing the integrals. Since the slope of sp(t) is positive before 

it reaches its peak at, t = tp, and is negative afterwards, we can conveniently breakup the 

above integral into two parts, each having a segment of sp(t) that does not change the sign of 

its slope between the integration limits:

(19)

Just as the mean of a function computed using a probability density function lies within the 

integration limits, the integral  becomes equal to the product of t1 and x where 

, and t1 is a fixed value between (and including) 0 and tp. This is guaranteed 

by the mean value theorem (see page 128 in (Courant, 2011)). Similarly, the integral 

 becomes equal to  or simply −t2x, where t2 is a fixed value between 

(and including) tp and T. Thus we can write Eq. 19 as

(20)

The sign is asserted because t is a monotonically increasing function, and thus t2 ≥ t1. The 

value of x can only become zero if α itself were zero. And t2 and t1 become identical (and 

zero at the same time) only when T itself were zero. We can also easily see from Eq. 17 by 

expanding cosh term in Taylor series that in the limit of either α or T going to zero, λ 
becomes 0. Thus unless T or α become zero, the eigenvalue is negative, i.e. λ < 0. Thus the 

synchrony is always stable for oscillating neurons (T ≠ 0) interacting with non-zero (α ≠ 0) 
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synaptic rate constant. It is also clear that the reason for the stability is the dominant 

contribution of the conductance decay phase (t2) over the rising phase (t1).

Antisynchrony—The stability of antisynchrony is determined by the eigenvalue computed 

at ϕ = T/2, i.e. the sign of γ = G′(ϕ)|ϕ=T/2. The region where the condition γ < 0 is satisfied 

indicates stable antisynchrony, γ > 0 marks unstable antisynchrony, and the curve in the 

parameter spaces where γ = 0 is a critical curve. γ can be computed directly from the 

expression in Eq. 16 as

This can also be written in terms of the synaptic conductance at half period, sT/2 ≡ sp(T/2) as

(21)

where sp(T/2) can be computed from Eq. 5 by inserting T/2 for t. Thus antisynchrony is 

stable in the region given by

(22)

As T increases, i.e. as the rate decreases, the left hand side (sp at half period) and the right 

hand side (1/T) of the relation in Eq. 22 both decrease, but the conductance decreases faster 

than the rate due to its exponential nature. Thus the above stability relation is easier to 

satisfy at low rates leading to stable antisynchrony: the stable antisynchrony region falls on 

the left of the critical curve in Fig. 2(d).

Synchrony and antisynchrony for double exponential synaptic function—
Changing the alpha-function to a double exponential synaptic function, 

 where A = αdαr/(αr − αd), makes the periodized synaptic function

(23)

where  and . The analysis for the stability of the 

synchronous state remains identical to that carried out above for the case of alpha-function 

synaptic conductance. And hence the synchrony remains stable at all rates and time 

constants. Even the condition for antisynchrony remains identical to that in Eq. 22. In 

particular, the eigenvalue for antisynchrony can be computed as before, and is expressed as
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(24)

where τr = 1/αr and τd = 1/αd are the rising and decay rates of the synaptic conductance. 

This again can be simplified to the relation identical to that in Eq. 21, and thus the condition 

for stability of antisynchrony is again given by

(25)

where sp(T/2) is obtained from Eq. 23 by inserting T/2 for t. This condition leads to a 

dependence of the stability boundary on the time constants. This dependence is illustrated in 

Fig. 3. As before the stable antisynchrony region falls on the left of the critical curves in Fig. 

3. If the rise time of the synaptic conductance is fast, then peak of the conductance occurs 

early leading to a reduced synaptic conductance at half period. Consequently sp(T/2) can be 

made equal to 1/T only for sufficiently small T (i.e. high rate). Thus the critical boundary of 

antisynchrony moves to smaller T or higher rates as seen Fig. 3.

4 Effect of PRC jump near zero phase

We invoke the leaky integrate-and-fire (LIF) model (Lapicque, 1907; Gerstner & Kistler, 

2002) to examine the effect of the PRC jump at the zero phase. The model’s PRC, unlike 

that of the PIF, does depend on the phase and in fact increases monotonically. 

Conventionally, the LIF model is studied by setting the reset to 0 and the threshold level to 1 

for convenience. However setting them to more realistic values would enable realistic 

synaptic reversal potential and synaptic time constants. So, although the analytical results 

are identical for both these choices, we present numerical results under both of them - there 

are some noticeable differences in the parameter regimes where stability transitions occur. 

For choosing realistic voltage shape, we use Wang-Buzsáki model. Under either 

interpretation, the LIF model displays the same type of PRC which is of type-1, and has 

sharp jumps at either extreme of the curve.

Model

The total current  flowing through an LIF model membrane whose capacitance is 

Cm and voltage is V1(t), is equal to the leakage current −GL(V1 − EL) in the absence of any 

other input. By applying a steady external current I0 (or even by adjusting EL), the model 

can be made to oscillate. This is achieved by introducing a threshold level Vth crossing 

which V1 is reset to Vreset. The spike itself is not represented by the model, and is ignored in 

the analysis. Such a neuron in the presence of the applied current evolves with the time 

course

(26)
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where Iapp = I0/GL + EL, and τm = Cm/GL. The model oscillates with a period

(27)

and its PRC is simply proportional to  which can be computed as

(28)

where b = τm/(Iapp − Vreset). When two such neurons [whose membrane voltages are V1(t), 
V2(t)] are coupled synaptically with a reversal potential Esyn, they interact with their 

conductances [s1(t), s2(t)] which we model here with alpha-functions as in the previous 

section. In particular the periodized synaptic conductance has the same form as in Eq. 5. 

Thus when a neuron reaches its spike threshold, the corresponding synaptic conductance is 

generated and the interaction between two such identical neurons takes place according to 

the following two coupled equations:

(29)

(30)

The parameter Esyn determines whether the coupling is excitatory or inhibitory. Under the 

weak coupling assumption, the coupling conductance  is the smallness parameter that 

would not significantly alter the period of oscillation of each neuron.

Simulations

In order to simulate these equations s1,2(t) are generated self-consistently using two first 

order differential equations (G. B. Ermentrout, 2002), and in the analysis we use the form of 

sp(t). Simulation of the above equations are shown in Figures 4 and 5 for two sets of 

parameters. The first set of parameters emulate a Wang-Buzsáki model’s voltage time 

course, and Esyn and α are set to realistic values. The results are shown in Fig. 4. Here we 

consider mutually excitatory coupling, and thus set Esyn = 10 mV, and α = 1/3 ms−1. At 100 

Hz, the two coupled neurons gradually tend toward synchrony of spike times. At 50 Hz, two 

different sets of initial conditions exhibit two different phase differences suggesting a 

bistability between synchrony and antisynchrony. At very low frequency, a state that is very 

close to synchrony or a near-synchronous state is realized.

In the second set of simulations, we use the conventional set of parameters of the LIF whose 

voltage oscillates between 0 and 1. Units are not assigned to the time or the voltage 

variables. Simulation results at three different levels of I0 for the same set of initial 

conditions are shown in Fig. 5 for excitatory coupling with Esyn = 2 and α = 6. At high 

frequency, the phase difference clearly becomes zero indicating synchrony, at low 

Dodla and Wilson Page 13

Neural Comput. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



frequencies the antisynchrony is stable, and at intermediate frequency a non-zero phase-

locked state is stable.

