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Galectin-3, a marker of cardiac
remodeling, is inversely related to
serum levels of marine omega-3
fatty acids. A cross-sectional study

K Laake1,2,3, I Seljeflot1,2,3, EB Schmidt4, P Myhre1,2,5, A Tveit6,
J Norseth6, H Arnesen1,2,3 and S Solheim1,3

Abstract

Objective: Marine polyunsaturated n-3 fatty acids (n-3 PUFA) may have cardioprotective effects and beneficial influence

on the fibrotic process. We evaluated the associations between serum marine n-3 PUFA and selected biomarkers of

fibrosis and cardiac remodeling in elderly patients with acute myocardial infarction.

Setting: From the ongoing OMega-3 fatty acids in Elderly patients with Myocardial Infarction (OMEMI) trial, 299 patients

were investigated. Soluble ST2 (sST2), Galectin-3 (Gal-3) and the serum content of major marine n-3 and n-6 PUFA were

analyzed 2–8 weeks after the index acute myocardial infarction.

Results: Gal-3 was inversely correlated to eicosapentaenoic acid (r¼�.120, p¼ .039) and docosahexaenoic acid

(r¼�.125, p¼ .031) and positively correlated to the n-6/n-3 ratio (r¼ .131, p¼ .023). Gal-3 levels were significantly

higher in diabetics vs non-diabetics (12.00 vs 9.61 ng/mL, p¼ .007) and in patients with NYHA class �III for dyspnea at

inclusion (11.33 vs 9.75 ng/mL, p¼ .006).

Conclusions: The associations between the marine n-3 PUFA and levels of Gal-3 indicate beneficial effects of n-3 PUFA

on cardiac remodeling in an elderly population with acute myocardial infarction.
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Introduction

The tissue repair process after an acute myocardial
infarction (AMI) involves scar formation, fibrosis,
and structural and functional changes, leading to
post-infarction ventricular remodeling and possibly to
the progression of heart failure (HF).1

Galectin-3 (Gal-3) is a multifunctional protein that is
widely expressed in different cell types. The macro-
phage is considered to be the main contributor to
Gal-3 production,2 and the protein has previously
been linked to fibrosis formation.3 It has been mostly
studied in patients with HF, however with conflicting
results.4 Several in vivo animal experiments have shown
its importance in post-myocardial infarction fibrosis
and remodeling, but only a few clinical studies, with
limited cohort size, have reported on its effect on
cardiac remodeling after AMI.5

The ST2 receptor has been identified as a member of
the interleukin (IL)-1 receptor family and was initially
found on type-2 helper T cells.6 IL-33/ST2 synthesized
by cardiac fibroblasts has been suggested to comprise
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a cardioprotective paracrine system, reducing
cardiomyocyte fibrosis and hypertrophy, with the
biological effects of IL-33 downregulated by soluble
ST2 (sST2).7 In this way, elevated levels of sST2
attenuates the positive effects of IL-33. sST2 is
easily detectable in human serum and has been
related to myocardial dysfunction, fibrosis, and
remodeling,8 and shown to be a strong predictor of
adverse outcomes in AMI, coronary heart disease
(CHD), and HF.9–11

Observational studies and large-scale clinical trials
indicate that marine omega-3 polyunsaturated fatty
acids (n-3 PUFA) have beneficial influence on CHD,
HF, and cardiac remodeling and fibrosis.12–16

The aim of the present study was therefore to evalu-
ate the associations between major marine n-3 and n-6
PUFA and selected biomarkers of fibrosis and cardiac
remodeling in elderly patients with AMI. Our hypoth-
esis was that serum phospholipid levels of n-3 PUFA
were beneficially associated with the pattern of these
markers. Whether these markers were related to disease
entities in this population and presumed to influence
HF was further investigated.

