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Introduction

The year 1918 saw the most famous influenza pandemic—a worldwide epidemic that caused

nearly 50 million deaths—when an H1N1 influenza A virus of partial avian origin infected

over one-third of the world’s population. Although its exact origins are still under debate,

World War I and trade routes are thought to have aided in the circulation of the virus world-

wide [1]. Within the last century, there have been 4 pandemics caused by influenza A, with the

most recent in 2009 when a swine-like H1N1 subtype virus entered the human population.

Increased whole genome sequencing and computational methods have accompanied im-

proved surveillance of bird populations [2] and of human households and communities [3].

This allows for analysis of large datasets and the ability to glimpse into influenza evolution. A

better understanding of the dynamics of influenza A and B evolution will bring insight into flu

transmission, adaptation to new hosts, and outbreak potential.

How does flu evolve? By making mistakes and reshuffling genes

The 2 main influenza types that infect humans, A and B, are part of the Orthomyxoviridae

family, which is characterized by segmented negative-sense RNA genomes. These viruses repli-

cate using an RNA-dependent RNA polymerase that lacks proofreading capability. This means

that errors that occur during replication produce a diversity of influenza mutants—also called

variants—leading to populations of viruses that are often referred to as quasispecies [4]. These

mutations allow viruses to adapt to changing environments, leading to continuous selective

turnover of influenza variants.

The segmented structure of the influenza genome facilitates gene exchange between differ-

ent influenza strains that have infected the same cell (Fig 1). Gene reassortment has been

observed in both influenza A and B. Because of the large range of hosts that can get infected

with influenza A, reassortment among influenza A viruses can lead to the introduction of sub-

types that are antigenically novel for the human population. Intersubtype reassortment has the

potential to cause a pandemic; this occurred in the pandemics of both 1957 and 1968 when a

reassortment event took place between avian and human influenza viruses [5]. However,

because of genetic dissimilarities and incompatibility between interacting proteins, intersub-

type exchange may produce gene rearrangements that do not efficiently transmit among

humans, therefore reducing the fitness of the virus [6–8]. Similarly, reassortment between line-

ages of the same subtype, or intrasubtype reassortment, is limited by genetic compatibilities

between the segments of the viruses [9, 10]. Studies measuring intrasubtype gene exchange
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found that reassortment between lineages of the same subtype is common and can lead to

severe epidemics [11]. While both mutations and gene reassortments can produce antigenic

variants, gene exchange produces a rapid change in a virus’s antigenicity (antigenic shift),

whereas mutations cause a more gradual change (antigenic drift). However, the combination

of mutations with gene reassortments can assist in segment exchange by allowing the gene to

adapt to its new genetic environment [12].

Fig 1. Five key facts about influenza virus evolution.

https://doi.org/10.1371/journal.ppat.1006450.g001
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Who gets the flu? Influenza has a wide host range

Humans are not the only animals to get influenza infections. Influenza A has a variety of verte-

brate hosts, including birds, horses, pigs, and bats [13]. In contrast, humans are almost the

exclusive host for influenza B viruses—with some surprising infections in seals that have been

documented [14]. Subtypes of influenza A virus are named after the 2 glycoproteins found on

the surface of the virus, hemagglutinin (HA) and neuraminidase (NA), which are respectively

essential for entry into and release from the host cell. Aquatic birds are thought to be the pri-

mary reservoir for influenza A because they can be infected with nearly every subtype of the

virus, except for the recently discovered subtypes H17N10 and H18N11 found in bats [15].

With the rapid evolution of influenza, the increase of influenza host range remains a cause for

concern, especially in mammals, because of the higher probability of a novel strain arising that

can have devastating effects on the human population.

It is uncommon for humans to be directly infected with avian flu viruses; it typically

requires the infection of an intermediate host in which the virus undergoes adaptation leading

to variants that can subsequently more easily transmit to humans. These hosts are often

referred to as “mixing vessels,” as seen for pigs, which can be infected with avian and human

influenza viruses, producing a favorable environment for gene exchange between strains [16].

With the proper gene rearrangements, new viruses can arise and cross species boundaries,

infect humans, and cause a pandemic, as witnessed in 1957, 1968, and 2009.