Similar results can also be obtained by using a double exponential synaptic function as long 

as the synaptic rise time is not instantaneous. As we will see in the analysis below, the rising 

phase of the synaptic conductance sp(t) contributes to the stability of synchrony for 

excitatory coupling (i.e. for Esyn > Vth), and the decaying phase contributes to the instability. 

(This is counter to their contributions in the PIF network of the previous section.) Depending 

on how an exponential synaptic function is implemented (whether the rising branch of sp(t) 
appears as a curve with infinite slope or not) it may be possible to realize stable synchrony 

even with exponential synaptic function. If the rising phase occurs within a refractory period 

during which the PRC is zero, then instability of synchrony can result. Also note that there 

are two factors that help in stability of synchrony: For the double exponential, the peak of 

the periodized synaptic conductance (sp(t)) (Eq. 23) occurs later than that of the s(t), and 

thus the negative slope persisting beyond the synaptic rise time is in favor of the stable 

synchrony. And at higher rates, the fraction of the rise time in comparison to that of the 

decay time also increases, helping in decreasing the destabilizing factor.

Interaction and growth functions

The reduction of the coupled system (Eqs. 29 and 30) to phase coupled oscillators is carried 

out as outlined in Section 2, and the interaction function and the growth functions are 

computed using the relations in Eqs. 3 and 6. Using the expressions for the voltage and the 

PRC (Eq. 26 and 28), the shunted PRC can be written as

(31)

where the factor M is given by

(32)

Hansel et al. (Hansel et al., 1995) assumed that the shunted PRC is monotonically 

increasing. Under this assumption, the eigenvalue for stability of synchrony (Eq. 7) becomes 

positive making synchrony unstable. Here our goal is to fully explore the limitations of this 

assumption. M depends on the period of oscillation. Since the period is a logarithmic 

function of the parameters (Eq. 27), it is not immediately clear how M varies as a function of 

the rate, and consequently how  depends on the parameters. However, it is clear that if 

M > 0, then the term  becomes monotonically increasing supporting the assumption of 

Hansel et al. But if M < 0, then it is monotonically decreasing leading to a stable synchrony 

as we will show below. We also see that the eigenvalue for synchrony itself is proportional to 

M, and thus near the transition to synchrony the neurons possess long transients because the 

eigenvalue goes through zero.
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Substituting for  (from Eq. 31) and V (t) (from Eq. 26) in Eq. 3, we obtain the 

interaction function as

(33)

where , B = Aτmα2/(x2y2), K1 = z (τmx + Ty), K2 = zxy, K3= x2τm, and x = 

eαT − 1, y = ατm − 1, and z = 1 − eT/τm. The growth function G(Φ) is written from the 

relation in Eq. 6 as

(34)

For the parameters of the LIF model whose voltage is based on the Wang-Buzsáki model 

[Fig. 6(a–c)], two sets of growth functions are illustrated. For mutual excitation, the growth 

function [Fig. 6(d)] shows a negative slope at zero phase (stable synchrony) and positive 

slope at half period (unstable antisynchrony) at 100 Hz (I0 = 4.3 μA/cm2). Here M < 0. The 

antisynchrony branch retains its state until the frequency is lowered below about 60 Hz 

where it becomes stable [Fig. 6(e)]. The stability of antisynchrony is also controlled by other 

conditions that do not directly depend on M. The synchrony branch remains stable until the 

frequency is lowered such that the monotonicity of  is affected. When I0 < (Esyn − EL)/GL, 

M becomes positive and the synchrony becomes unstable. The antisynchrony branch also 

changes its stability because its stability as we will see also depends on M.

For mutual inhibition [Fig. 6(f,g)], the growth function retains its negative slope (and hence 

its stability) at all frequencies because by decreasing Esyn and thus causing it to assume 

negative values, and in particular below Vreset, M remains negative and thus the shunted 

PRC is monotonically decreasing. The antisynchrony displays synchrony only at low 

frequencies as is also the case when the effect of the voltage time course on stability was not 

included (Lewis & Rinzel, 2003).

For the conventional parameters of the LIF model whose voltage ranges between 0 and 1 

[Fig. 7(a–c)], growth functions and bifurcation of stable and unstable branches for mutually 

excitatory network are shown in Fig. 7(d–g). As it happened for the parameters of Fig. 6, the 

growth function has a negative slope at large I0 (giving large firing rate). This is counter to 

what has been believed thus far for the LIF model networks based on the assumption that the 

voltage plays little role in the coupling mechanism. At large I0, the PRC becomes less steep, 

and thus the time dependence of the factor Esyn − V dominates the monotonically increasing 

PRC to cause the shunted PRC decrease monotonically (M < 0). This effect would not exist 

if we ignored the voltage effect. As the I0 is decreased, however, the steepness of the PRC 

begins to dominate and when M > 0, synchrony becomes unstable. The stability of 

antisynchrony is determined by M as well as other independent factor. A non-zero stable 

phase-locked state merges with unstable synchrony at I0 that is barely sufficient to evoke 

spiking. We recover the stability diagram as a function of the synaptic rate [Fig. 7(f)] as 

reported by Van Vreeswijk et al. (Van Vreeswijk et al., 1994) at I0 small enough such that M 
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> 0, and diagram resembles like that of a mutual inhibitory network when I0 is sufficiently 

high such that the shunted PRC is monotonically decreasing [Fig. 7(g)].

4.1 Stability of synchrony and antisynchrony

Using the same method as in the previous section that was first used by Hansel et al. (Hansel 

et al., 1995) we show below that the LIF pairs display stable synchrony if M < 0 where M is 

given by the relation in Eq. 32. Since the denominator of M must be positive to elicit 

oscillations, synchrony then can occur without any further conditions as long as Esyn < I0/GL 

+ EL. This condition encompasses regimes of mutual excitation and mutual inhibition.

Synchrony—The eigenvalue for the stability of synchrony is computed as

We split this integral into two parts such that each part contains the portion of  that does 

not change its sign:

where tp is the peak time of the periodized synaptic conductance sp(t). As in the previous 

section, by using the mean value theorem, the first integral can be written as a product of 

 and x where t1 is between (and including) 0 and tp, and . The second 

integral can be written as the product of  and −x where t2 is between (and including) tp 

and T. Thus we write the eigenvalue as

Since t2 > t1 (for non-zero T), the bracketed term is always positive. Thus the sign of λ is 

determined by the sign of M:

The critical curve of synchrony is thus given by M = 0, or
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and the region of stable synchrony is given by M < 0. Since the denominator of M must be 

positive in order to elicit spiking, this condition results in the following condition for 

synchrony:

(35)

The right hand side of the above inequality is nothing but the level the voltage time course of 

the LIF model would have reached if not reset to Vreset after crossing Vth (see Eq. 26). This 

does not mean, however, that the excitation is acting like inhibition to cause stable 

synchrony, because in the coupled state the firing rate of the neuron increases [Fig. 4(a, 

right)]. The synaptic coupling would indeed begin to act like inhibitory synapse if Esyn is 

less than Vth when synchrony becomes stable without any further conditions. We can see 

this more clearly if rewrite M (from Eq. 32) as follows in terms of the oscillation period:

Since Vth − Vreset is always positive, from this form, it is easy to see that M becomes 

negative (i.e. synchrony becomes stable) if Esyn < Vth [see Fig. 8(a, right)] without further 

restrictions on the parameters. This is also when the coupling acts like an inhibitory 

connection. However, if Esyn > Vth, stability condition implies that the term in the square 

brackets must be negative, or in simplified form,

(36)

Antisynchrony—Simplifications as above are not feasible for the antisynchronous state. 