Materials and methods

Study design

The present study was a substudy of the OMega-3 fatty
acids in Elderly patients with Myocardial Infarction
(OMEMI) trial, and its design has previously
been described in detail.17 In short, the study is a
Norwegian prospective randomized placebo-controlled
multicenter trial evaluating the effect of a 2-year inter-
vention with n-3 PUFA supplementation (1.8 g/d)
on cardiovascular endpoints in elderly patients, aged
70–82 years, having suffered an AMI (types 1–4), and
without co-morbidity thought to be incompatible with
study drugs or a 2-year follow-up. Compliance is
secured by measurement of fatty acids in serum
phospholipids.

Diabetes mellitus was defined as insulin dependent
or non-insulin dependent. HF was defined as treated
for/or diagnosed with HF, either previously or during
the index AMI. Atrial fibrillation (AF) was defined as a
history of ECG-documented paroxystic, persistent or
permanent AF and smokers were defined as current
smokers. The study was carried out in compliance
with the Helsinki Declaration and approved by the
Regional Ethics Committee (2012/1422). All subjects
gave their written informed consent to participate
(ClinicalTrials.gov, NCT01841944). The present
results are based on the participants included into
the study from November 2012 to October 2014
(n¼ 299).

Methods

Baseline characteristics were obtained and blood sam-
ples for Gal-3, sST2, N-terminal brain natriuretic pep-
tide (NT-proBNP), and serum fatty acids were collected
at inclusion, i.e. 2–8 weeks after the AMI. Blood sam-
ples were collected in fasting state (>10 h) by standard
venipuncture between 08:00 and 11:00 am, before daily
intake of medication. Serum was prepared by centrifu-
gation within 1 h at 2500 g for 10min, and kept frozen
(�80�C) until analyzed. Routine blood samples, includ-
ing NT-proBNP, were determined with conventional
methods.

Gal-3 levels were determined in serum using the
Quantikine Human Galectin-3 immunoassay (R&D
Systems, Minneapolis, US) with a coefficient of vari-
ation (CV) of 8.5%. Presage ST2 Assay (Critical
Diagnostics, San Diego, US) was used to determine
serum levels of sST2 with a CV of 10.9 %.

Fatty acid composition of serum phospholipids was
analyzed by gas chromatography at the Lipid Research
Laboratory, Aalborg University Hospital, Denmark, as
previously described in detail.18 Briefly, serum lipids
were extracted by the Folch procedure,19 and separ-
ation of phospholipids fatty acid fraction from total
lipids was performed by the method of Burdge et al.20

The serum content of linoleic acid (LA) (18:2, n-6),
arachidonic acid (AA) (20:4, n-6), eicosapentaenoic
acid (EPA) (20:5, n-3), and docosahexaenoic acid
(DHA) (22:6 n-3) was expressed as percent of total
fatty acids (wt%) and the CVs were 0.4%, 0.6%,
1.1%, and 1.8%, respectively.

Statistics

As most data had a skewed distribution, the results are
presented as median values (25, 75 percentiles) or as
absolute numbers and percentages. Non-parametric
statistics were used throughout. For group comparison,
Mann-Whitney U test was used for continuous vari-
ables. Analyses of correlations were performed with
Spearman’s rho. Linear regression was performed on
log transformed data. A two-tailed value of p� 0.05
was considered statistically significant. The statistical
analyses were performed with IBM SPSS Statistics, ver-
sion 21.0.0.2 (IBM, New York, US)

Results

Characteristics of the study population at inclusion are
shown in Table 1. The median age was 75 years, 70%
were male, 23% had diabetes, 14% were current smo-
kers, 12% had a history of HF, and 13% were in New
York Heart Association (NYHA) class �3 for dyspnea.
Previous intake of n-3 PUFA supplements prior to
inclusion was reported in 45% of patients.
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Serum fatty acids as related to markers of fibrosis
and cardiac remodeling