What gets around? Types, subtypes, and strains of flu cocirculate

Recently, the interplay between influenza transmission and evolution has been of particular

interest in characterizing interspecies transmission, expansion of host range, and the diversity

of viruses circulating. Cocirculation of different influenza virus strains contributes to the con-

tinued evolution of flu by increasing the possibility of segment exchange occurring between

lineages within subtypes. Although influenza A subtypes H1N1 and H3N2 have been cocircu-

lating since 1977—with the 2009 pandemic H1N1 strain [17], replacing the circulating sea-

sonal H1N1—intersubtype reassortment between H1N1 and H3N2 is rare [18]. Influenza B

lineages, Yamagata and Victoria, have cocirculated since at least 1983 [19] and have been reas-

sorting extensively [20].

Influenza A appears to be evolving under pressure to avoid CpG-containing oligonucleo-

tides, possibly due to innate immune recognition, in a manner less present in influenza B

evolution [21, 22]. Moreover, influenza B lineages have been shown to have lower rates of

antigenic drift when compared to influenza A subtypes [23]. However, distinct patterns in the

rate of antigenic drift between the subtypes of influenza A and lineages of influenza B have

emerged. Influenza A H3N2 and influenza B Victoria lineage undergo a more rapid antigenic

change; thus, old strains die out while new strains appear, lowering diversity [18, 23, 24]. In

contrast, influenza A H1N1 and influenza B Yamagata lineage undergo a slower rate of anti-

genic drift, which allows for more lineages to cocirculate at one time with reduced competition

[18, 23, 24]. A recent model comparing antigenic drift with transmission efficiency found that

higher rates of transmission result in accelerated antigenic drift [25].

What’s worse than 1 virus? A swarm of viruses

Because of the error-prone RNA polymerase, influenza populations exist as a mixture of genet-

ically diverse viral particles. Interactions among the variants could contribute to the overall

success and fitness of the population. The high diversity seen within an infection leads to influ-

enza adapting rapidly to a new environment. The analysis of deep sequencing data from

infected individuals in chains of transmission has allowed the quantification of transmission
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events. It was observed that a genetic mix of viruses is transmitted to susceptible hosts, with

minor variants tagging along with the dominant strain. It is thus feasible that while the influ-

enza vaccine targets the dominant strain, minor variants continue to transmit, undergoing

positive selection and becoming the dominant strain in subsequent transmissions [26].

When looking further at intrahost evolution of the flu, studies find that moderately deleteri-

ous mutations in influenza may remain in the population over several chains of transmission

[27, 28]. Although these mutations may not be systematically removed through purifying, or

negative, selection, they also do not become fixed within the population [29]. However,

computational models show that deleterious mutations can impact the overall evolutionary

trajectory of influenza by restricting the rate of antigenic change of the virus [30, 31].

How much worse than 1 virus are 2 viruses? They can be more than

twice as bad

A recent study on H3N2 found that cooperation could clearly occur between 2 different H3N2

variants. With 1 variant excelling in cell entry and the other excelling in cell exit, the viral pop-

ulation had a higher replicative success when the 2 variants were mixed than when they were

separate [32]. Similar results were found when looking at the expression of influenza proteins.

Although individual virions that lack a fundamental protein may appear noninfectious, when

they are part of a viral population, they can contribute by complementation-dependent protein

expression to increase the fitness of the population as a whole [33]. Influenza virus clones can

also compete with one another, a phenomenon that has been used to explain the appearance of

selective sweeps in influenza’s antigenic evolution [34]. While cooperation is associated with

the division of labor between variants (in the above example, between cellular entry and exit),

competition occurs when multiple members of a population independently develop beneficial

mutations. This scenario, amongst other things, can create an arms race between members of

the population. Thus, the intrinsic diversity and loose transmission bottlenecks in circulating

influenza populations can facilitate an increase in pathogenesis by allowing viral variants to

cooperate with one another or by increasing the number of beneficial mutations appearing in

cocirculating clones.

Clearly, influenza evolution is a multilayered process, and much work needs to be done to

fully capture its richness. Such work requires mathematical tools and next-generation sequenc-

ing technologies to operate in concert to capture the full breadth of influenza transmission.

Effective vaccination strategies would require a better understanding of the complex interplay

of multivariant transmission dynamics, inter- and intrahost viral evolution, and the interaction

of diverse strains with the host immune system. Only then will a full picture of influenza’s evo-

lutionary dynamics emerge.
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