But the eigenvalue γ can be found directly by taking the derivative of G(ϕ) at ϕ = T/2, and 

after simplification we obtain

where

(37)

and G2(α, τm, T) = αT(1 − ατm) cosh(αT/2) − 2 sinh(αT/2). Since B and the exponential 

term are positive, the sign of γ is determined by M and G1, and thus the critical regions of 

stability are bounded by the two curves M = 0 and G1 = 0. A portion of the stable 

synchronous region (that was defined by M < 0) also becomes a region of stable 
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antisynchrony if in that portion the condition G1 > 0 is satisfied. In summary, the stable 

antisynchrony regions are defined by either or both of (i) M < 0, G1 > 0, and (ii) M > 0, G1 < 

0. G1 is independent of Esyn but because M does depend on Esyn, changing Esyn alters the 

boundary of antisynchrony corresponding to the curve M = 0. G1 itself could be plotted as a 

function of its parameters to verify its sign. (Large numerical values due to G1 could be 

alleviated by using the positive multiplication factor B.)

These analytical results are summarized in the parameter space of (I0, α) at varying levels of 

reversal potential in Fig. 8(a). As we have already seen in Fig. 7(e), there can be three 

distinct regions displaying a non-zero phase-locked state (whose phase difference increases 

with rate toward half period), antisynchrony, and synchrony as I0 (or the rate) is increased. 

This pattern appears at large enough reversal potentials as in Fig. 8(a, left). However as Esyn 

is decreased, the boundary marking the stability switch of the antisynchrony remains 

unaltered (G1 is independent of Esyn), but the point of transition indicated by the arrow in 

Fig. 7(e) moves to smaller I0. If the new transition point occurs before the boundary of anti-

synchrony then that regime is marked by M < 0 and G1 > 0 and exhibits bistability [Fig. 8(a, 

middle)]. At low enough Esyn [as directed by Eq. 35], the entire range of I0 exhibits stable 

synchrony, and the regime of I0 below the antisynchrony boundary exhibits bistability. This 

bifurcation diagram is similar to that for mutually inhibitory LIF model neurons even in the 

absence of the voltage effect (Lewis & Rinzel, 2003).

In Figure 8(b), the results are presented in the parameter space of (I0, Esyn) where the 

distinction between slow synapse (small α) and fast synapse (large α) becomes more clear. 

For very slow synaptic time constants [8(b, left)], synchrony and antisynchrony exist in 

complementary regions, and the transition from synchrony to antisynchrony occurs when 

Esyn is increased above I0/GL +EL. For faster synaptic time constants, this boundary can be 

either between a bistable region and a non-zero phase-locked state (low firing rates), or 

between synchrony ad antisynchrony as before (high firing rates) [Fig. 8(b, middle, right)]. 

Finally in Fig. 8(c), the transitions are shown at different rates in the parameter space of (α, 

Esyn) which makes it clear that at high enough rates most levels of Esyn, whether excitatory 

or inhibitory, lead to stable synchrony, a result that emerges entirely due to the effect of the 

voltage on the synaptic coupling. And a stable antisynchrony exists for excitatory coupling 

at slow synaptic rates.

5 Effect of PRC shape skewness, and the emergence of near-synchrony

Thus far we analyzed simpler models that have completely positive PRC shapes. In this 

section we first illustrate simulation results using a more realistic conductance based model 

that has a skewed PRC (along with a negative phase response immediately after spike peak), 

and then introduce a special class of phase response curve with a shape parameter. This 

allows for selectively tuning the skewness of the PRC. When the PRC was phase 

independent, or had a sudden rise at zero phase, synchrony depended on the synaptic rising 

phase taking advantage of the finite and large positive PRC level during that phase. 

Alternatively, if the PRC has a jump at zero phase and the rising phase of the synaptic 

conductance falls after the zero phase, synchrony may still become stable at appropriate 
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firing rates. Generating the synaptic conductance (Wang & Rinzel, 1992) by solving a 

voltage dependent differential equation such as

(38)

may not allow a significant length of the synaptic rising phase occur after the spike peak. 

This may prevent stabilizing the synchronous state. Panels in Figure 9(a–c) illustrate this 

using Wang-Buzsáki model (see the Appendix for the model). The model with a small 

applied current (I0 = 0.211 μA/cm2), and a scale factor that scales the rates of sodium 

inactivation and the potassium activation uniformly (ε = 5) shows oscillations at 10 Hz and 

displays a type-1 PRC that looks like a bell-shaped curve except for a small insignificant 

negative regime near zero phase. But more importantly it displays a sudden rise in the PRC 

level within the first two milliseconds after the spike peak. But the synaptic conductance 

modeled with Eq. 38 (θsyn = 0 mV, ksyn = 2 mV, α = 12, β = 1/3) has most of its rise time 

before the spike peak during which the PRC is zero, and hence the opportunity to enhance 

the stabilizing component to the eigenvalue for synchrony of the coupled neurons is lost; 

The growth function [Fig. 9(b)] has a positive slope at zero spike time difference. Failure of 

synchrony is also seen in a network of 100 coupled neurons whose spike times are displayed 

in Fig. 9(c). Introducing an appropriate synaptic delay [dashed curve in Fig. 9(a)] brings the 

rising phase of the conductance to the regime of finite PRC level, but the growth function 

computed at these parameter levels still has a positive slope at synchronous state [Fig. 9(b)]. 

Two factors would help stabilize synchrony in this situation: one, increase the frequency of 

oscillation [as in the LIF model, Fig. 7(e)] by increasing the applied current while 

maintaining the sudden PRC rise near early phases and two, adjust the parameters of the 

model such a way that the sudden PRC rise occurs even earlier than two milliseconds. 

However in the Wang-Buzsáki model, simply raising I0 makes the jump in the PRC 

shallower.

A near-synchrony among the coupled neurons may be realized by causing the PRC have 

skewness such that its response near early phases is subdued with or without having the PRC 

peak level move toward longer phases. We study this aspect in the rest of the section and in 

Figs. 9(d–i), 10, and 11. As ε is decreased, the sodium inactivation and the potassium 

activation both become slower, and a network of 100 coupled neurons displays increased 

amount of coherence with decreasing as can ε be seen in the increased level of spike time 

alignment in Fig. 9(d–f) (the rate is kept constant at 10 Hz by adjusting the I0). As ε is 

decreased, the negative feedback currents become slower making the spike broader and 

causing the hyperpolarization last longer. Consequently a subdued response near early 

phases results [Fig. 9(g)] and the sudden initial rise in the PRC diminishes. A second feature 

of the model is its PRC becoming asymmetric. It is shifted toward longer phases, although 

the PRC peak position is not affected substantially by ε. The effect of these two causes is the 

emergence of a stable non-zero phase-locked state in the vicinity of the synchronous state - 

this appears as the intersection of the growth function with the horizontal axis near zero with 

a negative slope. This is a dramatic change in the character of the shape of the growth 

function considering that it resembles mostly a sinusoidal curve for a canonical PRC shape 
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(B. Ermentrout, 1996) [the dashed curves in Fig. 9(g,h); V (t) and sp(t) are the same as for 

the case of ε = 5.] The non-zero phase-locked state moves toward the synchronous state with 

decreasing as can be seen in Fig. 9(i).