The proportions of the n-6 PUFA, AA, and LA
and the major marine n-3 PUFA, EPA, and DHA,
and the AAþLA / EPAþDHA (n-6/n-3) ratio
(Table 2) have previously been described in this
population.18

The main results are shown in Table 3. Gal-3 was
inversely correlated to the content of EPA (p¼ .039)

and DHA (p¼ .031) in serum phospholipids and posi-
tively correlated to the n-6/n-3 ratio (p¼ .023). There
were no significant correlations between the levels of
sST2 and any of the fatty acids or the n-6/n-3 ratio
(p� .098 for all). No significant differences were
observed in levels of Gal-3 or sST2 between patients
reporting intake of n-3 PUFA supplements (n¼ 135)
or not prior to enrollment (data not shown).
However, patients with NYHA class �III for dyspnea
were shown to have significantly lower levels of EPA
(2.08 vs 2.51, p¼ .008) and a higher n-6/n-3 ratio (4.08
vs 3.52, p¼ .034).

Gal-3 levels were significantly higher in patients with
non-ST elevation myocardial infarction (NSTEMI) vs
ST-segment elevation myocardial infarction (STEMI)
(p¼ .041), in diabetics vs non-diabetics (p¼ .007), in
patients with NYHA class� III (p¼ .006) for dyspnea
and borderline significantly higher in patients with
previous HF (n¼ 36) (p¼ .055) (Figure 1, Table 4).
NT-proBNP at inclusion correlated significantly with
levels of sST2 (r¼ .158, p¼ .038), but not with Gal-3
(r¼ .018, p¼ .81). None of these markers associated

Table 1. Characteristics of the study cohort; data presented as

percentages or median values (25, 75 percentiles).

Age (y) 75 (72, 78)

Gender (male/female) (%) 70.2/29.8

Smoker (current/previous) (%) 13.7/46.8

Previous hypertension (%) 182 (60.9)

Previous atrial fibrillation (%) 65 (21.7)

Previous myocardial infarction (%) 90 (30.1)

Previous heart failure (%) 36 (12.0)

Previous diabetes (%) 69 (23.1)

Body mass index (kg/m2) 25.6 (23.8, 28.3)

S-total cholesterol (mmol/L) 3.70 (3.20, 4.20)

S-LDL (mmol/L) 2.00 (1.60, 2.40)

S-HDL (mmol/L) 1.24 (1.00, 1.54)

S-triglycerides (mmol/L) 1.15 (0.86, 1.54)

Creatinine (umol/L) 90.0 (80.0, 108.0)

NT-proBNP (pmol/L) (n¼ 173) 75.0 (33.0, 162.5)

STEMI (%) 94 (31.4)

Troponin-T (peak level) (ng/L)a 700 (153, 2500)

NYHA class �III for dyspnea (%) 40 (13,4)

Galectin-3 (ng/mL) 9.96 (7.95, 12.81)

sST2 (ng/mL) 29.17 (23.81, 35.77)

Medication:

Aspirin (%) 93.6

Clopidogrel (%) 41.8

Prasugrel (%) 11.7

Ticagrelor (%) 36.5

Anticoagulation (%) 13.4

Betablocker (%) 91.3

ACE-I/AT II blocker (%) 59.9

Calcium channel blocker (%) 21.1

Statin (%) 96.6

Diuretic (%) 27.4

Nitrates (%) 12.0

n-3 PUFA supplements (%) 45.6

ACE-I/AT II: angiotensin-converting enzyme inhibitors/angiotensin II

receptor blockers; S-LDL: low density lipoprotein; S-HDL: high-density

lipoprotein; STEMI: ST-segment elevation myocardial infarction; LVEF: left

ventricular ejection fraction.
aAt index infarction.

Table 2. Median values of the major marine n-3 and n-6 PUFA

(wt%) in serum phospholipids at inclusion.