Formulation of skewed PRC

The emergence of the non-zero phase-locked state can be sensitively dependent on the fine 

PRC features such as the overall symmetry of the PRC, the subdued response at the early 

phases, and the shift of the PRC peak. To study the nuances of this PRC structure, we 

construct a PRC as below that allows its control by a parameter:

(39)

where T is the oscillation period, and n is a non-negative real number that causes the left 

skewness (i.e. a long tail toward left of the peak). And C is a positive coefficient dependent 

on n introduced to control the PRC amplitude. If we set C to 1, the PRCs decrease in their 

amplitude considerably as n increases because of the algebraic power. Although C would 

appear as a coefficient multiplying the interaction function, and hence its choice does not 

alter the steady states or their stability, it may be set to a numerically approximate level of 1 

+ 0.67n + 0.17n2 so that the peak amplitude of the PRCs would be commensurate with that 

when n = 0. The PRCs are illustrated in Fig. 10(a). The above formulation provides 

modulation of the PRC between the phases 0 and T. Since the PRC is either zero or subdued 

near small phases, the rising phase of the synaptic function does not contribute significantly 

toward stability of synchrony. Thus the interaction function for mutually excitatory network 

can be computed without using the voltage effect using the following formula:

where sp(t) is the periodized synaptic function. We have set the coupling coefficient to unity. 

For mutual inhibition, the coefficient becomes negative, and the corresponding interaction is 

the same as the above but with a negative sign.

PRC with no skewness

When n = 0, Z(t) becomes symmetrical and is identical to the canonical type-1 PRC, and it 

was studied by Ermentrout (B. Ermentrout, 1996; G. B. Ermentrout & Terman, 2010). We 

set C = 1. When the PRC is symmetric, the frequency does not alter the stability of the 

steady states. However the rate can alter the eigenvalue of stability of the synchrony. For 

example, if the synaptic conductance is a simple exponential , the periodized 

function still retains the same shape . Then the symmetric PRC 

[1 − cos(2πt/T)] results in the following growth function for mutual excitation,
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where . This cannot show any fixed points other than synchrony and anti-

synchrony. But the slope of G(ϕ) at ϕ = 0 is 8π2αd/(Tc1) which shows that not only the state 

of synchrony is unstable (because the slope is positive) but its repulsion becomes weaker at 

low rates. (The slope is proportional to 1/T2 at large T.) At the same time the antisynchrony 

is also less tightly held at longer T: The slope of G(ϕ) at ϕ = T/2 is exactly the negative of 

that at ϕ = 0. These changes help the emergence of stable near-synchronous state when there 

is skewness present in the PRC.

PRC with small skewness

When n = 1, Z(t) acquires a small skewness [Fig. 10(a)]. PRC skewness of the kind that we 

have introduced can induce a number of higher order Fourier components owing to the 

subdued response near zero phase. Even after including many Fourier modes, one may not 

be able to account for the fine feature of the PRC near the zero phase. However, such a close 

fit is not necessary to predict the steady states and their stability accurately. 99% of the 

Fourier power (see (Dodla & Wilson, 2013b) for a discussion on the power) is contained in 

the following three modes:

where ω = 2π/T. The shape of the periodized synaptic function depends on the frequency of 

oscillation, and thus the resultant interaction function also changes its functional form with 

the rate, and the resultant Fourier approximation will have at least four harmonics of both 

cosine and sinusoidal terms in order to accurately predict the steady states, resulting in little 

insight into the relation between the Fourier modes in the PRC and the shape of the 

interaction function. Thus the interaction function may be computed either analytically or 

numerically from the original shape of the PRC. It is easily computable for n = 1, and results 

in the following growth function for the exponential (and excitatory) synaptic function:

where a1, a2, and a3 are constants dependent on αd and T : a1 = 4π2C/(Tc1 c2), 

a2 = Cα2d/c21, , and . In addition to the synchronous and 

antisynchronous states, this expression for the G(ϕ) can show, at appropriate rates, two other 

stable non-zero phase-locked states, ϕ* and T − ϕ*. The stability of the synchronous state is 

given by the slope of G(ϕ) at ϕ = 0, and is given by the following simplified expression
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Since the factor αdT is positive, c2 is positive. Since 1/(1+αdT) decays slower than , 

the term inside the last pair of parentheses is also positive. And hence,  resulting in 

an unstable synchronous state at all rates. However, at large T the slope can be seen to be 

proportional to 1/T4 whereas for the symmetric PRC it was proportional to 1/T2. Thus the 

small skewness introduced in the PRC has made the unstable synchronous state dramatically 

less repelling at low rates.

The stability of the antisynchronous state can also be easily computed from the expression 

for G(ϕ) by computing the slope of G(ϕ) at ϕ = T/2 and is given by

Since a csch term goes from infinity to zero as its argument increases from 0, this expression 

clearly shows that as the rate decreases (i.e. when αdT increases), the last term in the 

expression (including the negative sign) could go from large negative to zero indicating that 

the slope can transition from a negative to a positive value. That is, the antisynchrony is 

stable at high rates, but could lose its stability at low rates. This transition can be 

numerically examined by solving for the zeros of the above expression. We can also arrive at 

a simpler approximation for such transition. Let us assume that the transition to instability 

occurs at sufficiently low rates. Then the positive terms inside the square brackets can be 

approximated simply by α4T4, and the negative term by π2α3T3. Thus the transition occurs 

approximately when αdT = π2, or antisynchrony becomes unstable if T > π2/αd. For a 

synaptic time constant of 3 ms, this approximation states that antisynchrony becomes 

unstable if T > 29.6 ms (i.e. when the rate is lower than 33.8 Hz). However numerical 

simulations reveal that the transition occurs at high rates for higher values of n and thus such 

an approximation will not be accurate at higher n. Solving the above expression reveals that 

the transition to the instability occurs at 32.6 ms (i.e. at 30.7 Hz). Using a double 

exponential synaptic function with a rising time constant of 0.1 ms, and the decaying time 

constant of 3 ms, we obtain the transition to instability at 34.1 ms. The numerically 

computed growth functions for the double exponential synaptic function are shown in Fig. 

10(b). We use the double exponential function with fast rise time in all our illustrations 

below, and are very similar to the results obtained using the pure exponential.

Thus with increasing T, the synchronous state become less repelling, and in particular the 

antisynchrony becomes unstable. Simulations suggest that the non-zero phase-locked state 

has its attracting eigenvalue that is about twice as big as the magnitude of the eigenvalue of 

the synchronous state. This state also moves toward the synchronous state. The movement of 

these steady states is illustrated in Fig. 10(c). At very low rates, the stable non-zero phase-

locked state merges with the unstable synchronous state. In this limit, in the absence of any 

other stable steady state, network simulations would result in coherent spike output among 

the neurons. For mutual inhibition [Fig. 10(d)], G(ϕ) is multiplied by −1 and the decay time 

constant is adjusted for inhibitory synapse. The stability of the steady states is exactly 

converse to that of the mutual excitation, but the critical firing rate at which the 

antisynchrony changes its stability is now smaller than that in the excitatory network. This is 
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easily foreseen by our earlier approximation T > π2/αd for the antisynchrony to become 

unstable in the excitatory network. For the inhibitory network, this approximation represents 

when the antisynchrony becomes stable. At smaller αd (inhibition), the criticality moves to 

longer T (i.e. to low rates).

Effect of large skewness

As n is increased in order to achieve large skewness, the ensuing analysis becomes unwieldy, 

and methods using piecewise linear models such as those in (Dodla & Wilson, 2011, 2013a) 

could become quite useful. However, the bifurcation structure can easily be computed 

numerically, and it as a function of firing rate remains qualitatively unchanged at large T, but 

the critical points occur at drastically different levels. For example at n = 10, the change of 

stability of antisynchrony occurs at 1285 Hz when the coupling is excitatory, and at 915 Hz 

when the coupling is inhibitory. Because these critical points are far from low rates, the 

branch of the non-zero phase-locked state that emanates from the antisynchronous state 

tends toward the synchronous branch at low rates with indistinguishable separation for 

extended ranges of firing rates leading to this branch act like a near-synchronous state. The 

structure for the excitatory and inhibitory networks at low rates is shown in Figs. 10(e,f).

At large skewness, the number of Fourier modes required to accurately represent the PRC 

increases. When n = 1, we were able to represent the PRC with three modes that have 99% 

of the Fourier power, but at n = 10, it requires more than 10 modes to achieve the same 

accuracy. The number of Fourier modes required to represent the resultant interaction 

function are not necessarily dictated by those in the PRC, but the period of oscillation and 

the shape of the synaptic conductance. At 2 kHz (i.e. T = 0.5 ms), the numerically computed 

interaction function can be represented by three Fourier modes,

where h0 = 0.765, s1 = −0.01625, c1 = 0.015, c2 = 0.00338, s2 = −0.00284, c3 = 0.001, and s3 

= 0.00039. This predicts the two steady states and their stability emerging from the growth 

function (G(ϕ) = H(0.5 − ϕ) − H(ϕ)) correctly. The growth functions computed from the 

original PRC shape are illustrated in Fig. 10(g) for a few firing rates. When the network 

displays non-zero phase-locked states, the interaction function needs to be represented more 

accurately in order for those states to be captured. For example, at 10 Hz, the stable non-zero 

phase-locked state is so close to the unstable synchronous state, it may be missed or the 

synchronous state may be mischaracterized as stable. Computing steady states and 

examining their movement as a function of the skewness parameter n [Fig. 10(h)] or the 

oscillation period would reveal the nature of the near-synchronous state in proximity to the 

unstable synchronous state. The parameter spaces of T and n are scanned and the stability of 

the steady states are studied. The amplitude of the stable states between (and including) 0 

and half period are shown in color in Fig. 10(i). There is only one stable state at any 

parameter point. The antisynchrony is stable at all rates if the PRC has no or little skewness; 

the synchrony is unstable. The same scenario exists at extremely high rates even if the PRC 

has large skewness. However the combination of low rate and large skewness (north-east 
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corner of the plot) is favorable for near-synchrony. For mutual inhibition, the region marked 

AS would have stable synchronous state, and the rest of the region supports a bistable state 

between synchrony and antisynchrony.

To address whether the emergence of the near-synchronous state is more due to the shift of 

the PRC peak to longer phases or the subdued PRC response at early phases, we performed a 

numerical experiment (Fig. 11) by resetting the PRC shape to that of the canonical shape (n 
= 0) either to the right of the half period point [Fig. 11(a)], or to the left of the half period 

point [Fig. 11(d)], and computed their interaction functions [Fig. 11(b,e)], and the growth 

functions [Fig. 11(c,f)]. The PRC shape is only very slightly altered when n is changed from 

0 to 1, but the subdued response near early phases altered the non-zero phase-locked state 

dramatically, and moved it near the synchronous state. The movement of the PRC peak 

alone altered the stability of the antisynchrony and caused the emergence of the non-zero 

phase-locked state, but it is not driven toward the synchronous state as fast. The interaction 

functions examined closely [Figs. 11(b,e)] reveal that, if the second neuron leads (small 

spike time difference), then the first neuron does in fact slowdown (H(ϕ) decreases), and the 

leading neuron speeds up (H(−ϕ) increases) resulting in an unstable synchrony. However if 

the PRC is subdued, then the neurons slowdown together, and the lagging neuron’s response 

is diminished making way for the synchrony to become less repelling. This can be said to be 

the result of the movement of the non-zero phase-locked state toward synchrony. On the 

other hand, if only the PRC peak moves to longer phases, then the neurons do not slowdown 

together, but they retain more or less their behavior near an unstable synchronous point. This 

is the result of the fact that the non-zero phase-locked state is not in the vicinity.

6 Discussion

We briefly discuss the dynamics of the leaky integrate-and-fire (LIF) model, and examine 

why such model neurons were found not-synchronizable in the past. The LIF model has a 

discontinuous jump in its phase response curve at zero phase. Central to the studies of 

networks of oscillating LIF neurons is the question of whether pairs of identical LIF neurons 

synchronize if coupled weakly with mutual excitation. Van Vreeswijk et al. (Van Vreeswijk 

et al., 1994) studied the coupled LIF network without the effect of the synaptic reversal 

potential or the voltage, and showed that such a coupling fails to exhibit stable synchrony. 

Hansel et al. (Hansel et al., 1995) included the effect of the voltage in the synaptic coupling 

and showed that if the PRC profile is not altered by the synaptic reversal potential, then the 

LIF network still fails to exhibit stable synchrony.

To understand the above result in the context of the weakly coupled oscillator theory, let us 

assume that Z(t) is the PRC, V (t) the voltage and Esyn the reversal potential of synapse. 

Then the term  which we call the shunted PRC plays a critical role in 

determining the stability of synchrony (Hansel et al., 1995). The PRC of the LIF model is 

purely exponential and is proportional to et/τm (where τm is the membrane time constant), 

i.e. the PRC is monotonically increasing in its dependence on time. Hansel et al. showed that 

if the shunted PRC also has the same monotonically increasing dependence on time, then the 

LIF network fails to synchronize. This in fact is the case at low firing rates when the PRC 

has a quicker growth and can counter the decreasing trend of the term Esyn − V (t) during the 
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depolarizing phase such that the shunted PRC would still be monotonically increasing. 

However at high rates when the PRC is shallow in its growth, the shunted PRC and the PRC 

exhibit opposing slopes leading to synchrony of the coupled LIF model neurons.

In the present work explicit conditions under which the LIF model neurons exhibit stable 

synchrony are derived. We find that if the term  (where T is the oscillation period) is 

less than the ratio (Esyn − Vreset)/(Esyn − Vth), then stable synchrony is found. (Vreset is the 

reset voltage and Vth the spike threshold in the LIF model.) This condition is independent of 

the synaptic conductance profile as long as it has a rising and falling phases such that the 

peak of the conductance occurs within the oscillation period. We show how the regions of 

synchrony and antisynchrony move with varying levels of Esyn and oscillation rate.