Wt%

Eicosapentaenoic acid (EPA) n-3 (20:5) 2.4

Docosahexaenoic acid (DHA) n-3 (22:6) 5.6

Linoleic acid (LA) n-6 (18:2) 19.0

Arachidonic acid (AA) n-6 (20:4) 9.6

n-6/n-3 ratio 3.6

Wt%: percent of total fatty acids in serum phospholipids.

Table 3. Coefficients of correlationsa between the major

marine n-3 and n-6 PUFA (% of total fatty acids in serum

phospholipids) and the measured markers of cardiac remodeling

and fibrosis.

Gal-3 sST2

Eicosapentaenoic acid

(EPA) n-3 (20:5)

r ¼

p ¼

�.120

.039

�.096

.098

Docosahexaenoic acid

(DHA) n-3 (22:6)

r ¼

p ¼

�.125

.031

�.058

.318

Linoleic acid (LA)

n-6 (18:2)

r ¼

p ¼

.026

.659

.055

.341

Arachidonic acid (AA)

n-6 (20:4)

r ¼

p ¼

.096

.098

�.080

.166

n-6/n-3 ratio r ¼

p ¼

.131

.023

.079

.175

Statistically significant values in bold.
aSpearmans Rho are given.
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with age, but sST2 levels were significantly lower in
females (Table 4).

When further exploring the relationship between
Gal-3 and n-3 PUFAs, a multivariate linear regression
model, adjusting for relevant covariates (diabetes and
STEMI/NSTEMI) showed that Gal-3 was still signifi-
cantly associated with DHA (p¼ .041) and the n-6/n-3
ratio (p¼ .030), but only borderline significantly to
EPA (p¼ .059).

Discussion

The main finding in this cross-sectional study was
a significant association between the levels of Gal-3
and the content of long-chained marine n-3 PUFA
in serum phospholipids in a population of elderly
patients with a recent AMI. This relationship was
still significant after adjusting for type of AMI and
diabetes.

Figure 1. Comparisons of Galectin-3 levels in relevant disease states. Standardized box-plot of galectin-3 levels according to

presence or absence of the selected disease states. Values defined by the median line, and 25 and 75 percentile represented by the

lower and upper border of the box, respectively. Outliers are excluded.

Table 4. Serum levels of the measured biomarkers as related to relevant disease entities which may influence post-MI cardiac

remodeling.

Gal-3 (ng/mL) sST2 (ng/mL)

7 þ p 7 þ p

Female gender (n¼ 89) 9.79 10.67 .318 30.56 25.49 .000

ST-segment elevation MI (index) (n¼ 94) 10.29 9.46 .041 29.17 28.95 .496

Previous heart failure (n¼ 36) 9.83 11.50 .055 28.74 31.44 .066

Previous diabetes mellitus (n¼ 69) 9.61 12.00 .007 28.86 29.71 .320

NYHA class� III for dyspnea (baseline) (n¼ 40) 9.75 11.33 .006 28.34 31.51 .050

Previous n-3 PUFA supplementation (n¼ 135) 9.89 9.99 .949 29.76 27.99 .134

Statistically significant values in bold.

þ: presence of risk factors or disease entities; 7: absence of risk factors or disease entities.
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To our knowledge, this is the first report showing
that Gal-3 levels are inversely associated with marine
n-3 PUFA levels and positively associated with the n-6/
n-3 ratio in this setting. Ventricular remodeling may
continue for weeks or months after an acute loss of
myocardium and is considered to be an important
factor in HF development.21 The underlying mech-
anisms of inflammation and fibrosis are crucial in
this process. Gal-3 is produced predominantly by
macrophages and has been shown to be involved in
the activation of fibroblasts into myofibroblasts
and secretion of matrix proteins, leading to cardiac
fibrosis.5 Circulating Gal-3 has also been introduced
as a predictor of reduced left ventricular ejection frac-
tion (LVEF) after 4 months in patients with acute
STEMI.22