Even simpler than the LIF model is the perfect integrate-and-fire model (Phoka, Cuntz, 

Roth, & Häusser, 2010; Pressley & Troyer, 2009) whose PRC becomes completely flat, i.e. 

independent of the phase, and whose voltage is a linearly increasing function of time. 

Consequently the  acquires a negative slope facilitating synchrony. This also illustrates the 

effect of a constant PRC vs. exponentially rising PRC. We study the dynamics of a pair of 

such coupled identical PIF models and show that the reversal potential does not influence 

the steady states or their stability. Synchrony becomes a stable steady state solution at all 

firing rates and synaptic time constants, and a further antisynchronous state also becomes 

stable if the synaptic conductance level at half period becomes less than the frequency.

We now briefly discuss the effect of PRC skewness on synchrony. The PRC of the LIF 

model has a jump discontinuity, and the PRC of the PIF may also be considered as having a 

finite jump at zero phase. But many neuronal models do not show such jumps, rather the rise 

of the PRC immediately after the spike peak, and the decay of it before the spike peak are 

subdued. Some experimentally recorded PRCs also show skewness in their shape. A typical 

PRC that is the subject of theoretical studies is the so-called canonical PRC, 1−cos(2πt/T) 

(B. Ermentrout, 1996) (where T is the period of oscillation). The canonical PRC is obtained 

from a model that captures the subthreshold bifurcation that is the hallmark of inducing 

oscillations with near zero firing rates. Real PRCs also deviate from the canonical PRC 

shape, some times significantly when, for example, AHP current is present in the model. The 

AHP current can induce significant skewness in the PRC shape and thus affect synchrony of 

the coupled neurons (B. Ermentrout, Pascal, & Gutkin, 2001).

On the other hand, it is also not necessary to have the AHP currents to cause skewness in the 

PRC. A number of parameters can cause PRC skewness. For example the well-known 

Wang-Buzsáki model shows PRCs that are similar in shape to canonical PRC shape, but 

with some deviations. Slowing down the sodium inactivation and/or potassium activation 

can cause a shift of the PRC peak toward longer phases and a subdued response of the PRC 

near zero phase. Unlike in the PIF and LIF models, this subdued response can make the 

rising phase of the PRC ineffective in causing synchrony. Instead the shape skewness, even 

when small, of the PRC affects the position of the non-zero phase-locked state significantly. 

The antisynchrony becomes unstable and the stable non-zero phase-locked branch moves 

closer to the unstable synchronous state and eventually merges with it as the skewness 

parameter is altered. This movement is exemplified by parameterizing the shape of the 
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canonical PRC. The parameterized PRC is studied at both low and high skewness levels. At 

low skewness the antisynchrony is found to become unstable if approximately T > π2/αd 

where αd is the inverse of the synaptic decay time constant. At large skewness the stable 

non-zero phase-locked branch could come indistinguishably close to the unstable synchrony 

branch and act like a near-synchronous state; Its eigenvalue is bigger in magnitude than the 

repelling synchronous state. Near synchronous states as reported in this study were earlier 

reported by (Dodla & Wilson, 2011), and were also the subject of a detailed study by 

(Canavier, Wang, & Chandrasekaran, 2013) in relation to pulse coupled neuronal oscillators. 

Canavier et al. also reported simulation results of Wang-Buzsaki type-1 excitatory model 

neurons relating the PRC skewness to the bistability of synchrony and anti-synchrony 

branches similar to those reported in our Figure 10(c–d).

7 Conclusions

We investigated how the PRC shape affects the synchronization dynamics between a pair of 

synaptically coupled neurons using simple neuronal models. The PRC studied in relation to 

the weakly coupled oscillator theory, and thus it is also called an infinitesimal PRC, or 

‘iPRC’. We used analytical methods based on weakly coupled oscillator theory, and 

numerical simulations to determine the conditions under which synchrony or near-synchrony 

and antisynchrony are stable states for various PRC shapes. The main difference between the 

models we considered is in their PRC shape, and the commonality among all of them is that 

all of them belong to the category of type-1 (i.e. the oscillating neuron responds with phase 

advancement for stimuli occurring at any input phase (Hansel et al., 1995) - ignoring a small 

possible negative phase response immediately after the spike peak). The PIF network is 

characterized by a constant PRC at all phases, the LIF model has an exponential PRC with 

jumps at both ends of the curve, and the Wang-Buzsáki model’s PRCs are similar to the 

canonical PRCs but with their peak shifted toward longer phases while at the same time 

showing subdued or sudden responses at the early phases. Finally, our contrived PRC 

formula systematically creates a skewness in the PRC shape allowing us to study its effect 

on the steady states. Our work is mainly analytical with supporting numerical results.

Although LIF like type-1 neuron models do show synchrony if made to interact with pulse-

coupling (Mirollo & Strogatz, 1990), researchers in the past used the LIF model to 

substantiate their main argument that type-1 PRC neurons do not generally exhibit 

synchronization of their spike times when synaptically coupled with mutual excitation (Van 

Vreeswijk et al., 1994; Hansel et al., 1995). However simulations using the LIF models often 

do exhibit synchronization leaving room for an exhaustive study of the synchronization 

properties of the LIF model neurons, the effect of the synaptic time constant, and the 

conditions under which they may indeed fail to synchronize. We have filled this gap in our 

understanding of the LIF networks. The LIF and the PIF models have peculiar PRCs with 

sudden jumps at zero phase. This may appear to be less important, but considering that the 

synaptic rising phase has greater contribution in causing synchrony, a jump at zero phase or 

near the zero phase during the synaptic rise (in contrast with the jump occurring during the 

synaptic decay) could cause stable synchrony. In the LIF model the synchronous state 

becomes stable when the monotonicity of the PRC is dominated by the effect of the term 

Esyn − V (t). This leads to a simple condition for synchrony Esyn < I0/GL + EL, i.e. when the 
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synaptic reversal potential is less than the voltage level that the neuron would have settled if 

not reset. This also implies that at very large Esyn synchrony becomes unstable.

Another perspective is obtained by the study of the PIF model network. Because of its PRC 

being constant and thus independent of the phase, the voltage time course plays a bigger role 

in synchrony. In fact the term Esyn−V (t) is monotonically decreasing resulting in synchrony 

whether Esyn is above or below the spike threshold (i.e. whether it is excitatory or 

inhibitory). In the LIF network, at sufficiently high rates, the PRC would not have sufficient 

upward rising curvature to counter the monotonically decreasing term Esyn − V (t). That is, 

the LIF may essentially be behaving like a PIF model leading to a stable synchronous state. 

For Esyn < Vth, the coupling acts like inhibition and leads to synchrony. This case was earlier 

studied by Lewis and Rinzel (Lewis & Rinzel, 2003) and our results [Fig. 8(a, right)] 

confirm theirs, and further depict the movement of the synchrony and antisynchrony 

boundaries as Esyn is altered.

The PIF model network qualitatively acts like a mutually inhibitory LIF model network [see 

Figs. 6(g), 8(a, right)] in that at low rates a bistability between synchrony and antisynchrony 

is found, and at high rates only synchrony is stable. The PIF model also offers a simple 

formula for stability of antisynchrony: Stability is ensured if the periodized synaptic 

conductance at half period is less than the inverse of the period, sT/2 < 1/T. This condition is 

true for both purely exponential and double exponential synaptic functions. This also implies 

that slower synaptic rise times confine the regime of antisynchrony to lower rates. When 

Esyn > Vth, the antisynchrony in the LIF model network sensitively depends on both the rate 

and the synaptic time constant. At low rates and at very large Esyn, neither the synchrony nor 

antisynchrony may become stable [Figs. 6(e), 8(a)].

It is important to note that the rising phase of the synaptic function plays a major role in the 

stability of synchrony of the mutually excitatory LIF and the PIF networks. If the PRC of 

interest is stipulated to become zero or subdued at initial phases, then these models must be 

employed judiciously to represent the corresponding excitatory networks. Conventionally a 

synaptic conductance is generated from the presynaptic voltage, and hence the rising phase 

may be initiated some times before the spike peak. Thus the rising phase may become less 

relevant in the study of synchrony unless there is a synaptic delay involved in the coupling. 

When indeed there is a synaptic delay, the rising phase may potentially induce a 

synchronous state provided of course the PRC level becomes significant and the rate is high 

enough. A case in point is the Wang-Buzsáki model [Fig. 9(a)] where the rising phase 

contributes little to the stability. Introducing synaptic delay would have caused synchrony 

but the rate is not sufficiently high enough.

The Wang-Buzsáki model network also illustrates an excellent point that even if the PRCs 

are slightly left-skewed (i.e. long tails to the left of the peak), then the stability structure of 

the steady states changes dramatically from that of a symmetrical canonical PRC, 1 − 

cos(2πt/T) [Fig. 9(g)]. The canonical PRC results in an unstable synchrony and a stable 

antisynchrony (B. Ermentrout, 1996). But a little skewness introduced with the PRC, (1 − 

cos(2πt/T))(t/T) [Fig. 10(a)] caused the antisynchrony become unstable when approximately 

T > π2/αd, where αd is the inverse of the exponential synaptic conductance. The stable non-
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zero phase-locked branch that emanates from the antisynchrony branch merges with the 

unstable synchronous state as the neural oscillator’s firing rate goes toward zero.

Although such a complete merger may happen only at near zero firing rates, the stable 

nonzero branch can come indistinguishably close to the unstable synchronous branch if the 

skewness is increased by increasing the parameter n in the PRC formulation (1 − cos(2πt/T))

(t/T)n. We term this the near-synchronous state. The near-synchronous state where the phase 

difference is less than 1% of the time period spans a large parameter space in (T, n) space 

[Fig. 10(i)]. Further simulations using these PRC models [Fig. 11] reveal that the subdued 

nature of the PRC near the early phases rather than the peak shift to longer phases affects 

sensitively the formation of the near-synchrony.

Finally, we briefly state the computational relevance of our study. The two important 

assumptions of a PRC based study in general are that the underlying neurons are regular 

oscillators and the coupling is weak (see (Smeal et al., 2010) for an excellent overview). 

Spiking patterns found in some brain areas including basal ganglia (Wilson, 2013, 2015; 

Bevan et al., 2002; Deister, Dodla, Barraza, Kita, & Wilson, 2013) and hippocampus 

(Klausberger et al., 2003) suggest that the assumption of the regular oscillations is relevant 

for computational study of these networks except in an operating regime when the dynamics 

is dominated by external noise which could destabilize or overpower the oscillation 

mechanism. Also in basal ganglia, for example, when coherence was observed in animal 

models of Parkinson’s disease model (Bergman et al., 1998), it could be interpreted as a 

state that arises from a near synchronous state between the neurons rather than a perfect 

synchronous state as would be described by a mathematical definition of synchrony often 

used as in the current study. The near synchronous state that we studied here offers a 

mechanism where such coherent response could be achieved. However our results must be 

extended for more complex networks that would involve sparse coupling and external noise 

to fully capture such phenomena. An implication of the bistability between synchrony and 

antisynchrony that is easily achieved in models involving PIF and under certain parameter 

regimes with the LIF models is that when the network is posited near the bifurcation point 

where such bistability emerges, a transient synchronous state (Golomb, 1998) could be 

achieved where the ratio of the eigenvalues of the synchronous and antisynchronous states 

determine the duration of the transient coherence. However a certain amount of noise or 

heterogeneity is required to cause the models dislodge from a perfect synchronous state.
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Appendix. Wang-Buzsáki model (Wang & Buzsáki, 1996)

The equations for the Wang-Buzsáki model network of N coupled neurons are given by:
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where i = 1, …, N. The voltage dependent functions are given by

The synaptic conductance si depends on the presynaptic neuron and evolves according to Eq. 

38. The sodium inactivation h and the potassium activation n (i.e. the feedback current) 

variables are together slowed by decreasing the parameter ε. A network of (N =) 100 

neurons is constructed from these equations. I0 (in μA/cm2) is the steady applied current that 

triggers regular spiking within each neuron model.  is the coupling conductance. The 

parameters are Cm = 1 μF/cm2, GNa = 35 mS/cm2, GK = 9 mS/cm2, GL = 0.1 mS/cm2, ENa = 

55 mV, EK = −90 mV, EL = −65 mV, and Esyn = 0 mV.
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Figure 1. 
Numerical simulation of a network of two “perfect” integrate-and-fire neuron models. 

Coupling is excitatory, but results are qualitatively similar when the coupling is inhibitory. 

(a) The two voltage time courses at I0 = 0.1 approaching a synchronous state. (b) The same 

initial conditions as in (a) leading to antisynchronous state, but a more closely spaced initial 

conditions leading to a synchronous state when I0 is lowered. Synaptic conductance is an 

alpha function with α = 1/3. Vreset = 0, Vth = 1. Esyn = 2.
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Figure 2. 
Analytical prediction of synchrony and anti-synchrony between two perfect integrate-and-

fire neuron models. (a) The interaction function H(ϕ) and the alpha-function synaptic 

conductance at an Esyn that makes the coupling excitatory. The PRC of the model is simply 

1/Iapp. (b) The growth function G(ϕ) at three different Iapp. G(ϕ), the phase-locked states and 

their stability are independent of Esyn, and thus the panels (b–d) remain unaltered between 

excitatory and inhibitory couplings. (c) The steady phase differences as a function of the 

frequency displaying stable synchrony (filled circles resembling thick lines at ordinate 

values of 0 and T) at all frequencies, stable antisynchrony (filled circles at T/2) at low 

frequencies. The unfilled circles represent unstable steady state phase differences. (d) 

Parameter display of synchrony (shaded, filling all the space) and antisynchrony (hatched) in 

the space of synaptic time constant τ (= 1/α) and firing rate (= 1/T). Unit of ms is assigned 

to time for convenience.
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Figure 3. 
Analytical prediction of antisynchrony between two perfect integrate-and-fire neuron models 

using double exponential synaptic function in the plane of firing rate and synaptic decay 

time. The region to the left of each curve (the hatched region) marks the stability of 

antisynchrony for the corresponding synaptic rise time. Synchrony is stable in the entire 

parameter space.
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Figure 4. 
Simulation of a mutually excitatory network of two leaky integrate and fire neurons whose 

voltages are modeled according to those of the Wang-Buzsáki model. (a) The voltage time 

courses [V1(t), V2(t)] evolving in time and approaching a synchronous oscillatory state at a 

firing frequency of 100 Hz. Spikes are not part of the model, and hence are not drawn. On 

the right, the effect of the coupling on V1(t) is shown - it is excitatory. (b) Time courses as in 

(a) but at 50 Hz. Two sets of initial conditions lead to two different states: antisynchrony for 

widely separated initial conditions, and synchrony for closely separated initial conditions. 