Long-chain marine n-3 PUFA have been shown to
improve outcome in patients with HF in a large clinical
trial16 and one study also reported a significantly
improved LVEF and functional capacity in dilated car-
diomyopathy after 1-year treatment with 2 g/day of n-3
PUFA.23 In an experimental study in mice, dietary n-3
PUFAs were shown to prevent cardiac dysfunction and
fibrosis after aortic banding.24 Results from the recent
OMEGA-REMODEL trial15 showed a reduction in
surrogate markers of cardiac remodeling and fibrosis
in AMI patients after 4 -g/day of omega-3 supplemen-
tation. This could be discussed in line with our obser-
vation of significantly lower levels of EPA and a higher
n-6/n-3 ratio in patients with NYHA class �III for dys-
pnea. Interestingly, 18-HEPE, an EPA metabolite, was
shown to inhibit macrophage-mediated activation of
cardiac fibroblasts in culture.25 Although n-3 PUFA
ability to reduce fibrosis and cardiac remodeling is
not clearly understood today, one could speculate
that this beneficial effect is linked to reduced macro-
phage activation and inhibited Gal-3 secretion.

We found no significant correlation between any of
the selected n-3 or n-6 PUFA and sST2 levels. The
existing research on n-3 PUFA and ST2 is very limited.
Our results are somewhat in contrast to the results from
the OMEGA-REMODEL trial15 in which a reduction
of ST2 levels were observed after 6 months’ interven-
tion with high-dose n-3 PUFA.

Gal-3 levels were higher in patients with NYHA
class �III and with a tendency of higher levels in
patients with previous HF, which is in accordance
with findings in other study populations.26,27 We
could, however, not show any significant association
between Gal-3 and NT-proBNP, which reflects
impaired cardiac function and remodeling. This is to
some degree in accordance with the study of De Boer
et al.26 who found that the prognostic value of Gal-3 in
HF patients was independent of NT-proBNP, and that

serum Gal-3 levels were not significantly different
between patients with an LVEF >40% vs those with
a lower LVEF.26 According to the authors, natriuretic
peptides like NT-proBNP respond readily to ventricu-
lar stress, in contrast to Gal-3 which is thought to have
a role in interstitial fibrosis.

Interestingly, Gal-3 levels were significantly lower in
STEMI compared to NSTEMI patients, although the
numerical difference was small. Patients with NSTEMI
are known to have worse prognosis and more extensive
coronary disease at presentation,28 which could imply
that these patients have increased inflammation and
fibrosis formation. It should be considered that unlike
NT-proBNP, Gal-3 is not limited to cardiac dysfunc-
tion as increased plasma levels have been observed in
other diseases like restrictive lung disease.29 In addition,
it should be emphasized that our results are obtained at
2–8 weeks after the AMI.

Gal-3 levels were also increased in patients with dia-
betes mellitus. Several studies have found increased
levels of Gal-3 in subjects with type-2 diabetes mellitus.
However, the possible effects on glucose homeostasis
are not clarified.30

Finally, we observed that sST2 was positively corre-
lated with NT-proBNP. These results are in accordance
with Rehman et al.10 who found ST2 to be strongly
correlated with the severity of HF, LVEF, and
NT-proBNP in patients with acute HF.

Conclusions

In an elderly population with a recent AMI, significant
inverse correlations were demonstrated between the
content of marine n-3 PUFA in serum phospholipids
and serum levels of Gal-3 indicating beneficial effects of
n-3 PUFA on cardiac remodeling. The findings are to
some degree supported by the association found
between Gal-3, n-3 PUFA and myocardial function
assessed by NYHA class.

Strengths and limitations

The strengths of the study are attributed to the rather
large population and serum phospholipid analysis of n-
3 PUFA as an objective marker of intake of seafood.
Results should, however, be judged with caution con-
sidering the small number of patients in the different
subgroups. Furthermore, the findings are of explora-
tory nature and provide no information on any possible
causality.
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