Right: The difference of successive spike times of the neurons normalized to the 

instantaneous period of one of the neurons (i.e the phase difference) is shown for the two 

sets of initial conditions. (c) As in (b) but at 10 Hz. Synchrony and anti synchrony are both 

unstable, but a near synchronous state that is very close to the synchronous state is stable. 

For all the simulations The parameters are GL = 0.01 mS/cm2, EL = 0 mV, Cm = 1 μF/cm2, 

Vreset = −100 mV, Vth = −49.5635 mV. Esyn = 10 mV, α = 1/3 ms−1, and .
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Figure 5. 
Simulation of a pair of mutually excitatory LIF model neurons with the conventional 

parameters without units: Cm = 1, GL = 1, EL = 0, Vreset = 0, and Vth = 1. (a) Voltage time 

courses of the two neuron models exhibiting antisynchrony, non-zero phase-locked state, and 

synchrony at three different levels of the applied current. (b) The phase difference of the 

consecutive spike times of the illustrations in (a) displaying the evolution toward steady 

states. The other parameters are Esyn = 2 that is above the threshold, and α = 6 that 

determines the shape of the alpha-function synaptic conductance. The membrane effect is 

included in the computation.
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Figure 6. 
Analytical prediction of the dynamics of a network of two coupled leaky integrate-and-fire 

neuron models whose voltages are shaped according to those of the Wang-Buzsáki model. 

(a) The voltage time course of the each uncoupled LIF model (thick lines) compared to that 

of Wang-Buzsáki model (thin lines). (b) The PRC of the LIF model. (c) The firing rate as a 

function of the applied current I0. (d,e)Mutual excitation. (d) Growth functions at three 

levels of I0. I0 = 4.3 μA/cm2 for 100 Hz, 1.7825 μA/cm2 for 50 Hz, and 0.53 μA/cm2 for 25 

Hz. (e) Stable (filled circles) and unstable (unfilled circles) steady state phase differences 

with frequency. A range of firing rates (or I0) can result in stable synchrony. (f,g) Mutual 
inhibition. (f) Growth functions are illustrated at three frequencies. (g) Steady state stability 

of synchrony and other states with I0.
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Figure 7. 
Analytical prediction of the dynamics of a pair of mutually excitatory LIF model neurons 

that use the conventional parameters as those set in Fig. 5. (a) Voltage time course of each 

uncoupled model neuron, (b) phase response curve of each neuron, (c) firing rate of each 

uncoupled neuron with steady input current. If time were measured in ms, then the firing 

rate would be measured in kHz, and achieving firing rates of the order of 10’s of Hz would 

become an extremely sensitive function of I0. (d) Growth functions at Esyn = 2, α = 1/3 

displaying stable synchrony as I0 is increased across (Esyn − EL)GL. (e) Steady state phase 

differences with I0. Filled circles indicate stability, and unfilled instability. (f) Steady state 

phase differences with α at I0 = 1.5, and (g) same as in (f) but with I0 = 2.5. The results in 

(f) are similar to those of Fig. 1 of Van Vreeswijk et al. (Van Vreeswijk et al., 1994).
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Figure 8. 
Regions of stability of synchrony and antisynchrony for the LIF model with the conventional 

parameters. (a) Stability region in I0 vs. α plane as the reversal potential is decreased from 

begin mutual excitatory to being mutual inhibitory. The shaded region is the region of stable 

synchrony, hatched region is the region of stable antisynchrony. Multiple regions of 

bistability, as well as non-zero phase-locked states (white space) also exist. (b) Stability 

regions in I0 and Esyn space at different levels of α. (c) Stability regions in α and Esyn space 

at different levels of the applied current. The model parameters are as those in Fig. 7.
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Figure 9. 
Near-synchrony in Wang-Buzsáki excitatory network. (a–c) Failure of synchrony despite 

sharp rise of the PRC near small phases, or delay in conductance. ε = 5, I0 = 0.211 μA/cm2. 

(a) V (t), the synaptic conductance of the Wang-Buzsáki model illustrated with and without 

delay, and PRC profile at small phases. (b) The growth function of two mutually excitatory 

neurons without and with (d = 1 ms) delay. (c) Spike times of a network of 100 coupled 

neurons without synaptic delay failing to exhibit synchrony. , Esyn = 0 mV. 

The initial conditions of are chosen randomly on the limit cycle orbit of the uncoupled 

model. (d–f) Spike times of the Wang-Buzsáki network as the skewness of the PRC is 

altered while keeping the firing rate at 10 Hz (by adjusting Iapp) and d = 0. Corresponding to 

these three simulations, the PRCs are shown in (g), and the growth functions for two coupled 

oscillators are shown in (h). (i) The stable (filled circle) and unstable (unfilled circle) phase-

locked solutions as a function of ε. d = 0.
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Figure 10. 
Effect of PRC skewness on synchrony. (a) PRC shapes given by Eq. 39 as n is increased. (b) 

The growth function for two mutually excitatory neurons getting affected by the period and 

in particular the antisynchrony becoming unstable as T is increased even when the PRC has 

a small skewness. (c) Change of stability of synchrony, antisynchrony, and the non-zero 

phase-locked states with the rate for excitatory network when n = 1. (d) Same as in (c) for 

inhibitory network. (e,f) Similar to (c) and (d) but for large skewness (n = 10), depicting 

only the movement at low rates. In (e) the non-zero phase-locked state is in close proximity 

to the unstable synchronous state (which is weakly repelling) at low rates making it a near-

synchronous state. (g) The growth functions for excitatory network revealing the non-zero 

phase locked state surging toward the synchronous state as the rate is lowered at large 

skewness (n = 10). (h) Movement of steady states of the excitatory network as the skewness 

is increased at 10 Hz. (i) Steady states displayed in n vs. T space for the excitatory network.
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Figure 11. 
Subdued PRC response near early phases causes near-synchrony. (a, top) PRCs as in Eq. 39 

for n = 0, 0.5, 1 but are reset to the case of n = 0 for phases above T/2. Period of oscillation 

is 100 ms. The peak levels of the PRCs are normalized to unity. (a, bottom) Corresponding 

interaction functions for mutual excitation using double exponential synaptic function with 

τd = 3 ms and τr = 0.1 ms. The interaction functions are computed without including the 

voltage effect. (c) The detail of the H(ϕ) and H(−ϕ) near the early phases. (d) Growth 

functions corresponding to the PRCs in (a). (d–f) As in (a–c) but resetting the PRCs to the 

case of n = 0 for phases below T/2.
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